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HISTORICAL NEWS & VIEWS: DECISION NEUROSCIENCE

Are we of two minds?
What you choose depends on what information your brain considers and what it neglects when computing the 
value of actions. An early theory used this insight for a computational account of habits versus deliberation. It has 
ultimately helped uncover how choice in the brain goes beyond such simple dichotomies.
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The idea that our decisions arise from 
multiple competing systems—cold 
versus hot, deliberative versus 

automatic—is ubiquitous, underpinning 
folk and scientific intuition about conflict, 
temptation, and self-control. Yet it is also 
deeply puzzling. Why evolve two choice 
mechanisms? After all, this doesn’t actually 
solve the problem of deciding. To the 
contrary, it compounds it, since your brain 
must also decide which system to trust. 
Plato analogized this problem to that of a 
charioteer wrangling a pair of horses, one 
noble and one beastly. But how does the 
charioteer work, or for that matter  
the horses? And why not just ride the  
noble one?

In an early theoretical article in Nature 
Neuroscience1, we looked to machine 
learning for answers to these questions. 
Ideally, one would choose the action with 
the largest expected utility, which doesn’t 
seem to leave room for multiplicity. But in 
realistic tasks, like spatial navigation—in 
which every choice leads to more choices, 
such that their consequences are delayed 
and contingent—even computing this 
expectation is laborious or unfeasible, 
since it requires enumerating all possible 
paths. Algorithms in reinforcement 
learning (solving choice problems by 
trial and error) must employ a range of 
shortcuts to approximate this ideal. A key 
distinction is that between model-based 
(MB) and model-free (MF) algorithms. MB 
algorithms learn a representation (‘internal 
model’) of the task contingencies—like 
a map—which they use to compute the 
expected value of candidate actions by 
iteratively tracing out their consequences 
(Fig. 1a). Though accurate, such simulation 
is laborious, so MF algorithms avoid it 
by instead storing the endpoint of all this 
computation: the long-run expected value 
of each action. This simplifies choice, at the 
cost of inflexibility: if the world changes, the 
stored values may be invalid and produce 
outdated choices. For instance, actions 
leading to food should carry less value  
once I am full.

We proposed1 that the MB-versus-MF 
distinction formalized a well-supported 
dual-system theory from behavioral 
neuroscience: the distinction between 
goal-directed and habitual instrumental 
behavior2. A form of MF learning known as 
temporal-difference learning was already 
the predominant theory of the midbrain 
dopamine system and its role in reinforcing 
successful actions in striatum. We 
pointed out that this corresponded well to 
inflexible, habitual behaviors that arise after 
overtraining2. However, that mechanism 
failed to explain how animals can also 
flexibly solve decision problems that  
seemed to require a world model. By 
proposing a MB system alongside the MF 
one, we brought mental simulation and  
goal-directed choice into the same 
computational framework.

One key problem for testing multiple 
decision system theories in the laboratory 
is that any reasonable decision system will 
try to maximize reward, and so, they will 
often all make similar choices. Hence it is 
often ambiguous which hypothetical system 
is responsible for a particular behavior and 
how to interpret any effects on choice of 
(for instance) neural manipulations (was 
the beastly or the noble horse affected?). 
Historically, this has motivated laborious 
experimental procedures to contrive 
circumstances in which the systems’ 
contributions can be differentiated. For 
instance, habitual behaviors persist following 
reward devaluation. Formalizing the 
putative systems in terms of MB and MF 
algorithms offered a nimbler approach to 
this problem, because they make concrete, 
distinct predictions about how subjects will 
adjust their choices in light of each trial’s 
outcome in multistep decision tasks3.

Relative to earlier, one-shot 
manipulations like reward devaluation, this 
learning-based approach to differentiating 
the systems is better suited to dynamic 
neuroscientific measurement. In human 
neuroimaging, correlates of trial-by-trial MB 
and MF decision variables have now been 
observed throughout a broad network3,4. 

One theme of these studies is that these 
systems appear to be less separated in the 
intact brain than might have been expected 
based on earlier animal lesion studies.

People’s learning behavior on such tasks 
has also been used extensively to study the 
tradeoff between MB and MF processes in 
humans, and in particular, to document 
circumstantial and individual differences 
affecting the degree to which people rely 
on internal models. Part of the appeal of 
dual-system theories is that they offer an 
intuitive explanation for why people might 
be of two minds about something5, an idea 
that has been invoked in such diverse areas 
as moral dilemmas, racism, and self-control. 
Having a formal definition of the systems 
has helped to investigate these claims 
experimentally. For instance, a range of 
psychiatric symptoms involving compulsion 
(from morning drinking to repetitive hand-
washing) is associated with reduced MB 
behavior on a reinforcement learning task6. 
This supports the longstanding suggestion 
that imbalance in deliberative versus 
automatic processes might underlie the 
compulsive character of disorders such as 
drug abuse5.

A further headline claim of the original 
theory1 was an account of the charioteer 
problem: how the brain might arbitrate 
between the systems. The idea was that 
different algorithms are most trustworthy 
in different circumstances, so action 
evaluations should compete on the basis 
of their statistical reliability, or conversely, 
their uncertainty. This offered a rational take 
on automaticity and control. Later theories 
refined the account to speak more explicitly 
of the tradeoff between the costs (time) 
versus benefits (better choices, harvesting 
more rewards) of MB computation, relative 
to quickly executing a MF habit7,8. Thus, for 
instance, when learning a new uncertain 
task, it might behoove you to deliberate 
about the consequences of your actions 
(MB), but after lengthy practice on a stable 
task, you can usually get the same result 
quicker by repeating what has always 
worked (MF). Such reasoning explains 
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the emergence of habits with overtraining. 
There is still much experimental work 
to be done to test such ideas of dynamic 
arbitration—even to clarify what is the space 
of potential competing models—though 
initial forays are promising4.

