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What I hope you will get from my talk

ØWhat we think the value of computational psychiatry is

ØHow we go about trying to address our problems of interest

ØWhat issues we need to consider every time we apply computational 
approaches to a problem



“Branches” of Computational Psychiatry

ØMachine learning approaches to clustering and prediction

ØNeural network/“Connectionist” models of information processing

ØComputational models of learning and inference
Ø Rescorla-Wagner-type Reinforcement Learning models
Ø Hierarchical Gaussian Filter models
Ø Markov chain Monte Carlo methods
Ø Drift Diffusion models



I. Why did we start down this road?

Why take this approach to studying schizophrenia?
Why care about computational accounts of learning and motivation?



Schizophrenia is a heterogenous syndrome,
with multiple symptom domains



Psychotic 
Symptoms

Negative 
Symptoms

Disorganization
Symptoms

Hallucinations
Delusions

Affective Blunting
Anhedonia
Avolition

Ø SZ also generally 
accompanied by 
cognitive deficits:
Ø Attention

Ø Memory

Ø Processing Speed

Ø Executive Functions

Domains of psychopathology 
in the schizophrenia syndrome

Very little is true of MOST people with schizophrenia



Motivation to Focus on Negative Symptoms

Ø Negative symptoms have a high social and financial cost
Ø Poor functional outcome (social, occupational; Lysaker, 2004; Norman, 2000)
Ø Poor quality of life (Katschnig, 2000; Orsel, 2004)
Ø Low rate of recovery (Strauss, 2011)
Ø Toll on families

Ø No drug has received FDA approval for an indication of negative symptoms
Ø 2nd generation antipsychotics not proven effective
Ø Many attempts with experimental compounds, none proven consistently effective

Ø Our understanding of mechanisms of negative symptoms has historically been 
poor, lacking in actionable targets



Particular Focus on the experiential/motivational 
negative symptoms of SZ

Ø By these, we usually mean:
Ø Anhedonia: the reduced experience or anticipation of pleasure
Ø Avolition/Apathy: reduced tendency to engage in motivated or goal-directed behavior

Ø Distinct from “expressive negative symptoms”, like alogia, reduced gestures, and blunted facial 
expressions

Ø Historically, the construct of anhedonia has been poorly-specified by clinical rating scales of 
negative symptoms (that may be changing)

Ø Consummatory aspects of pleasure (“liking”) can be distinguished from anticipatory aspects of pleasure 
(“wanting”)

Ø The relationship between anhedonia and avolition is also poorly-specified, though anhedonia and 
avolition consistently load together as one factor in factor analyses of negative symptoms (e.g., 
Blanchard & Cohen, 2006 SZ Bull) 

Ø Does the reduced experience/anticipation of pleasure drive motivational deficits?



Motivating Hypotheses

Ø Somehow, someway, schizophrenia is a disease of 
dopamine systems

Ø There are dopamine hypotheses of schizophrenia and 
psychosis

Ø All antipsychotic drugs block D2 dopamine receptors and 
their potency as antipsychotic drugs is directly tied to their 
affinity for D2 receptors

Ø What do we know about the functional roles of dopamine 
pathways?

Ø They appear to be involved in the signaling of reward 
prediction errors (RPEs)

Ø They appear to signal incentive salience

Ø People with schizophrenia have a hedonic deficit, but the 
hedonic deficit is not primarily one of experience

Prediction
ErrorDA

Experienced
Value

Expected
Value



Ø Do people get the pudding face?
Ø Do people who get the pudding face when they eat it, WANT the pudding, when they 

are reminded of it? 
Ø If not, it would suggest a fundamental in the ability to translate experienced 

reinforcement into the expectation of a reward (or approach behavior, at least)
Ø There is evidence that this is actually characteristic of people with schizophrenia

Liking
(Experiencing the Reward)

The Pudding Face

vs.

Wanting
(The Cue as Motivating)

Want. Pudding.

Hedonic Experience (�Liking�)  vs. Incentive Salience (�Wanting�) 







Why would SZ patients not pursue rewards 
that they claim to find pleasurable?

Do they not learn to “want” what they “like”?

How does one learn to “want” what he “likes”?

This is the process of reinforcement learning (RL)
and there are a multitude of ways in which it can go wrong



DA Neurons and the Signaling of Reward Prediction Errors (RPEs)

Caudate

Putamen

SN

Frontal cortex

VTA

Reward Prediction Error (l-V)
gets broadcast to frontal cortex

and striatum, where it serves to 
update representations of value
for stimuli and actions, resulting

in increased or decreased wanting

DA cells
in Midbrain
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Functional Roles of Dopamine: 
Signaling of TDEs and Incentive Salience



(Slightly more refined) Motivating Hypotheses

ØAnhedonia and avolition in schizophrenia should be associated with 
abnormal reward prediction error signals

ØAnhedonia and avolition in schizophrenia should be associated with 
abnormal reward anticipation signals, indicative of a reduced ability 
to assign incentive value to stimuli

Spoiler Alert: This is what we found.



Probabilistic Reversal Learning (PRL) Task

+5¢

“Correct” stimulus switches

From           to +5¢

-5¢

+5¢
“Correct” stimulus is

Choice of        is rewarded 8x out of 10.

-5¢

-5¢

Probabilistic Error

(Invalid Negative Feedback)

Pre-reversal Error

(Valid Negative Feedback/Stay)

Reversal Error

(Valid Negative Feedback/Shift)

Valid Positive

Feedback

Valid Positive

Feedback

Valid Positive

Feedback

PRL involves at least three processes:

1. Modulating attention, based on the salience of outcomes

2. Updating value representations based on violations of expectation (PEs)

3. Deciding based on expected values of choices



Striatal RPE signals have been shown to scale with 
ratings of anhedonia/avolition severity

ØThe groups did not differ in their contrasts between expected and 
unexpected outcomes, but, in PSZ, contrasts between expected and 
unexpected outcomes correlated with ratings for negative symptoms



From Waltz et al. (2010). Neuropsychopharm., 35, 2427–2439.

From Simon et al. (2010). Schiz. Res., 118, 154–161.

Striatal reward anticipation signals have been shown 
to scale with ratings of anhedonia/avolition severity



Q: Do Anhedonia and avolition in schizophrenia originate 
primarily with abnormal reward prediction error signals and 
abnormal reward anticipation signals (indicative of a reduced 
ability to assign incentive value to stimuli)>

A: They likely play a role, but there are many other ways in which goal-directed 
behavior can go wrong.



Goal is not just to find out what schizophrenia patients have 
difficulty with

ØWhat is intact in most SZ patients?

ØWhat is impaired only of SZ patients with motivational deficits?

ØMultiple component processes involved in RL, including the signaling of the 
expected value (EV) of stimuli and actions, the integration of outcomes, 
and the signaling of reward prediction errors.

