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Outline of Talk

.. Why did we start down this road?
.  How do we do what we do?

.  Modeling Probabilistic RL in a Stable Environment
Iv. Modeling Probabilistic RL in an Unstable Environment

v. Modeling Directed Exploration

vl. What lessons have we learned?

vil. What do we still want to know?



What | hope you will get from my talk

»>What we think the value of computational psychiatry is

>How we go about trying to address our problems of interest

>What issues we need to consider every time we apply computational
approaches to a problem



“Branches” of Computational Psychiatry

»>Machine learning approaches to clustering and prediction
»Neural network/“Connectionist” models of information processing

»>Computational models of learning and inference
> Rescorla-Wagner-type Reinforcement Learning models
> Hierarchical Gaussian Filter models
> Markov chain Monte Carlo methods
> Drift Diffusion models
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l. Why did we start down this road?

Why take this approach to studying schizophrenia?

Why care about computational accounts of learning and motivation?
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Schizophrenia is a heterogenous syndrome,
with multiple symptom domains




Domains of psychopathology
in the schizophrenia syndrome

Hallucinations
Delusions

Disorganization Psychotic » SZ also generally
Symptoms Symptoms accompanied by
cognitive deficits:

> Attention

> Memory

> Processing Speed
> Executive Functions
Affective Blunting

Anhedonia
Avolition

Very little is true of MOST people with schizophrenia



Motivation to Focus on Negative Symptoms

> Negative symptoms have a high social and financial cost

> Poor functional outcome (social, occupational; Lysaker, 2004; Norman, 2000)
> Poor quality of life (Katschnig, 2000; Orsel, 2004)

> Low rate of recovery (Strauss, 2011)

> Toll on families

> No drug has received FDA approval for an indication of negative symptoms
» 2"d generation antipsychotics not proven effective
> Many attempts with experimental compounds, none proven consistently effective

> Our understanding of mechanisms of negative symptoms has historically been
poor, lacking in actionable targets



Particular Focus on the experiential/motivational
negative symptoms of SZ
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> By these, we usually mean:

> Anhedonia: the reduced experience or anticipation of pleasure
> Avolition/Apathy: reduced tendency to engage in motivated or goal-directed behavior

> Distinct from “expressive negative symptoms”, like alogia, reduced gestures, and blunted facial
expressions

> Historically, the construct of anhedonia has been poorly-specified by clinical rating scales of

negative symptoms (that may be changing)
» Consummatory aspects of pleasure (“liking”) can be distinguished from anticipatory aspects of pleasure
(“wanting”)

> The relationship between anhedonia and avolition is also poorly-specified, though anhedonia and
avolition consistently load together as one factor in factor analyses of negative symptoms (e.g.,

Blanchard & Cohen, 2006 SZ Bull)
» Does the reduced experience/anticipation of pleasure drive motivational deficits?



Motivating Hypotheses

> Somehow, someway, schizophrenia is a disease of

dopamine systems HO NH

> There are dopamine hypotheses of schizophrenia and
psychosis

> All antipsychotic drugs block D2 dopamine receptors and HO
their potency as antipsychotic drugs is directly tied to their
affinity for D2 receptors

Expected Experienced
Value Value

> What do we know about the functional roles of dopamine

pathways?

> They appear to be involved in the signaling of reward

Prediction
Error

prediction errors (RPEs)

> They appear to signal incentive salience

> People with schizophrenia have a hedonic deficit, but the
hedonic deficit is not primarily one of experience



Hedonic Experience (“Liking”) vs. Incentive Salience (“Wanting”)

Liking Wanting
(Experiencing the Reward) (The Cue as Motivating)

VS.

The Pudding Face Want. Pudding.

> Do people get the pudding face?

> Do people who get the pudding face when they eat it, WANT the pudding, when they
are reminded of it?

> If not, it would suggest a fundamental in the ability to translate experienced
reinforcement into the expectation of a reward (or approach behavior, at least)

> There is evidence that this is actually characteristic of people with schizophrenia



Schimphrenia Bulldin vol. 36n0. 1 pp. 143-150,2010
do1:10.10936chbul kb 61
Advance Access publication on June 17, 2008

Emotional Experience in Patients With Schizophrenia Revisited: Meta-analysis of
Laboratory Studies
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Why would SZ patients not pursue rewards
that they claim to find pleasurable?

Do they not learn to “want” what they “like”?
How does one learn to “want” what he “likes”?

This is the process of reinforcement learning (RL)
and there are a multitude of ways in which it can go wrong




DA Neurons and the Signaling of Reward Prediction Errors (RPEs)

Frontal ce

STRIATUM

gets broadcast to frontal cortex \\\\\\\&&“
and striatum, where it serves to ,‘ \\&\
update representations of value ¢ DA cells

for stimuli and actions, resulting VTA in Midbrain
in increased or decreased wanting




Functional Roles of Dopamine:

Signaling of TDEs and Incentive Salience

T 7R:/\0s in Neurosciences Vol.26 No.8 August 2003 423
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A computational substrate for
iIncentive salience

Samuel M. McClure', Nathaniel D. Daw? and P. Read Montague’

"Center for Theoretical Neuroscience, Human Neuroimaging Laboratory, Baylor College of Medicine, 1 Baylor Plaza,
Houston, TX 77030, USA

2Computer Science Department, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
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(Slightly more refined) Motivating Hypotheses

»>Anhedonia and avolition in schizophrenia should be associated with
abnormal reward prediction error signals

»>Anhedonia and avolition in schizophrenia should be associated with
abnormal reward anticipation signals, indicative of a reduced ability
to assign incentive value to stimuli

Spoiler Alert: This is what we found.



Probabilistic Reversal Learning (PRL) Task

Valid Positive
Feedback

Reversal Error
(Valid Negative Feedback/Shift)

Pre-reversal Error
(Valid Negative Feedback/Stay)

“Correct” stimulus switches

From to | &

— Valid Positive
i : Feedback

Probabilistic Error
(Invalid Negative Feedback)

Valid Positive
Feedback

“Correct” stimulus is

— i ﬁ
Choice of is rewarded 8x out of 10.

PRL involves at least three processes:

1. Modulating attention, based on the salience of outcomes

2. Updating value representations based on violations of expectation (PEs)
3. Deciding based on expected values of choices



Striatal RPE signals have been shown to scale with
ratings of anhedonia/avolition severity
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> The groups did not differ in their contrasts between expected and
unexpected outcomes, but, in PSZ, contrasts between expected and
unexpected outcomes correlated with ratings for negative symptoms



Striatal reward anticipation signals have been shown
to scale with ratings of anhedonia/avolition severity
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Q: Do Anhedonia and avolition in schizophrenia originate
primarily with abnormal reward prediction error signals and
abnormal reward anticipation signals (indicative of a reduced
ability to assign incentive value to stimuli)>

A: They likely play a role, but there are many other ways in which goal-directed
behavior can go wrong.




Goal is not just to find out what schizophrenia patients have
difficulty with

T T R T A
>What is intact in most SZ patients?

> What is impaired only of SZ patients with motivational deficits?

> Multiple component processes involved in RL, including the signaling of the
expected value (EV) of stimuli and actions, the integration of outcomes,
and the signaling of reward prediction errors.

» Which reward-related signals could/do travel with clinical ratings of
anhedonia/avolition?

> If avolition is not always driven by anhedonia (either consummatory or
anticipatory), what is it driven by?

> What drives avolition in the presence of intact RPE signals?



There is more to goal-directed behavior
than learning to want what you like

Reward Prediction/
Wanting/RPE Signaling
(Dopaminergic systems
and basal ganglia)

Hedonics/Liking
(Opioid and GABA systems in
striatum, OFC)

Integration of information
to update and maintain
values (OFC)

Cost-Benefit Analysis

Computing effort of
plan in relationship to
reward value (ACC)

From: Dowd and Barch (2011), After Wallis (2007)
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Q: What did we think Computational Psychiatry could buy us?

A: A mechanistic account of avolition, through disrupted reinforcement learning
and decision making.




What is necessary for learning about the value
of stimuli and actions?

