Data science to ask
questions in mental
health

@kordinglab

Shameless plug: Please read 10 simple rules for structuring papers



Outline

) What ML is used for
ll) ML settings, diagnostics and typical uses
lll) Four ways of doing it wrong

V) An aside: video based approaches

V) Causality FTW
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Solve real problems

Depression estimates from mobile phones (with Mohr)



Understand data
H(X) H(Y)

H(X,Y)

e.g. Bialek



Provide a benchmark

Machine
learning

Your
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Being better than another model d_oes not make a model true.

See Jonas and Kording, Could a neuroscientist understand a microprocessor 2017



Model for brain
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see Marblestone, Wayne, Kording, 2017



Model for disease

 Solutions
* Fitting
* Bayes

* Deep learning



ll: Two approaches towards
diagnostics

* Measure the right thing
— e.g. identify antibodies, viral RNA etc

* Measure a lot of stuff (ubiquitous)
— Google searches (e.g. Flu)
— Locations
— New media use
— Accelerations
— Etc

* And then get at the relevant stuff through
machine learning



Workflow

Produce data where we know the correct
diagnostic
Train a machine learning system

Test that our machine learning system
works

Use it to make cheaper/better diagnostics



samples

Typical Supervised ML
setting

features label

Tralnlng

Model



samples

samples

Typical Supervised ML
setting

features label

Tralnlng

Model

features \diﬂions



A typical example: PHQ9
from phone sensors



Phone sensors, truly ubiquitous

Accelerometer/ Magnhetometer/ Barometer
Brightness sensor

GPS

Screen/ Keyboard

Microphone



Phone use
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With Lonini,

Jayaraman
People use their phones all the time



Latitude

GPS data

Longitude

-87.58



Extract GPS Features

Location Variance
Number of clusters
Entropy

Home Stay
Circadian Movement
Transition time



Feature Values (Scaled)
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Combine them with trivial machine
learning!

P(Depressive Symptoms) = g(bo + biF; + boF2 + ... + b.Fy)

While looking for small b



Somewhat can predict mood

Classification (PHQ9<5 vs PHQ9=5) PHQ9 score estimation
Training features % mean accuracy % mean sensitivity % mean specificity Mean NRMSD (SD)
(SD)
Usage duration 74.2 (3.4) 64.0 83.9 0.268 (0.018)
Usage frequency 68.6 (4.1) 564 79.6 0.249 (0.013)

All 65.7 (4.9) 55.7 749 0.273 (0.019)




Semantic location

BN depressed

BN non-depressed
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Saeb... Kording Mohr



How to do good ML

SVM/SVR
KNN
xgBoost This is what

all the
Random Forest ML courses

G LM teach
Stacking!



Use Auto-ML instead

e Approaches are sufficiently standard that this part can
easily be automated, e.g. auto-SKlearn, auto-WEKA

e |Implication: knowledge about details of ML techniques
will become less relevant for biomedical scientists



Result

e AutoML (autosklearn, Freiburg) is almost always better
than published results

e AutoML is usually better than our own results

e |t is literally three lines of code



Auto-sklearn Is good

model features accuracy macro f1 weighted {1
majority baseline N/A 0.5714 0.1818 0.4156
random forest age/gender 0.5714 0.1818 0.4156
random forest comm 0.6667 0.4795 0.6254
random forest comm + age/gender  0.6667 0.4750 0.6225
random forest comm + demo + loc  0.6762 0.4744 0.6326
auto-sklearn age/gender 0.5714 0.1818 0.4156
auto-sklearn comm 0.6571 0.4731 0.6195
auto-sklearn comm + age/gender  0.6905 0.5488 0.6654
auto-sklearn comm + demo + loc  0.7095 0.5519 0.6806

Relationship prediction, with Lyle Ungar, Tony Liu



Example uses of ML In
Neuroscience
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Nature Reviews | Neuroscience

Bensmaia, Miller, 2014



Decoding (Neurons->
movement)

I Wiener Filter Kalman Filt. | XGBoost Simple RNN JJILSTM
Il Wiener Casc. JSVR Feedfrwrd NN IGRU B Ensemble
1.0¢ Motor Cortex

e

WF WC KF SVR XGB FNN RNN GRULSTM Ens



Finding generalizes
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Encoding (movements-
>Neurons)

B GLM Feedfrwrd NN XGBoost [ Ensemble

0.2r Motor Cortex

GLM FNN XGB Ens
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o




Finding Generalizes
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lll: The four deadly sins of machine
learning

(1) Wrong question

(2) Wrong way of assessing quality
(3) Wrong way of comparing

(4) Wrong way of managing



(1) Wrong question

* Most ML people are in CS
» Little knowledge about medicine
» Often ask medically irrelevant question