ØWhich reward-related signals could/do travel with clinical ratings of 
anhedonia/avolition?

Ø If avolition is not always driven by anhedonia (either consummatory or 
anticipatory), what is it driven by?

ØWhat drives avolition in the presence of intact RPE signals?



Hedonics/Liking
(Opioid and GABA systems in 

striatum, OFC)

Reward Prediction/ 
Wanting/RPE Signaling
(Dopaminergic systems 

and basal ganglia)

Cost-Benefit Analysis

Computing effort of 
plan in relationship to

reward value (ACC) 

Integration of information 
to update and maintain 

values (OFC) 

Constructing 
action 

plans to obtain 
valued outcomes

(DLPFC) 

Behavioral Response

From:  Dowd and Barch (2011), After Wallis (2007) 

There is more to goal-directed behavior 
than learning to want what you like



Q: What did we think Computational Psychiatry could buy us?

A: A mechanistic account of avolition, through disrupted reinforcement learning 
and decision making.



What is necessary for learning about the value
of stimuli and actions?
ØAbility to integrate frequencies and magnitudes of potential 

outcomes

ØAbility to represent both the costs and benefits of actions



Kinds of RL

ØPositive-RPE-driven- (Go-) vs. Negative-RPE-driven (NoGo-) Learning

ØRapid/PFC-driven/WM-dependent RL vs. Gradual/BG-driven/ 
Procedural RL

ØGain- vs. Loss-driven Learning

ØModel-based vs. Model-free/State vs. Reward



Kinds of RL

ØPositive-RPE-driven- (Go-) vs. Negative-RPE-driven (NoGo-) Learning

ØRapid/PFC-driven/WM-dependent RL vs. Gradual/BG-
driven/Procedural RL

ØGain- vs. Loss-driven Learning

ØModel-based vs. Model-free/ State vs. Reward



By Carrot or By Stick

The effect of a dopamine burst is to stimulate the D1/Direct/Go pathway and disinhibit the thalamus.

The effect of a dopamine dip is to release inhibition from the D2/Indirect/NoGo pathway and GPi, resulting in inhibition of the thalamus.

A. The corticostriato-thalamo-cortical loops, including the direct (Go) and indirect (NoGo) pathways of the basal ganglia. The Go cells disinhibit the thalamus via the internal 
segment of globus pallidus (GPi) and thereby facilitate the execution of an action represented in cortex. The NoGo cells have an opposing effect by increasing inhibition 
of the thalamus, which suppresses actions and thereby keeps them from being executed. 

B. The Frank neural network model of this circuit (squares represent units, with height and color reflecting neural activity; yellow, most active; red, less active; gray, not 
active). The premotor cortex selects an output response via direct projections from the sensory input, and is modulated by the basal ganglia projections from thalamus. 

C. Predictions from the model for the probabilistic selection task, showing Go-NoGo associations for stimulus A and NoGo-Go associations for stimulus B. Error bars reflect 
standard error across 25 runs of the model with random initial weights.

Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943.



Probabilistic Stimulus Selection Task

Acquisition/Training Phase
Ø 20 trials with each stimulus pair, per block

Ø 2-6 blocks

Ø Probabilistic feedback (“correct” or “incorrect”)

Ø Training ends when subject reaches criteria in all 3 conditions in same block
Ø 65% A choices on AB trials
Ø 60% C choices on CD trials
Ø 50% E choices on EF trials

Ø Measures of Rapid/Declarative RL incude:
Ø Performance on Training Pairs in first two blocks
Ø Proportion of “wins” leading to “stays”
Ø Proportion of “losses” leading to “shifts”



Post-acquisition Test/Transfer Phase
ØNo feedback
Ø4 trials with each of 15 possible stimulus pairing (60 total)

Probabilistic Stimulus Selection Task

3 Training Pairs 12 Novel Transfer Pairs

• “Go-learning” tested by transfer pairs with A (best)

• “NoGo-learning” tested by transfer pairs with B (worst)

• Have subjects learned the values of the best and worst stimuli?

Choose A
AC
AD
AE
AF

Avoid B
BC
BD
BE
BF

Other
CE
CF
DE
DF



Probabilistic Stimulus Selection Task:
Post-acquisition Test Phase

Training Pairs



Go- and NoGo-learning in Parkinson’s Patients
On and Off Dopamine Agonists

Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943.

Transfer Pairs of Greatest Interest

• “Go-learning” tested by transfer pairs with A (best)

• “NoGo-learning” tested by transfer pairs with B (worst)

• Have subjects learned the values of the best and worst stimuli?

Choose A
AC
AD
AE
AF

Avoid B
BC
BD
BE
BF

Dopamine depletion in Parkinson’s 
disease leads to reduce “Go-learning”, 
but enhanced “NoGo-learning.”

Choose A Avoid B
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Waltz et al. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. 
Biological Psychiatry, 62, 756-764.

Go- and NoGo-learning in People with Schizophrenia

Predicted that faulty burst-firing in PSZ 
would lead to a Problem of Go-learning

ØPatients would show impaired Choose-A 
behavior (Go-learning)

ØPatients would show intact Avoid-B 
behavior (NoGo-learning)



But the story is more complicated than that…

There are many other RL mechanisms aside from BG-driven Go- and NoGo-learning



Kinds of RL

ØPositive-RPE-driven- (Go-) vs. Negative-RPE-driven (NoGo-) 
Learning

ØRapid/PFC-driven/WM-dependent RL vs. Gradual/BG-driven/ 
Procedural RL
ØEvidence for complementary learning systems

ØGain- vs. Loss-driven Learning

ØModel-based vs. Model-free



Rapid/PFC-driven/WM-dependent RL vs. 
Gradual/BG-driven/Procedural RL

Ø Dopaminergic RPE signals are thought to drive RL in the striatum, but semi-
segregated D1 and D2 pathways not thought to drive Go- vs. NoGo-learning in the 
cortex

Ø Idea that orbitofrontal cortex (OFC) is there to represent the subjective value of 
stimuli, and that damage to OFC would lead to:

Ø A reduced ability to precisely represent the magnitudes of outcomes (and flexibly modify 
these representations); and

Ø A reduced ability to integrate the frequencies and magnitudes of outcomes

Ø A reduced ability to learn over the course of 1 or 2 trials (win-stay and lose-shift)
Ø A reduced ability to modify behavior in the face of sudden contingency reversals



Striato-Orbitofrontal Interactions and the integration 
of outcome frequency and magnitudes

a) The cortico-striato-thalamo-cortical loops, including the direct and indirect pathways of the basal ganglia. 

b) The same circuit with additional influence from the orbitofrontal cortex, which can maintain reinforcement-related information in working memory and 
provide top-down biasing on the more primitive basal ganglia system, in addition to direct influencing of response selection processes in the premotor cortex. 
The orbitofrontal cortex receives information about the relative magnitude of reinforcement values from the basolateral nucleus of the amygdala (ABL), which it 
can also maintain in working memory. Dopamine from the ventral tegmental area (VTA) projects to the ventral striatum (not shown) and the orbitofrontal cortex. 
GPe = external segment of the globus pallidus

Frank, MJ, Claus, ED. (2006). Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological 
Review, 113, 300-326.