> Ability to integrate frequencies and magnitudes of potential
outcomes

> Ability to represent both the costs and benefits of actions



Kinds of RL

> Positive-RPE-driven- (Go-) vs. Negative-RPE-driven (NoGo-) Learning

»Rapid/PFC-driven/WM-dependent RL vs. Gradual/BG-driven/
Procedural RL

> @Gain- vs. Loss-driven Learning

»>Model-based vs. Model-free/State vs. Reward



Kinds of RL

> Positive-RPE-driven- (Go-) vs. Negative-RPE-driven (NoGo-) Learning

>



By Carrot or By Stick

A C »— Intact
e — - ® Simulated PD
- + — + Simulated DA Meds
— : Frontal Cortex
excitato sgs i )
—e mhibi,or;y Probabilistic Selection
. BG Model Go/NoGo Associations
— modulatory striatum ®» 0.50
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b 0.40r -
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SNc GPi Test Condition

The effect of a dopamine burst is to stimulate the D1/Direct/Go pathway and disinhibit the thalamus.

The effect of a dopamine dip is to release inhibition from the D2/Indirect/NoGo pathway and GPi, resulting in inhibition of the thalamus.

A.

The corticostriato-thalamo-cortical loops, including the direct (Go) and indirect (NoGo) pathways of the basal ganglia. The Go cells disinhibit the thalamus via the internal
segment of globus pallidus (GPi) and thereby facilitate the execution of an action represented in cortex. The NoGo cells have an opposing effect by increasing inhibition
of the thalamus, which suppresses actions and thereby keeps them from being executed.

The Frank neural network model of this circuit (squares represent units, with height and color reflecting neural activity; yellow, most active; red, less active; gray, not
active). The premotor cortex selects an output response via direct projections from the sensory input, and is modulated by the basal ganglia projections from thalamus.

Predictions from the model for the probabilistic selection task, showing Go-NoGo associations for stimulus A and NoGo-Go associations for stimulus B. Error bars reflect
standard error across 25 runs of the model with random initial weights.

Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943.



Probabilistic Stimulus Selection Task

Acquisition/Training Phase
> 20 trials with each stimulus pair, per block
> 2-6 blocks

> Probabilistic feedback (“correct” or “incorrect”)

> Training ends when subject reaches criteria in all 3 conditions in same block
> 65% A choices on AB trials

> 60% C choices on CD trials
> 50% E choices on EF trials

» Measures of Rapid/Declarative RL incude:
> Performance on Training Pairs in first two blocks
> Proportion of “wins” leading to “stays”
> Proportion of “losses” leading to “shifts”

A~ g
DN
¥

A (80%) B (20%)

s

C (70%) D (30%)

ke

(60%) F (40%)




Probabilistic Stimulus Selection Task

Post-acquisition Test/Transfer Phase
> No feedback
>4 trials with each of 15 possible stimulus pairing (60 total)

3 Training Pairs 12 Novel Transfer Pairs

o .

Choose A Avoid B Other

AC BC CE

A (80%) B (20%)
AD BD CF
& O AE BE DE
C(70%) D @0%) AF BF DF

% @ . “Go-learning” tested by transfer pairs with A (best)

“NoGo-learning” tested by transfer pairs with B (worst)
E (60%) F (40%)

Have subjects learned the values of the best and worst stimuli?




Probabilistic Stimulus Selection Task:

Post-acquisition Test Phase

Training Pairs

&

A (80%) B (20%)

i

R
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E (60%) F (40%)




Go- and NoGo-learning in Parkinson’s Patients
On and Off Dopamine Agonists

»— Seniors
. e @ PD OFF

Transfer Pairs of Greatest Interest ¢ -+ PDON

Probabilistic Selection
Test Performance
Choose A Avoid B 10T
AC BC 5 o] -
AD BD g% 1
AE BE § 7o .
AF BF & eof -
50r .
e “Go-learning” tested by transfer pairs with A (best) Choose A Avoid B

Test Condition
“NoGo-learning” tested by transfer pairs with B (worst)

*  Have subjects learned the values of the best and worst stimuli? . .. . ,
Dopamine depletion in Parkinson’s

disease leads to reduce “Go-learning”,
but enhanced “NoGo-learning.”

Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943.



Go- and NoGo-learning in People with Schizophrenia

-
o

B Controls

[] Patients with SZ
k %k

Predicted that faulty burst-firing in PSZ
would lead to a Problem of Go-learning

o
©

o
o

o
-

> Patients would show impaired Choose-A
behavior (Go-learning)

o
o

Proportion of Trials on Which More
Frequently Reinforced Stimulus Was Chosen

o

o

> Patients would show intact Avoid-B
behavior (NoGo-learning)

o
B
|

Choose A Avoid B
Test Condition

** = p<0.01

Waltz et al. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction.
Biological Psychiatry, 62, 756-764.
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But the story is more complicated than that...

There are many other RL mechanisms aside from BG-driven Go- and NoGo-learning




Kinds of RL

>

»Rapid/PFC-driven/WM-dependent RL vs. Gradual/BG-driven/
Procedural RL

> Evidence for complementary learning systems



Rapid/PFC-driven/WM-dependent RL vs.
Gradual/BG-driven/Procedural RL

R I e S T T S S g
> Dopaminergic RPE signals are thought to drive RL in the striatum, but semi-

segregated D1 and D2 pathways not thought to drive Go- vs. NoGo-learning in the
cortex

> ldea that orbitofrontal cortex (OFC) is there to represent the subjective value of
stimuli, and that damage to OFC would lead to:

> A reduced ability to precisely represent the magnitudes of outcomes (and flexibly modify
these representations); and

> A reduced ability to integrate the frequencies and magnitudes of outcomes
> A reduced ability to learn over the course of 1 or 2 trials (win-stay and lose-shift)

> A reduced ability to modify behavior in the face of sudden contingency reversals



a)

Striato-Orbitofrontal Interactions and the integration
of outcome frequency and magnitudes

b)

Premotor Cortex

dorsal
striatum

(<

Orbitofrontal Cortex

—> excitatory
—@ inhibitory
<4 modulatory

dorsal
striatum

Coned

b)

The cortico-striato-thalamo-cortical loops, including the direct and indirect pathways of the basal ganglia.

The same circuit with additional influence from the orbitofrontal cortex, which can maintain reinforcement-related information in working memory and

The orbitofrontal cortex receives information about the relative magnitude of reinforcement values from the basolateral nucleus of the amygdala (ABL), which it
GPe = external segment of the globus pallidus

provide top-down biasing on the more primitive basal ganglia system, in addition to direct influencing of response selection processes in the premotor cortex.
can also maintain in working memory. Dopamine from the ventral tegmental area (VTA) projects to the ventral striatum (not shown) and the orbitofrontal cortex.

Review, 113, 300-326.

Frank, MJ, Claus, ED. (2006). Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological



The integration of outcome frequencies and magnitudes

enables one to solve the lowa Gambling Task
B L R e S R Bt

a) b) c)
E= Full Model E= Full Model == Full Model
£Z2 OFC lesion \ZZ4  OFC lesion 72  OFC lesion
Gambling Task Gambling Task Gambling Task
Just Frequency Magnitude vs. Frequency Magnitude vs. Frequency
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» Gambling task results after 140 trials of training. a: In the just frequency condition, both intact and OFC-lesioned models were successful at playing to the good deck (which
resulted in a gain 70% of the time) and passing on the bad deck (which resulted in a loss 70% of the time). b: When magnitude information was in opposition to frequency, the full
model was nevertheless able to maximize expected value by playing on the infrequent high-gain deck and passing on the infrequent high-loss deck. In contrast, the OFC-lesioned
networks continued to respond on the basis of frequency and therefore make maladaptive decisions. c: These results held up even when the dopamine signal was scaled such
that high-magnitude gains-losses were associated with larger dopamine changes than were low-magnitude outcomes.

Frank, MJ, Claus, ED. (2006). Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological
Review, 113, 300-326.



The integration of outcome frequencies and magnitudes
enables one to detect rapid contingency reversals

a)

15

10

Fellows & Farah (2003)

-

0 -
learning errors

reversal errors

aCTL

= VMF

b)
'E=  Full Model
\EZZ  OFC lesion
Reversal Learning
60+ 1 -
i S
240+ -
w
B
20~ 1
0 o 7
Acquisition Reversal

Stage

> a: Reversal learning impairments in humans with damage to ventromedial and orbitofrontal cortices,
showing number of errors made in the learning and reversal phases. Modified from Fellows and Farah (2003)
with permission. b: Model reversal learning results. Acquisition refers to performance (error percentages)
after 200 trials; reversal refers to performance after a further 200 reversal trials.

Frank, MJ, Claus, ED. (2006). Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological

Review, 113, 300-326.