(2) Wrong way of assessing Quality
e.g. bad crossvalidation

Subject-wise Cross-Validation Record-wise Cross-Validation
Subject 1
Subject 2
Subject 3 N M
Subject 4 ? :::;fc:":n
Subject 5 U 1-r
fain Test =y fzst';ﬁ;il.’.:’;.c;n) = (S:l:rl‘)feitu E::E:ification)

With Lonini, Saeb, Mohr, Jayaraman



Cheating works

Classification Error (%)
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Massive overconfidence
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Literature review

368 records identified through
database searching

|

368 records after duplicates removed

l

200 records screened

A 4

87 full-text articles
assessed for eligibility

l

62 studies included in

quantitative synthesis
(meta-analysis):

Subject-wise (n=34)
Record-wise (n=28)

113 records excluded based on

title and/or abstract

25 full-text articles excluded, because:

1)

2)
3)

4)
5)

6)

They involved no prediction algorithm
(n=4)

They used no cross-validation (n=3)
They used one record per subject
(n=2)

They used personal models (n=9)
Their cross-validation type was
unknown (n=6)

Full-text was not accessible (n=1)
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Cheating helps
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NO one cares
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(3) Wrong way of comparing
e.g. personal baselines

 Variance explained

W Orianna Demasi, Ben Recht



Personal vs group baselines

StudentLife - stress
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Machine learning often does not help
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User lift

Dataset Problem Model Avg. Personal Baseline Error | Avg. Personal Model Error | Avg. User Lift (Error) @ p-value
SL—Stress binary Log.Reg. 29.19% 29.09% 0.10 481
FaF—Happiness | binary SVM(rbf) 16.51% 18.67% -2.17 .967
FaF—Stress binary SVM(rbf) 25.17% 23.35% 1.82 .240
SL—Stress regression Elastic Net 0.75 0.78 -0.03 .988
FaF—Happiness | regression Elastic Net 0.81 0.83 -0.02 .999
FaF—Stress regression Elastic Net 1.10 1.13 -0.03 1.000

https://doi.org/10.1371/journal.pone.0184604.t001




Literature review

Google Scholar Search

Emotion
(n=517)

Select the first
(n=200)

Matched inclusion
criteria

Included Excluded
(n=19) (n=181)

Google Scholar Search

Stress
(n=1690)

Select the first
(n=200)

Matched inclusion
criteria

Included Excluded
(n=20) (n=180)



Machine learning often does not help
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User lift: baseline - model error

Does ML even help?
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Reported personal baseline error



(4) Wrong way of managing

Get data
Give half of it to your ML collaborators

Lock the other half away
Get their algorithm

Then test performance on the parts they
have not seen



The many ways of leakage

e By not cross validating
e By cross validating wrongly
e By shared recruitment strategy

e By trainee



An app to track Parkinson’s
disease

Can the technology behind cell-phone bowling change the lives of
Parkinson's patients?

Photograph: Allison Williams
Parkinson's patient Pappageorge holds a smartphone that detects and records his movements. " € Share Image




IVV) Towards computer vision-
based automated infant
neuromotor disorder diagnosis

T n

Dr. Claire Rachit Wllson Dr.

Chambers Saluja Torres Laura Michelle
Prosser Johnson




Neuromotor developmental disorders
cause lifelong disability and can be
detected early

5 to 10% children are affected by developmental
disorders (Rydz et al., 2005)

Cerebral Palsy: 2.11 per 1000 live births (Oskouli
et al., 2013)

May be higher, 5 per 1000, in lower and middle
income countries (Khandaker et al. 2018)

Early detection is crucial so as to maximize brain
plasticity during treatment (Palmer, 2004)



Need for a quantified, sensitive and accessible diagnostic

Early diagnosis

Existing clinical methods (General Movements
Assessment) have high specificity and are widely
tested, but are:

- qualitative

- expensive

- Inaccessible in resource-poor environments

Optic flow assessments:
- give only gross movement features
- not clinician interpretable



Approach

A database of
‘normative’ infant
movements

\»

Compare to assess risk

Infant movements
In a clinical setting

/'




‘Normative’ infant movements from
YouTube

3 YouTube 2 month old baby

YouTube search terms such as:
- one, two, three, four, five, six

f Home
months old baby b Teendng
- Weeks Old i3  Subscriptions
B Library
Inclusion criteria: O History

- infant iS non-OCCIUded Sign in now to see your
- infants move independently

recommendations!

video within the frame
- Duration > 6 sec © s

385 videos found, and 85 included



Collecting infant movement data in a

clinical setting

Data collected in the Children’s Hospital of Philadelphia.
Approved by ethics board.

Inclusion criteria:

- Infants cannot yet walk

- absence of history of cardiac, neurological or orthopedic
condition

- Parents provide informed consent

GoPro camera used to record movements while in supine
position.