The integration of outcome frequencies and magnitudes 
enables one to solve the Iowa Gambling Task

Ø Gambling task results after 140 trials of training. a: In the just frequency condition, both intact and OFC-lesioned models were successful at playing to the good deck (which 
resulted in a gain 70% of the time) and passing on the bad deck (which resulted in a loss 70% of the time). b: When magnitude information was in opposition to frequency, the full 
model was nevertheless able to maximize expected value by playing on the infrequent high-gain deck and passing on the infrequent high-loss deck. In contrast, the OFC-lesioned 
networks continued to respond on the basis of frequency and therefore make maladaptive decisions. c: These results held up even when the dopamine signal was scaled such 
that high-magnitude gains-losses were associated with larger dopamine changes than were low-magnitude outcomes. 

Frank, MJ, Claus, ED. (2006). Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological 
Review, 113, 300-326.



The integration of outcome frequencies and magnitudes 
enables one to detect rapid contingency reversals

Ø a: Reversal learning impairments in humans with damage to ventromedial and orbitofrontal cortices, 
showing number of errors made in the learning and reversal phases. Modified from Fellows and Farah (2003) 
with permission. b: Model reversal learning results. Acquisition refers to performance (error percentages) 
after 200 trials; reversal refers to performance after a further 200 reversal trials. 

Frank, MJ, Claus, ED. (2006). Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological 
Review, 113, 300-326.



+ +

Reinforcement Probability for Correct:Incorrect Choice
(Stimulus Pair)

+*

Waltz et al. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational 
models of striatal-cortical dysfunction. Biological Psychiatry, 62, 756-764.

The integration of outcome frequencies and magnitudes enables one to modify 
behavior on a trial-wise basis and acquire reinforcement contingencies rapidly

Additional results from Probabilistic Stimulus Selection experiment:
Ø During Acquisition, SZ patients showed reduced Early Acquisition scores on the higher-

reward-frequency items (a measure of rapid RL), relative to controls
Ø Early Acquisition scores in SZ patients correlated with overall negative symptom scores
Ø During Acquisition, SZ patients showed reduced rates of both win-stay and lose-shift 

behavior – two other measures of rapid, trial-to-trial learning



Probabilistic Reversal Learning (PRL) as a Measure
of the Ability to Detect Rapid Contingency Reversals

+5¢

“Correct” stimulus switches

From           to +5¢

-5¢

+5¢
“Correct” stimulus is

Choice of        is rewarded 8x out of 10.

-5¢

-5¢

Probabilistic Error

(Invalid Negative Feedback)

Pre-reversal Error

(Valid Negative Feedback/Stay)

Reversal Error

(Valid Negative Feedback/Shift)

Valid Positive

Feedback

Valid Positive

Feedback

Valid Positive

Feedback

PRL involves at least three processes:

1. Modulating attention, based on the salience of outcomes

2. Updating value representations based on violations of expectation (PEs)

3. Deciding to repeat the previous response, or switch to the alternative response, based on 

expected values of choices, as well as certainty about the expected values of choices.



Probabilistic Reversal Learning as an Example
of RL in an Unstable Environment

Ø PSZ show much greater deficits in reversal of learned associations than in achievement of initial 
probabilistic discriminations

Experiment 1 Experiment 2

Waltz et al. (2013). PLoS-ONE.Waltz et al. (2007). Schizophrenia Research.



Gradation of RL Deficits in Schizophrenia

Ø Evidence that rapid/PFC-driven RL processes – esp. those involving +RPEs, are relatively more disrupted in SZ 
than slow/BG-driven RL processes (esp. those involving -RPEs), which may actually be somewhat preserved.
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Probabilistic Reinforcement Learning:
Behavioral Phenomena We Have Linked to Avolition/Anhedonia in SZ

Ø Relatively-intact negative RPE-driven learning in the presence of impaired positive RPE-
driven learning (Waltz et al. 2007; Waltz et al., 2011)

Ø Relatively-intact gradual/procedural learning in the presence of impaired rapid/explicit RL
Ø Relatively-intact habit learning in the presence of impaired WM-dependent RL (Waltz et al. 2007; 

Waltz and Gold, 2007)

Ø Greater performance deficits in SZ for more deterministic contingencies than less deterministic 
contingencies (value-difference effect; Hernaus et al., 2019a)

Ø Relatively-intact BG-driven learning in the presence of impaired OFC-driven RL
Ø A reduced ability to integrate the frequencies and magnitudes of outcomes (Hernaus et al., 2019b)

Ø In general: a more limited ability to rapidly and flexibly update value representations in 
the brain (Waltz et al., 2015)



When we say that computational psychiatry can 
provide one with a mechanistic account of 
avolition, through disrupted RL and DM, we 
mean that it can generate mechanistic accounts 
of phenomena like these
And this is how we’ve tried to use computational methods…



Another potential benefit of computational psychiatry:



Types of Processes We’ve Examined

1. Acquisition vs. Expression of Learned Associations

2. Probabilistic RL in stable and unstable environments

3. Directed Exploration



II. How do we do what we do?



Considerations

Ø Are you modeling SR learning, or Q-learning, or both?
Ø How many learning rates, and which ones?

Ø Separate learning rates for positive and negative RPEs? Actor and Critic?

Ø Decay parameter, or not?
Ø Schonberg et al. (2007) sticky-choice model

Ø Explore parameter, or not?
Ø Who are your patients?

Ø Are they old/young/medicated/unmedicated/at-risk/along the spectrum?
Ø It should affect what you expect.
Ø EVERYTHING I SAY TODAY, I BELIEVE TO BE TRUE OF MEDICATED ADULTS WITH 

(MULTIEPISODE) PSYCHOTIC ILLNESS, ESPECIALLY THOSE WITH MORE SEVERE NEGATIVE 
SYMPTOMS



Learning to seek gains and learning to avoid losses 
are likely at least semi-independent processes

Pessiglione, M., et al. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442 (7106), 1042-5.