The integration of outcome frequencies and magnitudes enables one to modify
behavior on a trial-wise basis and acquire reinforcement contingencies rapidly
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Additional results from Probabilistic Stimulus Selection experiment:

> During Acquisition, SZ patients showed reduced Early Acquisition scores on the higher-
reward-frequency items (a measure of rapid RL), relative to controls

> Early Acquisition scores in SZ patients correlated with overall negative symptom scores

» During Acquisition, SZ patients showed reduced rates of both win-stay and lose-shift
behavior — two other measures of rapid, trial-to-trial learning

Expt. 2: Acquisition Blocks 1 & 2
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Waltz et al. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational
models of striatal-cortical dysfunction. Biological Psychiatry, 62, 756-764.



Probabilistic Reversal Learning (PRL) as a Measure
of the Ability to Detect Rapid Contingency Reversals

Valid Positive
Feedback

Reversal Error
(Valid Negative Feedback/Shift)

Pre-reversal Error
(Valid Negative Feedback/Stay)

“Correct” stimulus switches

— Valid Positive
i : Feedback

Probabilistic Error
(Invalid Negative Feedback)

Valid Positive
Feedback

“Correct” stimulus is {55
Choice of is rewarded 8x out of 10.

ﬁ

PRL involves at least three processes:
1. Modulating attention, based on the salience of outcomes
2. Updating value representations based on violations of expectation (PEs)

3. Deciding to repeat the previous response, or switch to the alternative response, based on
expected values of choices, as well as certainty about the expected values of choices.



Probabilistic Reversal Learning as an Example

of RL in an Unstable Environment

Experiment 1

Experiment 2
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Waltz et al. (2007). Schizophrenia Research. Waltz et al. (2013). PLoS-ONE.

> PSZ show much greater deficits in reversal of learned associations than in achievement of initial
probabilistic discriminations



Gradation of RL Deficits in Schizophrenia

» Evidence that rapid/PFC-driven RL processes — esp. those involving +RPEs, are relatively more disrupted in SZ
than slow/BG-driven RL processes (esp. those involving -RPEs), which may actually be somewhat preserved.

1.0
< Il Controls
Expt. 2: Acquisition Blocks 1 & 2 3 [ Patients with SZ
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Probabilistic Reinforcement Learning:
Behavioral Phenomena We Have Linked to Avolition/Anhedonia in SZ

R R
> Relatively-intact negative RPE-driven learning in the presence of impaired positive RPE-
driven learning (Waltz et al. 2007; Waltz et al., 2011)

> Relatively-intact gradual/procedural learning in the presence of impaired rapid/explicit RL

» Relatively-intact habit learning in the presence of impaired WM-dependent RL (Waltz et al. 2007;
Waltz and Gold, 2007)

> Greater performance deficits in SZ for more deterministic contingencies than less deterministic
contingencies (value-difference effect; Hernaus et al., 2019a)

> Relatively-intact BG-driven learning in the presence of impaired OFC-driven RL

» A reduced ability to integrate the frequencies and magnitudes of outcomes (Hernaus et al., 2019b)

> In general: a more limited ability to rapidly and flexibly update value representations in
the brain (Waltz et al., 2015)
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When we say that computational psychiatry can
provide one with a mechanistic account of
avolition, through disrupted RL and DM, we
mean that it can generate mechanistic accounts
of phenomena like these




Another potential benefit of computational psychiatry:

Available online at www.sciencedirect.com
ScienceDirect Behavioral
P Sciences
ELSEVIER
When decisions talk:|computational phenotyping|of
motivation disorders

Mathias Pessiglione'*, Raphaél Le Bouc'*° and W) oo
Fabien Vinckier'-**




Types of Processes We’ve Examined

1. Acquisition vs. Expression of Learned Associations
2. Probabilistic RL in stable and unstable environments

3. Directed Exploration
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Il. How do we do what we do?
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Considerations
e S
> Are you modeling SR learning, or Q-learning, or both?

> How many learning rates, and which ones?
> Separate learning rates for positive and negative RPEs? Actor and Critic?

> Decay parameter, or not?
> Schonberg et al. (2007) sticky-choice model

> Explore parameter, or not?

> Who are your patients?
> Are they old/young/medicated/unmedicated/at-risk/along the spectrum?

> It should affect what you expect.

> EVERYTHING | SAY TODAY, | BELIEVE TO BE TRUE OF MEDICATED ADULTS WITH
(MULTIEPISODE) PSYCHOTIC ILLNESS, ESPECIALLY THOSE WITH MORE SEVERE NEGATIVE
SYMPTOMS



Learning to seek gains and learning to avoid losses
are likely at least semi-independent processes

100

Observed choices (%)

Pessiglione, M., et al. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442 (7106), 1042-5.

(4]
o

Fixation Stimuli

Modelled choices (%)

30
Trail number

NOTHING
or

»Haloperidol and L-dopa differentially
affected RL, such that haloperidol
affected reward-driven, but not
punishment-driven RL

Figure 1| Experimental task and behavioural results. a, Experimental task.
Subjects selected either the upper or lower of two abstract visual stimuli
presented on a display screen, and subsequently observed the outcome. In
this example, the chosen stimulus is associated with a probability of 0.8 of
winning £1 and a probability of 0.2 of winning nothing. Durations of the
successive screens are given in milliseconds. b, Behavioural results. Left:
observed behavioural choices for initial placebo (grey), superimposed over
the results from the subsequent drug groups: L-DOPA (green) and
haloperidol (red). The learning curves depict, trial by trial, the proportion of
subjects that chose the ‘correct’ stimulus (associated with a probability of 0.8
of winning £1) in the gain condition (circles, upper graph), and the
‘incorrect’ stimulus (associated with a probability of 0.8 of losing £1) in the
loss condition (squares, lower graph). Right: modelled behavioural choices
for L-DOPA (green) and haloperidol (red) groups. The learning curves
represent the probabilities predicted by the computational model. Circles
and squares representing observed choices have been left for the purpose of
comparison. All parameters of the model were the same for the different
drug conditions, except the reinforcement magnitude R, which was
estimated from striatal BOLD response.




Types of Models We Have Applied

> Q-learning models with one learning rate

»>Q-learning models with more than one learning rate
> Alpha-P vs. Alpha-N

> Actor/Critic models

»Hybrid models — to capture BG (slow) and OFC (fast) contributions
» Q-learning + Actor/Critic
> WM contribution

»>Models with dynamic learning rates

»>Models with exploration parameters



fMRI Data Analyses with Parametric Regressors

> Main goal is to identify increases and decreases in neural activity that are event-related

> In the context of tasks of reinforcement learning and decision making, our events of
interest (cues and outcomes) can have variable amplitude:
> Cues can have expected value and certainty about value

> The value of outcomes can be expressed either in absolute terms, or as the difference between the
expected and obtained outcomes

> Trial-wise parameter estimates from RL models may serve as parametric/amplitude-modulated
regressors

> Event regressors are then convolved with an idealized hemodynamic response function

> NOW, when you perform group-level analyses (t-tests, ANOVAs, mixed-effect analyses),
the beta coefficients from single-subjects regression analyses reflect the extent to which
fluctuations in brain activity track internal representations of the values we are modeling
(like expected value, certainty about value, and reward prediction errors)



Combining behavioral modeling with neuroimaging

Pass individual subject trial
history to model

Find best-fitting parameters
of model to behavioral data

Generate model-based time

series

Convolve time series with
hemodynamic response
function

Regress against fMRI data

Time

At bl

2
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FIGURE 1. lllustration of model-based fMRI approach. Each individual subject’s trial
history is passed to the model, and the parameters of the model are fit so as to minimize
the difference between the model predictions and an external behavioral measure, which in
the conditioning example could be an external measure of conditioning, such as galvanic
skin conductance responses or pupil dilation. Next, the best model-fitting parameters are
used to generate a time series for each trial in the fMRI. which are then convolved with
basis function(s) to account for the effects of hemodynamic lag. such as the canonical
hemodynamic response function, and then regressed against the fMRI data.
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FIGURE 2. Model-based fMRI of stimulus-reward leaming. ( A) Properties of the tem-
poral difference prediction error signal during reward learning in which a cue (CS+) is paired
repeatedly with a reward (UCS) presented 3 sec later. During the initial stages of learming
(CS + carly trials), the error signal responds at the time of presentation of the UCS, but over
the course of learning transfers back to the time of presentation of the CS (CS + late trials).
On trials in which the CS+- is not presented but the reward is delivered anyway (CS—unexp.
reward), the signal shows a positive response at the time the reward is delivered, whereas
on trials in which the CS is presented but the reward is unexpectedly omitted the signals
show a negative response at the time of outcome. (B) Plot of model-generated prediction
error signals at the time of presentation of the CS, and the time of presentation of the UCS,
over the course of the experiment for a typical subject. (C) Area of bilateral ventral striatum
(ventral putamen bilaterally) showing significant correlations with the temporal difference
prediction error signal while subjects underwent classical conditioning with sweet taste
reward (1M glucose). Data from O'Doherty et al.!!