Of course, such clean dichotomies are 
bound to be oversimplified. In formalizing 
them, the MB-versus-MF distinction 
has also offered a firmer foundation for 
what will ultimately be, in a way, its own 
undoing: getting beyond the binary. Neither 
MB recomputation nor MF reuse need be 
complete, and researchers are beginning 
to find evidence that brains combine these 
approaches to produce various intermediate 
strategies. The key insight remains that  
the phenomena associated with dual-system 
conflict (habits, slips of action) reflect  
the brain adaptively deploying and reusing 
decision computations, even if this is  
not simply by switching between  
discrete systems.

For instance, the basic MF trick of 
storing computations can be applied 
more judiciously. Rather than reusing 
completed evaluations, it is possible to store 
intermediate steps of value computation, 
such as expectancies about long-run action 
outcomes (for example, if you head in 
the direction of the drive-through, you 
will ultimately get a hamburger). Such 
an approach, known as the successor 

representation9 (Fig. 1b), permits finalizing 
plans relatively quickly (you need only to 
combine the expectation of a hamburger 
with its current value, without considering 
the intervening steps). This is more flexible 
than MF choice at coping with change in 
outcome values (for example, an E. coli 
outbreak). But reusing old predictions can 
still cause mistakes when other aspects of 
the environment change (for example, if the 
drive-through closes, or a new hearty soup 
restaurant opens nearby). Such fingerprints 
of this valuation strategy have also been 
reported in people10, offering an example 
subtler than outright habits of how selective 
computation can misfire.

Conversely, MB simulation can’t possibly 
anticipate all possible future paths in most 
environments. Accordingly, it must truncate 
its simulations and focus them in particular 
directions11. This observation suggests that 
rather than selection between exhaustive 
MB computation and none at all, control of 
evaluation is better understood as selection 
over which particular paths to consider and 
when8 (as in algorithms like Dyna12; Fig. 1b). 
This more granular perspective may begin to 
extend the explanatory power of the theory 
beyond outright neglect—as in habits, 
compulsive actions, and the like—and help 
to explain more directed phenomena,  
like rumination, craving, and the effects  
of advertising.

Newer theories that better detail the 
individual steps of MB computation should 
also help to guide research into a key 
remaining question in the area: what neural 
mechanisms carry out these computations? 
We’ve long had a basic picture of how 
dopaminergic prediction errors could 
support MF learning. Although the original 
theory1 envisioned that this canonical habit 
circuit would compete against a separate 
MB system, evidence since then has 
instead suggested that MB computation, 
too, shares a dopaminergic foundation13. 
The intermediate computational strategies 
discussed above suggest how this might 
work, with MB predictions selectively 
layered over a shared MF learning stage8.

Beyond these coarse, systems-level 
suggestions, the choice-time mechanisms 
by which the brain computes MB valuations 
remain open for discovery. Although 
experimental work on these ideas has so 
far primarily centered on studies in human 
subjects (where methods like online testing 
permit rapidly refining tasks and analyses), 
this question ultimately calls for measuring 
and manipulating neural events with 
finer temporal resolution. Accordingly, 
researchers have begun to adapt approaches 
from humans to nonhuman animals, where 
they can be combined with more invasive 
methods14. One of the most promising 
frontiers is in the hippocampus, where 
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Fig. 1 | Different evaluation strategies choose different routes to lunch. a, MB and MF evaluation. Different sequences of actions lead to different food 
outcomes. The agent had previously favored a left turn for a burger with a reward value r =​ 6. She has now learned of, but not yet traveled to, a new hearty 
soup restaurant, whose higher value (r =​ 10) has been encoded in her internal model. MB evaluation, which computes actions’ values by exhaustive mental 
simulation, thus prefers to turn right at the start to obtain the soup (red). An MF system instead relies on a summary of the previously experienced long-run 
value of each action. This reliance on stored summaries can lead to inappropriate choices if they become out of date: because the MF value is learned from 
experiencing an action’s consequences, it does not yet reflect the soup’s availability and still prefers a left turn. b, Evaluation strategies intermediate between 
MB and MF. The successor representation (SR) stores a simplified model, summarizing the long-run experienced outcome of the action (for example, the 
hamburger). Compared to MF, this allows for greater flexibility when an outcome’s value changes, but in the current example, like MF, this summary neglects 
the availability of the new path to soup, and thus still prefers the hamburger. Finally, hybrid algorithms like Dyna maintain a set of MF values, but selectively 
update them using individual model evaluations that can be prioritized as needed. Here information about novel soup can trigger recomputation of the value 
leading there.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


news & views

researchers have observed activity tracking 
nonlocal paths (for example, ahead or 
behind the animal) in the same neurons 
that usually represent the animal’s current 
location15. This may be a direct window 
into individual trajectories of MB ‘mental 
simulation’, and indeed many of the 
regularities of these nonlocal trajectories are 
explained by the hypothesis that they are 
adaptively selected to optimize planning8.

In the end, perhaps we are not creatures 
of two minds—or three, or four—but it 
has become increasingly clear that what we 
choose depends to a surprising extent on 
how we compute the values of our candidate 
actions. And there are many different, 
interacting routes to this evaluation.� ❐
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