ØHaloperidol and L-dopa differentially 
affected RL, such that haloperidol 
affected reward-driven, but not 
punishment-driven RL



Types of Models We Have Applied

ØQ-learning models with one learning rate
ØQ-learning models with more than one learning rate

Ø Alpha-P vs. Alpha-N

ØActor/Critic models
ØHybrid models – to capture BG (slow) and OFC (fast) contributions

Ø Q-learning + Actor/Critic
Ø WM contribution

ØModels with dynamic learning rates
ØModels with exploration parameters



fMRI Data Analyses with Parametric Regressors

Ø Main goal is to identify increases and decreases in neural activity that are event-related

Ø In the context of tasks of reinforcement  learning and decision making, our events of 
interest (cues and outcomes) can have variable amplitude:

Ø Cues can have expected value and certainty about value
Ø The value of outcomes can be expressed either in absolute terms, or as the difference between the 

expected and obtained outcomes
Ø Trial-wise parameter estimates from RL models may serve as parametric/amplitude-modulated 

regressors
Ø Event regressors are then convolved with an idealized hemodynamic response function

Ø NOW, when you perform group-level analyses (t-tests, ANOVAs, mixed-effect analyses), 
the beta coefficients from single-subjects regression analyses reflect the extent to which 
fluctuations in brain activity track internal representations of the values we are modeling 
(like expected value, certainty about value, and reward prediction errors)



Combining behavioral modeling with neuroimaging 

1. Pass individual subject trial 
history to model

2. Find best-fitting parameters 
of model to behavioral data

3. Generate model-based time 
series

4. Convolve time series with 
hemodynamic response 
function

5. Regress against fMRI data

O’Doherty, J.P., et al. (2007). Model-Based fMRI and Its Application to Reward Learning and Decision Making. ANYAS, 1104, 35–53.



III. Modeling Probabilistic RL 
in a Stable Environment



Probabilistic Reinforcement Learning:
Behavioral Phenomena We Have Linked to Avolition/Anhedonia in SZ

ØRelatively-intact negative RPE-driven learning in the presence of impaired 
positive RPE-driven learning 

ØRelatively-intact gradual/BG-driven/procedural learning in the presence 
of impaired rapid/OFC-driven/explicit RL
ØRelatively-intact habit learning in the presence of impaired WM-

dependent RL
ØGreater performance deficits in SZ for more deterministic contingencies 

than less deterministic contingencies (value-difference effect)
ØA reduced ability to integrate the frequencies and magnitudes of 

outcomes

Ø In general: a more limited ability to rapidly and flexibly update value 
representations in the brain



Why would a system with intact signaling of RPEs fail 
to adaptively represent the values of choices?

If it didn’t have a Q-learning mechanism, allowing it to represent the magnitudes of 
outcomes and integrate them with representations of the frequencies of outcomes



Modified Pessiglione Probabilistic Selection Task/
Gain vs. Loss-avoidance (GLA) Task

Ø Allows one to cross the valence of the outcome (gain/loss/neutral) with the valence of 
the prediction error (positive or negative), allowing one to perform contrasts across 
levels of outcome valence (gain vs. neutral, e.g.), for the same level of RPE (when both 
are better than expected), as well as perform contrasts across levels of RPE valence 
(positive vs. negative), for the same level of outcome (neutral, e.g.)

Ø Allows one to represent both the acquisition of contingencies and the expression of 
learned contingencies

Ø One can also use a computational model to estimate expected value and RPE on a 
trial-wise basis, to determine how well different brain regions track RPE valence and 
magnitude through their activity

Ø One can ask:
Ø Do (avolitional) SZ patients show aberrant neural signals for all forms of positive and negative RPEs?
Ø Do (avolitional) SZ patients show a specific abnormality in signaling the occurrence of gains, relative to 

losses, or even relative to instances of loss-avoidance – another kind of positive prediction error



160 trials (40 with each of 4 pairs), with monetary feedback

Gold et al. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. 
Arch. Gen. Psychiat., 69, 129-38.

Not a winner.
Try again!

Keep your 
money!

.9 x .05 =
45 centsExpected Value

Stimuli

Possible
Outcomes

.1 x -.05 =
-5 cents

.9 x -.05 =
-45 cents

2 Gain/Miss pairs (AB, CD): Frequent Winners (FW) vs. Infrequent Winners (IW)

2 Loss/Avoid pairs (EF, GH): Infrequent Losers (IL) vs. Frequent Losers (FL)

Keep your 
money!

Infrequent (10%)     vs.     Frequent (90%)
Loser (E)                             Loser (F)

Infrequent (20%)     vs.     Frequent (80%)
Loser (G)                             Loser (H)

Expected Value

Stimuli

Possible
Outcomes

.1 x .05 =
5 cents

.8 x .05 =
40 cents

.2 x .05 =
10  cents

Frequent (90%)     vs.     Infrequent (10%)
Winner (A)                         Winner (B)

Frequent (80%)     vs.     Infrequent (20%)
Winner (C)                         Winner (D)

.2 x -.05 =
-10 cents

.8 x -.05 =
-40 cents

Not a winner.
Try again!

Lose!

Win! Win!

Lose!

Gain vs. Loss-avoidance (GLA) Task: Acquisition Phase



Win!
AB



Not a winner.
Try again! DC



Keep your
money! FE



Lose!
GH



Gold et al. (2012) Arch. Gen. Psychiat.

Infrequent
Winner

(IW; B, D)

Infrequent
Loser

(IL; E, G)

Frequent
Winner

(FW; A, C)

Frequent
Loser

(FL; F, H)

Transfer Phase: 64 trials, with all possible stimulus combinations, and no feedback
• The 4 training pairs were each presented 4 times (16 total trials);
• 48 trials with 10 kinds of novel pairings

Prob. Selection/Gain vs. Loss-avoidance Task (GLAT)



Prob. Selection/Gain vs. Loss-avoidance Task (GLAT)

Gold et al. (2012) Arch. Gen. Psychiat.

Infrequent
Winner

(IW; B, D)

Infrequent
Loser

(IL; E, G)

Frequent
Winner

(FW; A, C)

Frequent
Loser

(FL; F, H)

• Transfer contrasts of interest
– FW vs. FL (+PE Gain vs. -PE Loss)
– FW vs. IW (+PE Gain vs. -PE Neutral)
– IL vs. IW (+PE Neutral vs. -PE Neutral)
– FW vs. IL (+PE Gain vs. +PE Neutral)

Transfer Phase: 64 trials, with all possible stimulus combinations, and no feedback
• The 4 training pairs were each presented 4 times (16 total trials);
• 48 trials with 10 kinds of novel pairings



AH



BC



DE



EA



Gain vs. Loss-avoidance Task: Acquisition

Ø Controls and patients with less severe negative symptoms show an advantage for gain-driven learning over loss-avoidance driven learning

Ø Patients with more severe negative symptoms show the opposite; they are better at learning what not to do than what to do…

Gold et al. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. 
Arch. Gen. Psychiat., 69, 129-38.