O’Doherty, J.P,, et al. (2007). Model-Based fMRI and Its Application to Reward Learning and Decision Making. ANYAS, 1104, 35-53.
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Ill. Modeling Probabilistic RL
in a Stable Environment




Probabilistic Reinforcement Learning:
Behavioral Phenomena We Have Linked to Avolition/Anhedonia in SZ

e S e e C R DA
>

> Relatively-intact gradual/BG-driven/procedural learning in the presence
of impaired rapid/OFC-driven/explicit RL
> Relatively-intact habit learning in the presence of impaired WM-
dependent RL

> Greater performance deficits in SZ for more deterministic contingencies
than less deterministic contingencies (value-difference effect)

> A reduced ability to integrate the frequencies and magnitudes of
outcomes



)
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Why would a system with intact signaling of RPEs fail
to adaptively represent the values of choices?

If it didn’t have a Q-learning mechanism, allowing it to represent the magnitudes of
outcomes and integrate them with representations of the frequencies of outcomes




Modified Pessiglione Probabilistic Selection Task/
Gain vs. Loss-avoidance (GLA) Task

> Allows one to cross the valence of the outcome (gain/loss/neutral) with the valence of
the prediction error (positive or negative), allowing one to perform contrasts across

levels of outcome valence (gain vs. neutral, e.g.), for the same level of RPE (when both
are better than expected), as well as perform contrasts across levels of RPE valence
(positive vs. negative), for the same level of outcome (neutral, e.g.)

> Allows one to represent both the acquisition of contingencies and the expression of
learned contingencies

> One can also use a computational model to estimate expected value and RPE on a
trial-wise basis, to determine how well different brain regions track RPE valence and
magnitude through their activity

> One can ask:

> Do (avolitional) SZ patients show aberrant neural signals for all forms of positive and negative RPEs?

> Do (avolitional) SZ patients show a specific abnormality in signaling the occurrence of gains, relative to
losses, or even relative to instances of loss-avoidance — another kind of positive prediction error




Gain vs. Loss-avoidance (GLA) Task: Acquisition Phase
160 trials (40 with each of 4 pairs), with monetary feedback

2 Gain/Miss pairs (AB, CD): Frequent Winners (FW) vs. Infrequent Winners (IW)

Frequent (90%) vs. Infrequent (10%) Frequent (80%) vs. Infrequent (20%)
Winner (A) Winner (B) Winner (C) Winner (D)
_— —
Stimuli “ . TS e =
Possible > ) Not a winner. ‘1 Not a winner.
Outcomes W|n' Try again! \;Vin”l Try again!
Exoected Val 9x.05= 1x.05= 8x.05= .2x.05=
pected Value 45 cents 5 cents 40 cents 10 cents
2 Loss/Avoid pairs (EF, GH): Infrequent Losers (IL) vs. Frequent Losers (FL)
Infrequent (10%) vs. Frequent (90%) Infrequent (20%) vs. Frequent (80%)
Loser (F) Loser (G) Loser (H)

Stimuli

Possible
Outcomes

Expected Value

Loser (E)

Keep your
money!

1x-.05=
-5 cents

9x-.05=
-45 cents

o] 8

/4

Keep your sl

money! Losel
.2x-05= 8x-.05=
-10 cents -40 cents

Gold et al. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.

Arch. Gen. Psychiat., 69, 129-38.






Not a winner.
Try again!




Keep your
money!







Prob. Selection/Gain vs. Loss-avoidance Task (GLAT)

Transfer Phase: 64 trials, with all possible stimulus combinations, and no feedback
* The 4 training pairs were each presented 4 times (16 total trials);
e 48 trials with 10 kinds of novel pairings

‘ -
Infrequent Frequent
Winner Winner
(Iw; B, D) (FW; A, C)
Infrequent Frequent
Loser Loser
(IL; E, G) (FL; F, H)

Figure 1. Example of rimorcament lsaming tesk stimell and f2ecback. A, Feedback delivered afier a comect cholce (Indicated by 2 biug border) In the reward
8, Feedback dellvered following an Incorfect choice. C, Feedback defivesed following a comect choice In the loss-avoidance iriaks. D, Feedback delhvesed

irigs. 8,
foliowing 2n Incorect choice

Gold et al. (2012) Arch. Gen. Psychiat.



Prob. Selection/Gain vs. Loss-avoidance Task (GLAT)

Transfer Phase: 64 trials, with all possible stimulus combinations, and no feedback
* The 4 training pairs were each presented 4 times (16 total trials);
e 48 trials with 10 kinds of novel pairings

Infrequent Frequent
Winner Winner
(Iw; B, D) (FW; A, C)
Infrequent Frequent
Loser Loser
(IL; E, G) (FL; F, H)

° Transfer contrasts of interest
— FW vs. FL (+PE Gain vs. -PE Loss)
— FW vs. IW (+PE Gain vs. -PE Neutral)
— ILvs. IW (+PE Neutral vs. -PE Neutral)
— FW vs. IL (+PE Gain vs. +PE Neutral)

Gold et al. (2012) Arch. Gen. Psychiat.















Gain vs. Loss-avoidance Task: Acquisition
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50 . . ; . 50 . . . . Figure 3. Performance on the gain and loss-avoidance difference score
1 2 3 4 1 2 3 4 among patients and healthy control (HC) subjects. The difference score was
calculated using block 4 performance. Scores above zero indicate better
learning from gain than from loss avoidance, while scores below zero
@ indicate better learning from loss avoidance than from gain. HNS indicates
) . high-negative symptom; LNS, low-negative symptom.
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Figure 2. Differences in reinforcement learning among patients and healthy control (HC) subjects in 90% and 80% probability gain and loss-avoidance conditions. -15

A and B, Performance in the 90% and 80% gain conditions, respectively. C and D, Performance in the 90% and 80% loss-avoidance conditions, respectively.

HNS indicates high-negative symptom; LNS, low-negative symptom. End of Acquisition

> Controls and patients with less severe negative symptoms show an advantage for gain-driven learning over loss-avoidance driven learning

> Patients with more severe negative symptoms show the opposite; they are better at learning what not to do than what to do...

Gold et al. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.
Arch. Gen. Psychiat., 69, 129-38.



Gain vs. Loss-avoidance Task: Transfer Results

100+

% Choices Better Stimulus

Transfer Co

> All groups preferred Frequent Loss-avoiders to Infrequent Winners

Two effects of particular interest:

» PSZ with more severe anhedonia/avolition like Frequent Loss-avoiders as much as they like Frequent Winners

Gold et al. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.
Arch. Gen. Psychiat., 69, 129-38.



Actor-Critic vs. Q-learning

> Unlike a Q-learning model, an actor-critic model cannot account for sensitivity to actual outcome values, since it only uses reward
prediction errors to modify the probability of selecting an action, as opposed to learning specific state action values.

> Critic’s Expected Value and the action weight are represented and updated separately
> Good at capturing S-R learning phenomena, habit learning
> Participants update the expected value V(t) of a state context on each trial t, according to the prediction error

> €(t) = outcome(t)-V(s,t) is the reward prediction error showing the discrepancy between expected value V for the current state s and the
actual experienced outcome.

Vis,t+1) = Vis,t) +ac * &),

> Prediction errors in the critic are, €(t), is also used to update the stimulus-response weight, w(s,a,t), for the action selected in trial t

w(s,a,t+1) =w(s,at) + ay * &t),

w(s,ant) €w(s,a,t)/ (lw(s,agt)| + |w(s,ast)|).
> Actions are selected according to the standard softmax logistic function:

P(a;t)= e(W(S,abf_)/,B) / (-e(wtf(s,a1 ,0)/B) + e(w(s,ag,t)/ﬂ))



Actor-Critic vs. Q-learning (cont.)

»>Q-learning model does learn specific state-action values:
O(a,t+1) = O(a,t) + ap™(outcome(t) — Q(a,t)),

> Actions again selected according to the standard softmax logistic
function:

P(a], f): e(Q(abt)/ﬂ) / (e(Q(aI :t)/ﬂ) 41 e(Q(a.?’t) /:B)),

> This, time, actions are chosen according to values, not weights



The Hybrid Model combines Actor-Critic and
Q-learning mechanisms using a mixing parameter

(1) Qe(s,2) = Qey(s,2) + o 8()
(2) Ve(s) = Vs (5) + e * 8(1)

(3) W(s,a) = We_y(s,a) + oy *8(t)
(4) Q_AC(s,a) = ((1 —@ * We_1(s,a) +@* Qe-1(s,a)) * B

» Q-actor-critic action values can then be used in a soft-max decision rule to calculate the
probability of a given action

P(a;,t)= e CACGa)) (e(Q_AC(S,az,t)) n e(Q_AC(S,aZ,z)))’

> The hybrid-probability model thus contains five free parameters: a *critic (a), actor (a,),
and Q (ag) learning rate, a temperature parameter (B) that captured how
deterministically participants sampled the optimal choice, and a mixing (m) parameter
that weighted the contributions of Q- and actor-critic-type learning.



Gain vs. Loss-avoidance Task (GLAT): Model Simulations

Gain Accuracy- Loss-avoidance Accuracy

% (hoices Better Stimulus

15% 4

10%

5%

0%
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-15% -

100% -

80%

70% A

50% A

40% A

FW-FL

Participant Behavior

End of Acquisition

FW-Iw

Transfer Condition

WHC
HLNS
W HNS

WHC
HLNS
W HNS

> Because the Q-learning model predicts sensitivity to actual outcome values,
it predicts that subjects will choose a frequent winner over a frequent loss
avoider.

> The Q-learning model cannot account for the observed preference of
frequent loss avoiders (FLA) compared to infrequent winners (IW) across all
groups, since infrequent winners have higher expected outcome.

> In contrast, the AC model can account for this pattern, since frequent loss
avoiders lead to frequent positive prediction errors, thus stronger positive
actor weights for selecting the loss-avoiding symbol, whereas infrequent
winners lead to frequent negative prediction errors, thus negative weights

> The AC model cannot account for the observed preference of frequent
winners (FW) compared to frequent loss avoiders (FLA) across all groups,
since both choices are likely to be associated with the same frequency of
positive and negative prediction error, but frequent winners have higher
expected outcome.




Gain vs. Loss-avoidance Task (GLAT): Model Simulations

Gain Accuracy- Loss-avoidance Accuracy

% (hoices Better Stimulus

5

-5% -
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Participant Behavior
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Gain Accuracy - loss-avoidance Accuracy
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Model Simulations
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Figure 5. The relative contribution of Q learning and actor-critic learning to
behavioral choices. A, Greater contribution of Q learning in healthy control
(HC) subjects relative to the patient groups. Only the contrast between the
HC group and the high-negative symptom (HNS) group was statistically
significant. B, Predicted performance in a model of pure actor-critic (AC) or
pure Q learning (Q) in the 2 diagnostic transfer test phase pairs. The Q model
shows clear preference for frequent winners (FW) over frequent loss
avoiders (FLA), whereas the actor-critic model does not. The 2 models show
opposite preferences for frequent loss avoiders over infrequent winners
(IW). One thousand model simulations were run to generate these
predictions using parameters fit to the controls, but the pattern is robust to
parameter changes. LNS indicates low-negative symptom.



Advantages of the Hybrid Model

> Because the Q-learning model predicts sensitivity to actual outcome values, it predicts that
subjects will choose a frequent winner over a frequent loss avoider.

> The Q-learning model cannot account for the observed preference of frequent loss avoiders (FLA)
compared to infrequent winners (IW) across all groups, since infrequent winners have higher
expected outcome.

> In contrast, the AC model can account for this pattern, since frequent loss avoiders lead to
frequent positive prediction errors, thus stronger positive actor weights for selecting the loss-
avoiding symbol, whereas infrequent winners lead to frequent negative prediction errors, thus
negative weights

> The AC model cannot account for the observed preference of frequent winners (FW) compared to
frequent loss avoiders (FLA) across all groups, since both choices are likely to be associated with
the same frequency of positive and negative prediction error, but frequent winners have higher
expected outcome.



Probabilistic Reinforcement Learning:
Behavioral Phenomena We Have Linked to Avolition/Anhedonia in SZ

e S e e C R DA
>

> Relatively-intact gradual/BG-driven/procedural learning in the presence
of impaired rapid/OFC-driven/explicit RL
> Relatively-intact habit learning in the presence of impaired WM-
dependent RL

> Greater performance deficits in SZ for more deterministic contingencies
than less deterministic contingencies (value-difference effect)

> A reduced ability to integrate the frequencies and magnitudes of
outcomes



Assessing the Ability to Integrate Reward Probability and Magnitude
of Recent Outcomes with a Stimulus Selection Task

160-trial Learning Phase

reward
probabity

EV
\l’ (prob*mag)
90% (2.7)

90-10/3 e
3 points €— :-l,,,,l(;‘u::m-k-
40 trials

80-20/2
2 points
40 trials

90-10/1
1 point
40 trials

80-20/1
1 point
40 trials

Trial Example
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4 original pairs

Choose

sl

Feedback

9
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. 1.6
|
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24 novel pairs

+2 points | g%

OR

2.7
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e
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\}
% > 2 trials
1.6
"Vﬂ‘; 1y 2 trials
o

64-trial Transfer Phase

4 trials

16 trials

2 trials

——> 48 trials

No Feedback

» Learning Phase

>
>

>

>

On each trial, two stimuli were presented, on either side of a fixation cross.

Participants were prompted to select one stimulus by pressing either the
left or right trigger on a gamepad using their left or right index finger.

Each choice was followed immediately by feedback, in the form of a
number of points (+3, +2, +1, or +0).

The eight stimuli differed in the probability and magnitude of the expected
reward.

All pairs were presented 40 times in pseudorandomized order.

» Test/Transfer Phase

>

>

>

Purpose was to assess participants’ ability to combine reward probability
and magnitude into a representation of EV.

Participants were presented with the four familiar learning phase pairs
(“acquisition pairs”; four presentations per pair) and 24 novel pairs of
stimuli (two presentations per pair) and received the following instructions:
“Please choose the picture that feels like it'’s worth more points based on
what you have learned during the previous block.”

Crucially, for many of these trials, the optimal answer depended on the
ability to combine the expected probability and magnitude of a stimulus
(e.g., 80/2 vs. 90/1, or 10/3 vs. 20/2).

No performance feedback was presented during the test/transfer phase.

From Hernaus et al. (2019). Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate
Reward Probability and Magnitude of Recent Outcomes. Biological Psychiatry: CNNI, 4, 280-290.



Integrating Reward Probability and Magnitude:
The “value difference tracking slope”

> HVs outperformed PSZ on all stimulus pairs A Acapisiton Phase Pairs

learning transfer leaming transfer

» Performance in block 4 (trials 31-40) was above chance in both
participant groups for every pair

accuracy (prop.)
o o °
£ >

> There was also a main effect of pair, suggesting that both greater
reward magnitude and probability conferred performance
improvements.

> The value difference tracking slope was greater for HVs than PSZ

> These data indicate that PSZ performance improved less as the difference in BT ”Tesmnsfe,phase o
EV between two competing stimuli increased. ) ] T T
: : : : b dfm —
> Importantly, the group difference in the value difference tracking slope was o u I H | ]

driven by motivational deficit (avolition/role-functioning and
anhedonia/asociality subscales) severity (Panel B).

accuracy (prop.)
° °

> These results suggest that the MMD subgroup specifically was poorer at
integrating reward probability and magnitude.

0% 0f o1 0P AN AD AR A A® 1D 9D 95 18 =
EV difference (optimal - suboptimal) O=Hv Nj= PSz [ = LMD = MMD

From Hernaus et al. (2019). Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and
Magnitude of Recent Outcomes. Biological Psychiatry: CNNI, 4, 280-290.




Controlling for Reward Probability and Magnitude

> On selective trials matched for probability and magnitude, HVs

performed better on magnitude discrimination than probability A probsmag B mag..prob.
discrimination trials, while PSZ performed similarly on o ——
magnitude and probability discrimination trials. 4%
0.8 8 03

> The difference between performance on magnitude- and - Jr :
probability-discrimination trials—that is, the difference “ + oof———
between the advantage conferred by higher reward magnitude Sl
versus higher reward probability—highly correlated with the B ‘;{
value difference tracking slope, suggesting that participants
who performed better on magnitude discrimination trials S r——————

overall performed better in the test/transfer phase.