Gain vs. Loss-avoidance Task: Transfer Results

Two effects of particular interest:

Ø All groups preferred Frequent Loss-avoiders to Infrequent Winners

Ø PSZ with more severe anhedonia/avolition like Frequent Loss-avoiders as much as they like Frequent Winners

Gold et al. (2012). Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. 
Arch. Gen. Psychiat., 69, 129-38.



Actor-Critic vs. Q-learning
Ø Unlike a Q-learning model, an actor-critic model cannot account for sensitivity to actual outcome values, since it only uses reward 

prediction errors to modify the probability of selecting an action, as opposed to learning specific state action values. 
Ø Critic’s Expected Value and the action weight are represented and updated separately

Ø Good at capturing S-R learning phenomena, habit learning

Ø Participants update the expected value V(t)  of a state context on each trial t, according to the prediction error

Ø ε(t) = outcome(t)-V(s,t) is the reward prediction error showing the discrepancy between expected value V for the current state s and the 
actual experienced outcome.

Ø Prediction errors in the critic are, ε(t), is also used to update the stimulus-response weight, w(s,a,t), for the action selected in trial t

Ø Actions are selected according to the standard softmax logistic function:



Actor-Critic vs. Q-learning (cont.)

ØQ-learning model does learn specific state-action values:

ØActions again selected according to the standard softmax logistic 
function:

ØThis, time, actions are chosen according to values, not weights



Ø Q-actor-critic action values can then be used in a soft-max decision rule to calculate the 
probability of a given action

Ø The hybrid-probability model thus contains five free parameters: a *critic (αC), actor (αA), 
and Q (αQ) learning rate, a temperature parameter (β) that captured how 
deterministically participants sampled the optimal choice, and a mixing (m) parameter 
that weighted the contributions of Q- and actor-critic-type learning. 

The Hybrid Model combines Actor-Critic and 
Q-learning mechanisms using a mixing parameter

(Q_AC(s,a1,t)) (Q_AC(s,a1,t)) (Q_AC(s,a2,t))

C 

A   

Q*



Gain vs. Loss-avoidance Task (GLAT): Model Simulations

Ø Because the Q-learning model predicts sensitivity to actual outcome values, 
it predicts that subjects will choose a frequent winner over a frequent loss 
avoider.

Ø The Q-learning model cannot account for the observed preference of 
frequent loss avoiders (FLA) compared to infrequent winners (IW) across all 
groups, since infrequent winners have higher expected outcome. 

Ø In contrast, the AC model can account for this pattern, since frequent loss 
avoiders lead to frequent positive prediction errors, thus stronger positive 
actor weights for selecting the loss-avoiding symbol, whereas infrequent 
winners lead to frequent negative prediction errors, thus negative weights

Ø The AC model cannot account for the observed preference of frequent 
winners (FW) compared to frequent loss avoiders (FLA) across all groups, 
since both choices are likely to be associated with the same frequency of 
positive and negative prediction error, but frequent winners have higher 
expected outcome.



Gain vs. Loss-avoidance Task (GLAT): Model Simulations



Advantages of the Hybrid Model

Ø Because the Q-learning model predicts sensitivity to actual outcome values, it predicts that 
subjects will choose a frequent winner over a frequent loss avoider.

Ø The Q-learning model cannot account for the observed preference of frequent loss avoiders (FLA) 
compared to infrequent winners (IW) across all groups, since infrequent winners have higher 
expected outcome. 

Ø In contrast, the AC model can account for this pattern, since frequent loss avoiders lead to 
frequent positive prediction errors, thus stronger positive actor weights for selecting the loss-
avoiding symbol, whereas infrequent winners lead to frequent negative prediction errors, thus 
negative weights

Ø The AC model cannot account for the observed preference of frequent winners (FW) compared to 
frequent loss avoiders (FLA) across all groups, since both choices are likely to be associated with 
the same frequency of positive and negative prediction error, but frequent winners have higher 
expected outcome.



Probabilistic Reinforcement Learning:
Behavioral Phenomena We Have Linked to Avolition/Anhedonia in SZ

ØRelatively-intact negative RPE-driven learning in the presence of impaired 
positive RPE-driven learning 

ØRelatively-intact gradual/BG-driven/procedural learning in the presence 
of impaired rapid/OFC-driven/explicit RL
ØRelatively-intact habit learning in the presence of impaired WM-

dependent RL
ØGreater performance deficits in SZ for more deterministic contingencies 

than less deterministic contingencies (value-difference effect)
ØA reduced ability to integrate the frequencies and magnitudes of 

outcomes

Ø In general: a more limited ability to rapidly and flexibly update value 
representations in the brain



Assessing the Ability to Integrate Reward Probability and Magnitude 
of Recent Outcomes with a Stimulus Selection Task

Ø Learning Phase
Ø On each trial, two stimuli were presented, on either side of a fixation cross. 

Ø Participants were prompted to select one stimulus by pressing either the 
left or right trigger on a gamepad using their left or right index finger. 

Ø Each choice was followed immediately by feedback, in the form of a 
number of points (+3, +2, +1, or +0). 

Ø The eight stimuli differed in the probability and magnitude of the expected 
reward. 

Ø All pairs were presented 40 times in pseudorandomized order. 

Ø Test/Transfer Phase 

Ø Purpose was to assess participants’ ability to combine reward probability 
and magnitude into a representation of EV. 

Ø Participants were presented with the four familiar learning phase pairs 
(“acquisition pairs”; four presentations per pair) and 24 novel pairs of 
stimuli (two presentations per pair) and received the following instructions: 
“Please choose the picture that feels like it’s worth more points based on 
what you have learned during the previous block.” 

Ø Crucially, for many of these trials, the optimal answer depended on the 
ability to combine the expected probability and magnitude of a stimulus 
(e.g., 80/2 vs. 90/1, or 10/3 vs. 20/2). 

Ø No performance feedback was presented during the test/transfer phase.

From Hernaus et al. (2019). Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate 
Reward Probability and Magnitude of Recent Outcomes. Biological Psychiatry: CNNI, 4, 280-290.



Integrating Reward Probability and Magnitude:
The “value difference tracking slope”

Ø HVs outperformed PSZ on all stimulus pairs

Ø Performance in block 4 (trials 31–40) was above chance in both 
participant groups for every pair

Ø There was also a main effect of pair, suggesting that both greater 
reward magnitude and probability conferred performance 
improvements.

Ø The value difference tracking slope was greater for HVs than PSZ
Ø These data indicate that PSZ performance improved less as the difference in 

EV between two competing stimuli increased. 
Ø Importantly, the group difference in the value difference tracking slope was 

driven by motivational deficit (avolition/role-functioning and 
anhedonia/asociality subscales) severity (Panel B). 

Ø These results suggest that the MMD subgroup specifically was poorer at 
integrating reward probability and magnitude. 