From Hernaus et al. (2019). Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and
Magnitude of Recent Outcomes. Biological Psychiatry: CNNI, 4, 280-290.



The Hybrid Model combines Actor-Critic and
Q-learning mechanisms using a mixing parameter

(1) Qe(s,2) = Qey(s,2) + o 8()
(2) Ve(s) = Vs (5) + e * 8(1)

(3) W(s,a) = We_y(s,a) + oy *8(t)
(4) Q_AC(s,a) = ((1 —@ * We_1(s,a) +@* Qe-1(s,a)) * B

» Q-actor-critic action values can then be used in a soft-max decision rule to calculate the
probability of a given action

P(a;,t)= e CACGa)) (e(Q_AC(S,az,t)) n e(Q_AC(S,aZ,z)))’

> The hybrid-probability model thus contains five free parameters: a *critic (a), actor (a,),
and Q (ag) learning rate, an inverse temperature parameter (B) that captured how
deterministically participants sampled the optimal choice, and a mixing (m) parameter
that weighted the contributions of Q- and actor-critic-type learning.



Modeling the Integration of Reward Probability and Magnitude

> Patients with the most severe motivational

deficits showed the least contribution from

the Q-learning component

> Reducing the Q-learning contribution had

the effect of reducing the “value difference

tracking slope”

hybrid-probability model parameters
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From Hernaus et al. (2019). Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and
Magnitude of Recent Outcomes. Biological Psychiatry: CNNI, 4, 280-290.



Summary of Findings

R I e S T T S S g
> In the context of an RL paradigm dependent on the successful integration of reward probability and
magnitude, PSZ — especially those with motivational deficits — were specifically impaired on trials with

greater objective EV difference between two stimuli, as evidenced by the group difference in the
test/transfer phase value difference tracking slope.

> Outcome probability-magnitude integration deficits in PSZ with motivational deficits were driven primarily
by increased reliance on valueless stimulus-associations (actor-critic), in lieu of EV-based decision making (Q-
learning).

> Individual value difference tracking slopes correlated significantly with estimates of individual mixing
parameters, which capture the balance between Q-learning and actor-critic—type learning, suggesting a
systematic relationship between EV-based learning and probability-magnitude integration.

> Individual value difference tracking slopes also correlated significantly with motivational deficit severity,
thereby providing formal computational modeling evidence that impaired probability-magnitude integration,
due to overutilization of stimulus-response associations, may play a role in the onset of motivational deficits
PSZ.



Interpretations of Findings
EEnaaeTTaTTTTRTTETTE
> A reduced ability to combine reward magnitude and probability in the service of
generating adaptive estimates of EV in PSZ with motivational deficits is in line

with a large body of previous work, including findings of performance deficits in
PSZ on the lowa Gambling Task.

> Altogether, the current work reconfirms the notion that performance deficits in
PSZ increase with demands placed on putative prefrontal processes involved in
EV estimation.

> A failure to appropriately combine reward magnitude and probability into a single
estimate of EV may lead to a decrease in perceived reward value, which may
change the trade-off between reward and effort cost, and thus the willingness to
exert effort, in line with findings that abnormal effort-cost computations are most
pronounced in avolitional PSZ in conditions with high reward value.



Probabilistic Reinforcement Learning:

Computational Explanations for Phenomena We Have Observed
T

> Attenuated learning rates for positive RPEs in schizophrenia, but
relatively intact learning rates for negative RPEs

> Relatively-intact negative RPE-driven learning in the presence of impaired
positive RPE-driven learning

»Overreliance on Stimulus-Response (A/C) Learning in Schizophrenia,
at the expense of Q-learning

> Can account for relatively equal preference for Winners and Loss-avoiders
among SZ with high avolition/anhedonia

> Can account for a reduced ability to integrate reward probability and
magnitude of recent outcomes in SZ
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These are values/sets of values we might consider to
be computational phenotypes in the context of our
work...

Subjects can be characterized in terms of model parameters that correspond to constructs:

g oy, B =2 Trial-wise representations of EV and RPE
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Using trial-wise parameters in neuroimaging studies
of learning and decision making




Gain- vs. Loss-driven Learning:
The Probabilistic Stimulus Selection (PSS) Task

A

Pair Name GAIN/MISS (GM) CORRECT/INCORRECT (Cl) LOSS/AVOID (LA)
Frequent (70%) vs. Infrequent (30%) Frequent (70%) vs. Infrequent (30%) Infrequent (30%) vs. Frequent (70%)
Winner (A) Winner (B) Correct (C) Correct (D) Loser (E) Loser (F)

Stimuli I . ,
& B
—~ _ —~ N—

Possible
Outcomes
Not a Keep ymllr
. money!
winner
Expected Value Tx25= 3x25= 7x0= 7x0= 3x-25= 7x-25=
17.5 cents 7.5 cents 0 cents 0 cents -7.5 cents -17.5 cents
Trial n Trial n+1
1-7s 1-7s
$0.25 $0.25

3s-RT

3s-RT

Max 2s




Two Learning Rate Q-learning Model

> Model value on a trial-wise basis, as Qi(t)

> You do this by updating value as a function of the mismatch between the expected and obtained
outcome at time t [r(t)]

> This is the reward prediction error, called 6
6(t) = [r(t) - Q(t)]

> The actual change in value is a function of both 6 and a parameter called Learning Rate (a), which
is estimated for a group or individual

> Determines the “impact” of prediction errors

> We used separate learning rates for positive and negative RPEs (ap and ay):
If 620, Qi(t+1)=Qyt) +op- (L)
If6<0, Qi(t+1)=0Qt) + ay - 6(t)

> Some frameworks call for modeling certainty about value on a trial-wise basis and use it to estimate learning rate on
a trial-wise basis



2 Learning Rate Q-learning Model

> A decision function predicts the choice based on the relative values of the
options:

, _ exp[B-Qi(®)]
Pi(t) = YR _, exp[B-Qi(D)]

with a parameter beta (B) determining how strictly Q determined the choice of
action

> The “fit” of the model is a function of how accurately it estimates individual
choices and performance

> Modeling scripts generate a value called the “log-likelihood estimate” (LLE), which is used to
derived various measures of fit

> If the model fit is good enough, for an individual subject, these trial-wise model
parameter estimates are what we use to create parametric regressors for fMRI
data analysis.



Combining behavioral modeling with neuroimaging

Pass individual subject trial
history to model

Find best-fitting parameters
of model to behavioral data

Generate model-based time

series

Convolve time series with
hemodynamic response
function

Regress against fMRI data

Time

At bl

2
==
==
5
L) =

Time [secs}
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VR NN R
————————————————————————
Time [secs|

FIGURE 1. lllustration of model-based fMRI approach. Each individual subject’s trial
history is passed to the model, and the parameters of the model are fit so as to minimize
the difference between the model predictions and an external behavioral measure, which in
the conditioning example could be an external measure of conditioning, such as galvanic
skin conductance responses or pupil dilation. Next, the best model-fitting parameters are
used to generate a time series for each trial in the fMRI. which are then convolved with
basis function(s) to account for the effects of hemodynamic lag. such as the canonical
hemodynamic response function, and then regressed against the fMRI data.
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FIGURE 2. Model-based fMRI of stimulus-reward leaming. ( A) Properties of the tem-
poral difference prediction error signal during reward learning in which a cue (CS+) is paired
repeatedly with a reward (UCS) presented 3 sec later. During the initial stages of learming
(CS + carly trials), the error signal responds at the time of presentation of the UCS, but over
the course of learning transfers back to the time of presentation of the CS (CS + late trials).
On trials in which the CS+- is not presented but the reward is delivered anyway (CS—unexp.
reward), the signal shows a positive response at the time the reward is delivered, whereas
on trials in which the CS is presented but the reward is unexpectedly omitted the signals
show a negative response at the time of outcome. (B) Plot of model-generated prediction
error signals at the time of presentation of the CS, and the time of presentation of the UCS,
over the course of the experiment for a typical subject. (C) Area of bilateral ventral striatum
(ventral putamen bilaterally) showing significant correlations with the temporal difference
prediction error signal while subjects underwent classical conditioning with sweet taste
reward (1M glucose). Data from O'Doherty et al.!!

O’Doherty, J.P,, et al. (2007). Model-Based fMRI and Its Application to Reward Learning and Decision Making. ANYAS, 1104, 35-53.