From Hernaus et al. (2019). Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and 
Magnitude of Recent Outcomes. Biological Psychiatry: CNNI, 4, 280-290.



Controlling for Reward Probability and Magnitude

Ø On selective trials matched for probability and magnitude, HVs 
performed better on magnitude discrimination than probability 
discrimination trials, while PSZ performed similarly on 
magnitude and probability discrimination trials.

Ø The difference between performance on magnitude- and 
probability-discrimination trials—that is, the difference 
between the advantage conferred by higher reward magnitude 
versus higher reward probability—highly correlated with the 
value difference tracking slope, suggesting that participants 
who performed better on magnitude discrimination trials 
overall performed better in the test/transfer phase.

From Hernaus et al. (2019). Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and 
Magnitude of Recent Outcomes. Biological Psychiatry: CNNI, 4, 280-290.



Ø Q-actor-critic action values can then be used in a soft-max decision rule to calculate the 
probability of a given action

Ø The hybrid-probability model thus contains five free parameters: a *critic (αC), actor (αA), 
and Q (αQ) learning rate, an inverse temperature parameter (β) that captured how 
deterministically participants sampled the optimal choice, and a mixing (m) parameter 
that weighted the contributions of Q- and actor-critic-type learning. 

The Hybrid Model combines Actor-Critic and 
Q-learning mechanisms using a mixing parameter

(Q_AC(s,a1,t)) (Q_AC(s,a1,t)) (Q_AC(s,a2,t))

C 

A   

Q*



Modeling the Integration of Reward Probability and Magnitude

Ø Patients with the most severe motivational 
deficits showed the least contribution from 
the Q-learning component

Ø Reducing the Q-learning contribution had 
the effect of reducing the “value difference 
tracking slope”

From Hernaus et al. (2019). Impaired Expected Value Computations in Schizophrenia Are Associated With a Reduced Ability to Integrate Reward Probability and 
Magnitude of Recent Outcomes. Biological Psychiatry: CNNI, 4, 280-290.



Summary of Findings

Ø In the context of an RL paradigm dependent on the successful integration of reward probability and 
magnitude, PSZ – especially those with motivational deficits – were specifically impaired on trials with 
greater objective EV difference between two stimuli, as evidenced by the group difference in the 
test/transfer phase value difference tracking slope. 

Ø Outcome probability-magnitude integration deficits in PSZ with motivational deficits were driven primarily 
by increased reliance on valueless stimulus-associations (actor-critic), in lieu of EV-based decision making (Q-
learning). 

Ø Individual value difference tracking slopes correlated significantly with estimates of individual mixing 
parameters, which capture the balance between Q-learning and actor-critic–type learning, suggesting a 
systematic relationship between EV-based learning and probability-magnitude integration.

Ø Individual value difference tracking slopes also correlated significantly with motivational deficit severity, 
thereby providing formal computational modeling evidence that impaired probability-magnitude integration, 
due to overutilization of stimulus-response associations, may play a role in the onset of motivational deficits 
PSZ.



Interpretations of Findings

Ø A reduced ability to combine reward magnitude and probability in the service of 
generating adaptive estimates of EV in PSZ with motivational deficits is in line 
with a large body of previous work, including findings of performance deficits in 
PSZ on the Iowa Gambling Task. 

Ø Altogether, the current work reconfirms the notion that performance deficits in 
PSZ increase with demands placed on putative prefrontal processes involved in 
EV estimation.

Ø A failure to appropriately combine reward magnitude and probability into a single 
estimate of EV may lead to a decrease in perceived reward value, which may 
change the trade-off between reward and effort cost, and thus the willingness to 
exert effort, in line with findings that abnormal effort-cost computations are most 
pronounced in avolitional PSZ in conditions with high reward value.



Probabilistic Reinforcement Learning:
Computational Explanations for Phenomena We Have Observed

ØAttenuated learning rates for positive RPEs in schizophrenia, but 
relatively intact learning rates for negative RPEs 
Ø Relatively-intact negative RPE-driven learning in the presence of impaired 

positive RPE-driven learning 

ØOverreliance on Stimulus-Response (A/C) Learning in Schizophrenia, 
at the expense of Q-learning
Ø Can account for relatively equal preference for Winners and Loss-avoiders 

among SZ with high avolition/anhedonia
Ø Can account for a reduced ability to integrate reward probability and 

magnitude of recent outcomes in SZ



These are values/sets of values we might consider to 
be computational phenotypes in the context of our 
work…

Subjects can be characterized in terms of model parameters that correspond to constructs: 

αG, αN, β à Trial-wise representations of EV and RPE



Using trial-wise parameters in neuroimaging studies 
of learning and decision making



Gain- vs. Loss-driven Learning:
The Probabilistic Stimulus Selection (PSS) Task

GAIN/MISS (GM)

Frequent (70%)     vs.     Infrequent (30%)
Winner (A)                         Winner (B)

Not a 
winner

Keep your 
money!

.7 x 25 =
17.5 cents

Expected Value

Stimuli

CORRECT/INCORRECT (CI)

Frequent (70%)     vs.     Infrequent (30%)
Correct (C)                         Correct (D)

LOSS/AVOID (LA)

Infrequent (30%)     vs.     Frequent (70%)
Loser (E)                             Loser (F)

Possible
Outcomes

Pair Name

.7 x 0 =
0 cents

.3 x -25 =
-7.5 cents

.7 x -25 =
-17.5 cents

.3 x 25 =
7.5 cents

.7 x 0 =
0 cents

A

Keep
your 

money!

B

1-7s

3s - RT

Max 2s$0.00

$0.25
1-7s

3s - RT

Max 2s$0.25

$0.25

Trial n Trial n+1



Two Learning Rate Q-learning Model

Ø Model value on a trial-wise basis, as Qi(t)

Ø You do this by updating value as a function of the mismatch between the expected and obtained 
outcome at time t [r(t)]

Ø This is the reward prediction error, called δ

δ(t)  = [r(t) - Qi(t)]

Ø The actual change in value is a function of both δ and a parameter called Learning Rate (α), which 
is estimated for a group or individual

Ø Determines the “impact” of prediction errors

Ø We used separate learning rates for positive and negative RPEs (αP and αN):

If δ ≥ 0, Qi(t + 1) = Qi(t) + αP
. δ(t)

If δ < 0, Qi(t + 1) = Qi(t) + αN
. δ(t)

Ø Some frameworks call for modeling certainty about value on a trial-wise basis and use it to estimate learning rate on 
a trial-wise basis



2 Learning Rate Q-learning Model

Ø A decision function predicts the choice based on the relative values of the 
options:

with a parameter beta (β) determining how strictly Q determined the choice of 
action

Ø The “fit” of the model is a function of how accurately it estimates individual 
choices and performance

Ø Modeling scripts generate a value called the “log-likelihood estimate” (LLE), which is used to 
derived various measures of fit

Ø If the model fit is good enough, for an individual subject, these trial-wise model 
parameter estimates are what we use to create parametric regressors for fMRI 
data analysis.