SZ and controls show similar neural responses to RPEs,
in striatum, insula, and dmPFC

Healthy Volunteers Patients with Schizophrenia HVs - Patients

Waltz et al. (2018). BPS: CNNI, 3, 239.



Both patients and controls show similar neural responses
to misses and losses (both negative RPEs)

A Ve.ntral B Dorsal ACC C Anterior
Striatum Insula
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Waltz et al. (In Press). BPS: CNNI.
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> Controls show differential neural responses to gains and instances of loss-avoidance, but patients do not
> Experienced value [Gain — Loss-avoidance] contrasts in VS correlate with ratings for avolition/anhedonia in

SZs.

> Controls show greater learning from gains positive than negative RPEs, but patients do not.

Waltz et al. (2018). BPS: CNNI.



Summary of Computational Neuroimaging Findings
from Gain- vs. Loss-driven PSS Task

T R SR
> Negative symptom scores in SZ patients correlated significantly with

neural activity related to expected value-related activity in VS and
vmPFC

>Suggests a specific deficit in representing the value of gains, in
medicated SZ patients, with value updating being disproportionately
influenced by learning about potentially negative consequences, as
opposed to potentially positive ones
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IV. Modeling Probabilistic RL
in an Unstable Environment




Probabilistic RL in an Unstable Environment:
COMT Genotype and Cognitive Flexibility

A Experimental design Fixation

Learning rate

Outcome [
Hie=-0
Choi E 3¢ w 1,500 -
Cues = +r : Xﬁ 1,000 ms 6,500 ms
ﬁ F‘&‘ﬁ' B i : } 4,000 ms
o § = X 1,500 -
- X : 1,000 ms 6,500 ms
} 4,000 ms
B Collected points C Learning Rate before and after reversals
x 104
215 o o . . .
) L 2 0.6 > Learning rate modeled as dynamic, varying with uncertainty
 2.05 né, 0.5 /\/\/\ (RPE slope)
c -
S %9 £ e /~/\/ > Decreased with repeated positive feedback, increased with
1.95 <@ 03 . . .
io = surprising negative feedback
. 02 = Met/Met
: Valval Met/Met 7 5 3 1 1 3 5 7 > When used as a trial-wise parametric regressor in fMRI
Genotype Trials before and after reversal
analyses, tracked by activity in dorsomedial frontal cortex
(DMFC)

Krugel et al. (2009). Genetic variation in dopaminergic neuromodulation influences the ability to rapidly
and flexibly adapt decisions. PNAS, 106, 17951-6.



Neural Substrates of Adaptive Learning

> Adaptive learning can be decomposed into
three computationally and neuroanatomically
distinct factors that were evident in human
subjects performing a spatial-prediction task:

1) surprise-driven belief updating, related to BOLD
activity in visual cortex;

2) uncertainty-driven belief updating, related to
anterior prefrontal and parietal activity; and

3) reward-driven belief updating, a context-
inappropriate behavioral tendency related to
activity in ventral striatum.

> These distinct factors converged in a core
system centered on dorsomedial frontal cortex

A All 3 learning rate variables

R Parietal
L Parietal
R Insula
DMFC

L Insula
RIFJ
PCC

Model-derived factors

— R Parietal
—+—o—— L Parietal

L — R Insula

: - o DMFC

I —o—— L Insula
:_._ RIFJ
_——t— PCC

-06 -04 -02 O 02 04 06
Correlation coefficient

/4

B Across-subject correlations between BOLD and behavior

S\
(X Xy

£

Reward value factor

-06-04-02 0 02 04 06
Correlation coefficient

McGuire et al. (2014). Functionally Dissociable Influences on Learning Rate in a Dynamic Environment.

Neuron, 84, 870-881.



Hypotheses

»>0ne way for PSZ to have reinforcement learning deficits in
the presence of intact RPE signaling, is have a reduced ability
to adaptive modulate learning rate as a function of
uncertainty.

>A reduced ability to adaptive modulate learning rate as a
function of uncertainty would be associated with abnormal
activation of DMFC and/or connectivity between DMFC and
ventral striatum.



The Card Betting RL Task

> The RL task consisted of a choice, card-flip and outcome

phase.
ISI = 2000/4000/6000ms
> Choices were rewarded probabilistically, with a choice of the

“optimal deck” leading to a 100-point gain on 90% of trials +

(and a loss of 50 points on 10% of trials). Choices of two non-

optimal decks led to 100-point gains on 50% and 10% of trials Choice = 2000ms = 2 s

(and losses of 50 points on 50% and 90% of trials), A\ u E u I

respectively. e
> Participants were instructed to try to identify the optimal A n L =“ =

deck (i.e., the one with the highest expected value) as quickly I H ! I B E

as possible; they were also informed that, occasionally, a

new deck would become the optimal one. Card Flip = ~200ms

randomized, such that the average trial-length was ca. 10.5 s. -50

> Inter-trial (ITI) and inter-stimulus (ISl) intervals were pseudo- n ‘u

> Participants achieved as many stages as possible in 160 total
trials (subdivided into 4 runs of 40 trials)

i |

ITI = 1000/3000/5000/7000/9000ms

Outcome = 1000ms




Modeling a Dynamic Learning Rate

> Participants’ choices, and the outcomes of those choices, were fit to an RL model with a dynamic learning
rate (a), such that EV, RPE, and a could be estimated on a trial-wise basis, based on the work of Krugel et al.
(2009).

> In this model, learning rate on a given trial was updated as a function of m, the slope of the absolute values
of consecutive RPEs.

> The impact of the RPE slope on a updating is determined by a parameter, 8, which was optimized to fit

individual subject data:
f(m)=sgn(m) -[1-e-(1.

> For increasing RPEs (m>0), learning rate updating would proceed as follows:

a(t)=a(t-1) + f[(m)t] -[1- aft-1)].

> On any given trial, then, Q-values are updated as a function of the RPE and the learning rate at time i:

ailt)= qi(t-l) 5(t-1).



Analyses of Model Parameters and Associated Neural Signals
e S
> In order to compute group-level statistics, we extracted individual B parameters
(signifying the impact of the RPE slope on a updating), as well as trial-wise

learning rate estimates 8 trials before and after every reward contingency shift,
for every individual.

> We then computed the slopes of learning rates prior to, surrounding, and
following each reward contingency shift for a given individual.



Learning rate modulation deficits
increase with motivational deficit severity

A. Trial-wise estimates of learning rate 8 trials

before and after a reinforcement contingency Ao B
shift. PSZ, relative to HV, demonstrated a | group*time p=01 o
decrease in learning rate modulation, especially 0657 anol
so in trials leading up to a contingency shift ase]
(Figure 2A). 21 \& ® oxf

B. This was especially the case for PSZ with high 05 (g .
motivational deficits (Figure 2B), who showed U ' ol 2 u
little to no learning rate modulation across all R
trials. 0451 e

C. PSzZ additionally demonstrated decreased post- oao] TR i % oo
shift impairments in learning rate modulation, § i Ei;
defined as the difference between trial 1 pre- 0-35} - .

i i ; -@ PSZ 011 .
shift and trial 2-8 post-shift. R N A E A
Tral no.

Panel A solid bars represent SEM. *=p<.05

Hernaus et al. (2018). Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cogn Affect Behav
Neurosci, 18, 1338-1351



Model-based fMRI analyses, using regressors
constructed from learning parameters

Modelbased LR

T>3.53

z(dmPFC)

T>-3.53 y=-60, z=38

Model-based PE ' Model-based LR

A. Robust RPE signals were observed in VS and related regions, while B. robust LR signals were observed in superior parietal lobule and

dorsomedial prefrontal cortex (dmPFC). C. A trend toward a between-group difference in dmPFC was observed for the model-based learning
rate analysis.

Hernaus et al. (2018). Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cogn Affect Behav
Neurosci, 18, 1338-1351



Decreased dmPFC-VS coupling in SZ patients
with high motivational deficits

PPl LR>MNon-LR
T=353

1.04

ZVS)

T=-353

PPI LR=Non-LR V5 ROI

A. Whole-brain functional connectivity between dmPFC and inferior parietal lobule increased in the entire sample from non-learning rate to
learning rate trials. B. In a follow-up ROl analysis in VS, functional connectivity increases were observed from non-learning to learning-rate
trials for HV and PSZ with low motivational deficits, while dmPFC-VS connectivity decreases were observed in PSZ with high motivational
deficits (5B). **, p<.01; *, p<.05, bars represent 95% confidence intervals. LR=learning rate.

Hernaus et al. (2018). Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cogn Affect Behav
Neurosci, 18, 1338-1351
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Uncertainty does not only influence the rate
at which one learns; it also influences one’s

drive to seek information

The Explore/Exploit Trade-off
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V. Modeling Goal-directed Exploration

The Temporal Utility Integration Task (TUIT; Time Conflict Task)




































































































Temporal Utility Integration (TUI) task

B Reward Frequency
1.0 '
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From Moustafa et al. (2008). JNS, 28, 12294-11304.



Modeling behavior on the
Temporal Utility Integration (TUI) task

Example Action-Value Probability Density Distributions

All Subjects: Data All Subjects: Model Fits
IEV Value DEV o — o —
3 2800 : gg:ﬁ 2800 : ggﬁ
Early Late — DEV — DEV
Faster - I 2600 2600
‘ 2400 2400
- . Slower = * === . .
2 %) 2200 [%) 2200
g = 2000 g/ 2000
i Uncertainty [ [
b ' OC 1800 C 1800
I 1 1600 1600
4 ‘ 1400 1400
v/ y -~ 1200 1200
0 0.25 050 0.75 1.0 0 0.25 050 0.75 1.0

Probability of Positive Predition Error

30 35 40 45 50 ] 5 10 15 20 30 35 40 45 50

2
Trial

From Badre et al. (2012). Neuron, 73, 595-607.

* We used a modeling approach based on the assumption that
participants track the EV for the reward they expect to gain
in a given block of trials

* When a given reward is greater or less than this EV, the
associated prediction error signals drive learning to adjust
behavior in two ways.

* First, a simple, likely implicit, process whereby accumulated
positive RPEs translate into approach-related speeded
responses (Go learning), whereas accumulated negative PEs
produce relative avoidance and slowed responses (NoGo
learning);

Go(?) = Go(t-1) + ago-(t-1)
NoGo(7) = NoGo(t-1) + eno-(t-1)

The RL model of this task also assumed that
individuals also use the relative difference in
uncertainties about values to drive exploratory RT
swings.

Model thus incudes an exploration parameter, €,
predicting trial-by-trial RT swings to occur when one
is relatively more uncertain about probability of
obtaining a positive outcome for fast or slow
responses.

Explore(t) = e[ogow(t) — orast(t)],

RT(f) = K + ART(t—1)— Go(t) + NoGo(t) +
Pl (D) = p e O]+ VIRT,,, — RT, 1+ Explord)



Investigating uncertainty-driven exploration in SZ using
the Temporal Utility Integration (TUI) task

RT Diff (ms)

Strauss et al. (2011), Biol. Psychiat., 69, 424-431.
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~

]
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0
Standardized relative uncertainty z(c )

From Badre et al. (2012). Neuron, 73, 595-607.
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Waltz et al. (unpublished)



Neural Signature of Goal-directed Exploration

'gm Whole brain analysis of trial-to-trial changes in relative
§°'°4 uncertainty. (a) Example individual subject relative
g% uncertainty regressor from one run of one participant.
g o 20 40 60 80 100 120 Convolution of parametric changes in relative

. R L uncertainty (| 0gow(t) — Ofast(t) |) on each trial (top plot)
vé’, with a canonical hemodynamic response function
§§ I (middle plot) produced individual participant relative
gf uncertainty regressors (bottom plot).

= 0 2I0 4‘0 60 éO 1(I)0 12‘0

Acquisition (TR = 2 sec)

B C .
l RLPFC

Explore Participants Only Explore — Nonexplore Participants

From Badre et al. (2012). Neuron, 73, 595-607.



Schizophrenia and the Neural Substrates
of Goal-directed Exploration

All Explore > All Nonexplore All NCs > All SZs

LSPL R SPL

All NCs > All SZs NC Explore > SZ Explore

Waltz et al. (unpublished)



Uncertainty-driven Exploration in SZ:
Conclusions and Interpretations

B L R e S R Bt
> These results suggest that motivational deficits in schizophrenia are

associated with a specific type of goal-directed behavior: the tendency to
explore reward contingencies based on uncertainty.

> Furthermore, people with schizophrenia show aberrant activity in the
neural circuitry associated with the performance of uncertainty-driven
exploration.

> These findings suggest an alternate source of motivation deficits in
schizophrenia, aside from a reduced tendency to exploit known reward
contingencies.

> In addition they link a specific deficit to abnormal activity in a specific
circuit, which might serve as a biomarker for future studies of candidate
risk genes or potential interventions.
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VI. Lessons Learned




Computational accounts of motivational deficits
in psychotic illness

R I e S T T S S g
> Relatively-intact negative RPE-driven learning in the presence of impaired positive RPE-driven learning
> Attenuated learning rates for positive RPEs in schizophrenia, but relatively intact learning rates for negative RPEs

> Relatively equal preference for Winners and Loss-avoiders among SZ with high avolition/anhedonia

> Can be attributed to overreliance on Stimulus-Response (A/C) Learning in Schizophrenia, at the expense of Q-learning
(reduced mixing parameter, m)

> A reduced ability to integrate reward probability and magnitude of recent outcomes in SZ
> Can also be attributed to overreliance on Stimulus-Response (A/C) Learning in Schizophrenia, at the expense of Q-learning

> RL deficits in the presence of intact RPE signaling
> Possible with a reduced ability to adaptive modulate learning rate as a function of uncertainty.

> Reduced goal-directed exploration in psychotic iliness

> Can be modeled as a reduced contribution of relative uncertainty to decision making



Models help us think about learning and behavior

> Models are formalized frameworks
> They can and should be a source of predictions

> There are many possible learning algorithms, because there are many possible
learning mechanisms, often operating simultaneously

> The idea of complementary OFC-driven (fast) and BG-driven (slow) learning system has
provided us with many testable hypotheses

> ldeally, parameters correspond to constructs
> Learning rates
> Mixing parameters
> Noise parameters
> Explore parameters



Caveats
EEnaaeTTaTTTTRTTETTE
> Important to tailor tasks to severely-mentally-ill population
» Difficult to model behavior that is unsystematic/random

> Important to characterize subgroups of patients whose data can be fit
vs. those whose data cannot be fit

»>Modeling results should be consistent with behavior

> Important to compare plausible models, based on fit parameters, and
demonstrate that the model you report on actually did the best
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VIl. What do we still want to know?
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How do we account for associati

ons between negative symptom

severity and problems of learning about effort cost?

»One path to avolition is if action-value associations are weak

» Another path is if action-cost associations are strong
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Negative Symptoms of Schizophrenia Are Associated
with Abnormal Effort-Cost Computations

James M. Gold, Gregory P. Strauss, James A. Waltz, Benjamin M. Robinson, Jamie K. Brown,
and Michael J. Frank

Schizophrenia Research 170 (2016) 198-204
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How do we account for associations between negative symptom
severity and problems of learning about effort cost?

doi:10.1093/brain/awx278 BRAIN 2018: 141; 629-650 | 629
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A Selective Role for Dopamine in Learning to Maximize
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Unité Mixte de Recherche 7225, Paris, 75013, France, 3Université Pierre et Marie Curie, Paris 6, 75013, Paris, France, and “Neurology Department, Centre
Inter-Régional de Coordination de la Maladie de Parkinson, Hopital de la Pitié-Salpétriere, Assistance Publique Hopitaux de Paris, 75013, Paris, France

One can estimate prediction errors with regard to cost, just like one can estimate prediction

errors with regard to reward.

The guestions of which neural systems underlie the ability to estimate effort cost and the

willingness to expend effort are not at all settled



What do we still want to know?
Effects of Stress on Reward- vs. Punishment-driven RL

doi:10.1093/scan/nsq04l SCAN (2011) 6, 311-320

Social stress reactivity alters reward and
punishment learning

James F. Cavanagh,1 Michael J. Frank,” and John J. B. Allen'
"University of Arizona, Department of Psychology, 1503 E University Blvd, Tucson AZ 85721 and *Brown University, Department of
Psychology, 89 Waterman Street, Providence RI 02912, USA

Fig. 2 Depiction of the social evaluative threat stress manipulation during the second
performance of the task (T2).

> Evidence that acute stress shifts balance of Go- and NoGo-learning

> Stress modulates both dopaminergic and serotonergic pathways, as well as
numerous other circuits known to be involved in the processing of rewards and

punishments and other salient outcomes



What are the mechanisms by which psychotropic medications
influence RL?

> Do antipsychotics decrease learning rates for positive RPEs?
> Do stimulants do the opposite?

»What do SSRIs do?
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