Combining behavioral modeling with neuroimaging 

1. Pass individual subject trial 
history to model

2. Find best-fitting parameters 
of model to behavioral data

3. Generate model-based time 
series

4. Convolve time series with 
hemodynamic response 
function

5. Regress against fMRI data

O’Doherty, J.P., et al. (2007). Model-Based fMRI and Its Application to Reward Learning and Decision Making. ANYAS, 1104, 35–53.



SZ and controls show similar neural responses to RPEs, 
in striatum, insula, and dmPFC

Healthy Volunteers Patients with Schizophrenia HVs - Patients

R L

Waltz et al. (2018). BPS: CNNI, 3, 239.



Waltz et al. (In Press). BPS: CNNI.
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Both patients and controls show similar neural responses
to misses and losses (both negative RPEs)
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Ø Controls show differential neural responses to gains and instances of loss-avoidance, but patients do not

Ø Experienced value [Gain – Loss-avoidance] contrasts in VS correlate with ratings for avolition/anhedonia in 

SZs.

Ø Controls show greater learning from gains positive than negative RPEs, but patients do not.



Summary of Computational Neuroimaging Findings 
from Gain- vs. Loss-driven PSS Task
ØNegative symptom scores in SZ patients correlated significantly with 

neural activity related to expected value-related activity in VS and 
vmPFC

ØSuggests a specific deficit in representing the value of gains, in 
medicated SZ patients, with value updating being disproportionately 
influenced by learning about potentially negative consequences, as 
opposed to potentially positive ones 



IV. Modeling Probabilistic RL 
in an Unstable Environment



Probabilistic RL in an Unstable Environment:

COMT Genotype and Cognitive Flexibility

Krugel et al. (2009). Genetic variation in dopaminergic neuromodulation influences the ability to rapidly 

and flexibly adapt decisions. PNAS, 106, 17951-6.

Ø Learning rate modeled as dynamic, varying with uncertainty 

(RPE slope)

Ø Decreased with repeated positive feedback, increased with 

surprising negative feedback

Ø When used as a trial-wise parametric regressor in fMRI 

analyses, tracked by activity in dorsomedial frontal cortex 

(DMFC)



Neural Substrates of Adaptive Learning

Ø Adaptive learning can be decomposed into 
three computationally and neuroanatomically 
distinct factors that were evident in human 
subjects performing a spatial-prediction task: 

1) surprise-driven belief updating, related to BOLD 
activity in visual cortex; 

2) uncertainty-driven belief updating, related to 
anterior prefrontal and parietal activity; and 

3) reward-driven belief updating, a context-
inappropriate behavioral tendency related to 
activity in ventral striatum. 

Ø These distinct factors converged in a core 
system centered on dorsomedial frontal cortex

McGuire et al. (2014). Functionally Dissociable Influences on Learning Rate in a Dynamic Environment. 
Neuron, 84, 870-881.



Hypotheses

ØOne way for PSZ to have reinforcement learning deficits in 
the presence of intact RPE signaling, is have a reduced ability 
to adaptive modulate learning rate as a function of 
uncertainty.

ØA reduced ability to adaptive modulate learning rate as a 
function of uncertainty would be associated with abnormal 
activation of DMFC and/or connectivity between DMFC and 
ventral striatum.



The Card Betting RL Task

Ø The RL task consisted of a choice, card-flip and outcome 

phase. 

Ø Choices were rewarded probabilistically, with a choice of the 

“optimal deck” leading to a 100-point gain on 90% of trials 

(and a loss of 50 points on 10% of trials). Choices of two non-

optimal decks led to 100-point gains on 50% and 10% of trials 

(and losses of 50 points on 50% and 90% of trials), 

respectively. 

Ø Participants were instructed to try to identify the optimal 

deck (i.e., the one with the highest expected value) as quickly 

as possible; they were also informed that, occasionally, a 

new deck would become the optimal one. 

Ø Inter-trial (ITI) and inter-stimulus (ISI) intervals were pseudo-

randomized, such that the average trial-length was ca. 10.5 s.

Ø Participants achieved as many stages as possible in 160 total 

trials (subdivided into 4 runs of 40 trials)



Modeling a Dynamic Learning Rate

Ø Participants’ choices, and the outcomes of those choices, were fit to an RL model with a dynamic learning 
rate (α), such that EV, RPE, and α could be estimated on a trial-wise basis, based on the work of Krugel et al. 
(2009).

Ø In this model, learning rate on a given trial was updated as a function of m, the slope of the absolute values 
of consecutive RPEs. 

Ø The impact of the RPE slope on α updating is determined by a parameter, β, which was optimized to fit 
individual subject data:

f(m)=sgn(m) . [1-e-(m/β)2].

Ø For increasing RPEs (m>0), learning rate updating would proceed as follows:

α(t)= α(t - 1) + f[(m)t] . [1 - α(t - 1)].

Ø On any given trial, then, Q-values are updated as a function of the RPE and the learning rate at time i:

qi(t)= qi(t-1)+ αi
. δi(t-1).



Analyses of Model Parameters and Associated Neural Signals

Ø In order to compute group-level statistics, we extracted individual β parameters 
(signifying the impact of the RPE slope on α updating), as well as trial-wise 
learning rate estimates 8 trials before and after every reward contingency shift, 
for every individual. 

Ø We then computed the slopes of learning rates prior to, surrounding, and 
following each reward contingency shift for a given individual.



A. Trial-wise estimates of learning rate 8 trials 
before and after a reinforcement contingency 
shift. PSZ, relative to HV, demonstrated a 
decrease in learning rate modulation, especially 
so in trials leading up to a contingency shift 
(Figure 2A). 

B. This was especially the case for PSZ with high 
motivational deficits (Figure 2B), who showed 
little to no learning rate modulation across all 
trials. 

C. PSZ additionally demonstrated decreased post-
shift impairments in learning rate modulation, 
defined as the difference between trial 1 pre-
shift and trial 2-8 post-shift. 

Panel A solid bars represent SEM. *=p<.05

Hernaus et al. (2018). Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cogn Affect Behav
Neurosci, 18, 1338-1351

Learning rate modulation deficits
increase with motivational deficit severity



A. Robust RPE signals were observed in VS and related regions, while B. robust LR signals were observed in superior parietal lobule and 
dorsomedial prefrontal cortex (dmPFC). C. A trend toward a between-group difference in dmPFC was observed for the model-based learning 
rate analysis. 

CBA

Model-based fMRI analyses, using regressors
constructed from learning parameters

Hernaus et al. (2018). Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cogn Affect Behav
Neurosci, 18, 1338-1351



A. Whole-brain functional connectivity between dmPFC and inferior parietal lobule increased in the entire sample from non-learning rate to 
learning rate trials. B. In a follow-up ROI analysis in VS, functional connectivity increases were observed from non-learning to learning-rate 
trials for HV and PSZ with low motivational deficits, while dmPFC-VS connectivity decreases were observed in PSZ with high motivational 
deficits (5B). **, p<.01; *, p<.05, bars represent 95% confidence intervals. LR=learning rate.

Decreased dmPFC-VS coupling in SZ patients
with high motivational deficits

Hernaus et al. (2018). Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals. Cogn Affect Behav
Neurosci, 18, 1338-1351



Uncertainty does not only influence the rate 
at which one learns; it also influences one’s 
drive to seek information

The Explore/Exploit Trade-off



V. Modeling Goal-directed Exploration

The Temporal Utility Integration Task (TUIT; Time Conflict Task)



Ready?









0



+



Ready?







78



+



Ready?

















182



+



Ready?



















0



+



Temporal Utility Integration (TUI) task

From Moustafa et al. (2008). JNS, 28, 12294-11304.



Modeling behavior on the 
Temporal Utility Integration (TUI) task

• We used a modeling approach based on the assumption that 
participants track the EV for the reward they expect to gain 
in a given block of trials

• When a given reward is greater or less than this EV, the 
associated prediction error signals drive learning to adjust 
behavior in two ways.

• First, a simple, likely implicit, process whereby accumulated 
positive RPEs translate into approach-related speeded 
responses (Go learning), whereas accumulated negative PEs 
produce relative avoidance and slowed responses (NoGo 
learning);

From Badre et al. (2012). Neuron, 73, 595–607.

• The RL model of this task also assumed that 
individuals also use the relative difference in 
uncertainties about values to drive exploratory RT 
swings.

• Model thus incudes an exploration parameter, ε, 
predicting trial-by-trial RT swings to occur when one 
is relatively more uncertain about probability of 
obtaining a positive outcome for fast or slow 
responses. 



Investigating uncertainty-driven exploration in SZ using
the Temporal Utility Integration (TUI) task
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Strauss et al. (2011), Biol. Psychiat., 69, 424-431. Waltz et al. (unpublished)

From Badre et al. (2012). Neuron, 73, 595–607.



Whole brain analysis of trial-to-trial changes in relative 
uncertainty. (a) Example individual subject relative 
uncertainty regressor from one run of one participant. 
Convolution of parametric changes in relative 
uncertainty (|σslow(t) − σfast(t)|) on each trial (top plot) 
with a canonical hemodynamic response function 
(middle plot) produced individual participant relative 
uncertainty regressors (bottom plot). 

A

B

Neural Signature of Goal-directed Exploration

From Badre et al. (2012). Neuron, 73, 595–607.

C

Explore Participants Only Explore – Nonexplore Participants



RLPFC RLPFC

RLPFC
R SPL

All Explore > All Nonexplore

NC Explore > SZ Explore All NCs > All SZs

All NCs > All SZs

L SPL

Waltz et al. (unpublished)

Schizophrenia and the Neural Substrates
of Goal-directed Exploration



Uncertainty-driven Exploration in SZ:
Conclusions and Interpretations
ØThese results suggest that motivational deficits in schizophrenia are 

associated with a specific type of goal-directed behavior: the tendency to 
explore reward contingencies based on uncertainty. 

ØFurthermore, people with schizophrenia show aberrant activity in the 
neural circuitry associated with the performance of uncertainty-driven 
exploration. 

ØThese findings suggest an alternate source of motivation deficits in 
schizophrenia, aside from a reduced tendency to exploit known reward 
contingencies. 

Ø In addition they link a specific deficit to abnormal activity in a specific 
circuit, which might serve as a biomarker for future studies of candidate 
risk genes or potential interventions.



VI. Lessons Learned



Computational accounts of motivational deficits 
in psychotic illness
Ø Relatively-intact negative RPE-driven learning in the presence of impaired positive RPE-driven learning 

Ø Attenuated learning rates for positive RPEs in schizophrenia, but relatively intact learning rates for negative RPEs 

Ø Relatively equal preference for Winners and Loss-avoiders among SZ with high avolition/anhedonia
Ø Can be attributed to overreliance on Stimulus-Response (A/C) Learning in Schizophrenia, at the expense of Q-learning 

(reduced mixing parameter, m)

Ø A reduced ability to integrate reward probability and magnitude of recent outcomes in SZ
Ø Can also be attributed to overreliance on Stimulus-Response (A/C) Learning in Schizophrenia, at the expense of Q-learning

Ø RL deficits in the presence of intact RPE signaling
Ø Possible with a reduced ability to adaptive modulate learning rate as a function of uncertainty.

Ø Reduced goal-directed exploration in psychotic illness
Ø Can be modeled as a reduced contribution of relative uncertainty to decision making



Models help us think about learning and behavior

Ø Models are formalized frameworks
Ø They can and should be a source of predictions

Ø There are many possible learning algorithms, because there are many possible 
learning mechanisms, often operating simultaneously

Ø The idea of complementary OFC-driven (fast) and BG-driven (slow) learning system has 
provided us with many testable hypotheses

Ø Ideally, parameters correspond to constructs
Ø Learning rates
Ø Mixing parameters
Ø Noise parameters
Ø Explore parameters



Caveats

ØImportant to tailor tasks to severely-mentally-ill population
Ø Difficult to model behavior that is unsystematic/random

ØImportant to characterize subgroups of patients whose data can be fit 
vs. those whose data cannot be fit 

ØModeling results should be consistent with behavior

ØImportant to compare plausible models, based on fit parameters, and 
demonstrate that the model you report on actually did the best



VII. What do we still want to know?
Many things



How do we account for associations between negative symptom 
severity and problems of learning about effort cost?

ØOne path to avolition is if action-value associations are weak
ØAnother path is if action-cost associations are strong



How do we account for associations between negative symptom 
severity and problems of learning about effort cost?

Ø One can estimate prediction errors with regard to cost, just like one can estimate prediction 
errors with regard to reward.

Ø The questions of which neural systems underlie the ability to estimate effort cost and the 
willingness to expend effort are not at all settled



What do we still want to know?
Effects of Stress on Reward- vs. Punishment-driven RL

Ø Evidence that acute stress shifts balance of Go- and NoGo-learning
Ø Stress modulates both dopaminergic and serotonergic pathways, as well as 

numerous other circuits known to be involved in the processing of rewards and 
punishments and other salient outcomes



What are the mechanisms by which psychotropic medications 
influence RL?

ØDo antipsychotics decrease learning rates for positive RPEs?

ØDo stimulants do the opposite?

ØWhat do SSRIs do?
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