Bayley Infant Neurodevelopment Screener (BINS) was >
used by clinical to assess neuromotor risk. 19 infants
assessed. 5 low-risk, 9 moderate-risk, 5 high-risk.



Using computer vision-based pose
estimation to extract infant pose

OpenPose (Cao et al., 2018):

- nose, neck, ears, eyes,
shoulders, elbows, wrists, hip,
knees, and ankles

OpenPose Iinitially provided

messy estimates for infants

because:

- Infant body proportions are
different from adults

- Such infant images are
missing from the original

training dataset (COCO and
MPII).



http://www.youtube.com/watch?v=pW6nZXeWlGM

OpenPose domain adaptation

Keypoints for ~9000 frames were manually
labeled using Vatic

8003 frames in the training set and 1036
frames in the test set.

The test frames are from videos unseen
during training.

Gradient descent for 75 iterations.

Minimize the error relative to the ground truth
manual labels.

Root mean
squared error

o

015+

O
-
o

0.005

0

20 40 60
Epoch



The network worked better on infants after retraining




The network worked better on infants after retraining




The network worked better on infants after retraining




Cleaning the infant pose raw data

outlier removal: interpolate and drop
points that are greater than two standard
deviations (0.1 s bins)

smoothing using moving average of 1
sec

camera movements were dealt with by
fixing a reference body part (trunk)

lengths were normalized by trunk length
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Old fashioned features

52 features in all

For the positions of the extremities (wrists/
ankles) and joint angles (elbows/knees) on
both left and

right side of the body, we included:

\
. .. 2.0-
- median position/angle M Body part
- IQR of position/angle Left Ankle
- median speed 1.51 Left Wrist
- IQR of speed | —— Right Ankle
- IQR of acceleration —— Right Wrist

- mean entropy
- left-right cross correlation

O
U

0 2 4 6 8 10 12
Time (s)

y-coordinate (distance wrt neck)
o

0.0



Naive Bayesian surprise metric

assumes normal distribution and
feature independence

normalized the metric with respect
to the ‘'normative’ database
estimate the log probability that a
given infant's movements are drawn

from the ‘normative’ distribution
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Predicted risk corresponds to clinician-
assessed risk
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Chambers, Seethapathi, et al., 2019. Towards accessible computer
vision-based diagnosis of infant neuromotor disorders. (in prep.)



V) causality and pseudo

experiments

cau-sal-i-ty
/ko'zalede/ <

1. therelationship between cause and effect.

2. the principle that everything has a cause.

T USED T0 THINK, THEN I TOOK A | | SOUNDS LIKE THE
CORRELATION IMPUED STAns_'_ncs CLASS. CLASS HELPED.
CAUSATION. NOw I DON'T. WELL, mmse.

TR




Definition of causality

e et aand b be events
e (Causation exists if:

e |f we had changed a to a*, the probability for b would
have been different



Why causality Is hard:
Confounding

A

?

E.g. Hormone Replacement Therapy,
Buying extra insurance




Why causality Is hard:
Confounding

A

9.

E.g. Hormone Replacement Therapy,
Buying extra insurance




A continuum of
confounding

No confounders: e.g. atari, imagenet
Few confounders: starcraft
Countless confounders: Medicine

10N 1 confounders: brains



Medicine

Countless thresholds

Few controllable variables
Everything is confounded
Big datasets

The ultimate control problem



Simulate a trivial causal
system

X1 =Ax, +¢€

Where

e ~ N(0,2)
2. = diag(nL)

Choose A: sparse binary (p=.1), largest SV=.99



Delayed Correlation vs
Causation

R2

#variables



Popular solutions

e (1) Randomized perturbations (Experiments)

e’
* RL exploration o(2); =—¢

D €%

e (2) ML Bayesian network/ saturated structural equation model

p® =[] r (x| Patx))

e (3) Model comparisons



Popular solutions

e (1) Randomized perturbations (Experiments)

e’
* RL exploration o(2); =—¢

D €%

e (2) ML Bayesian network/ saturated structural equation model

p® =[] r (x| Patx))

e (3) Model comparisons

e Quasiexperiments



Perturbations

Implicit assumptions: we randomly perturb what we care
about

Low-D!, expensive, unethical, dangerous



Model comparison

e Have two models with distinct internal causality

e Choose the one that describes data better (p<.05)

AIC = 2k — 21In(L)



Saturated structural
equations + DAGs

Leaky
Cell A integrator

{11l

Stimulus ———»

Chichilnisky

L =) logt,) + ng(r)dr

Assumptions: causal sufficiency, correct functional form, ...
Paninski, Pillow, Butts, Sahani, ..., yours truly



Pearl/ DAGs
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Fig. 3. A diagram representing the front-door criterion.

X,
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X3
N X
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J
Fig. 2. A diagram representing the back-door criterion;
adjusting for variables {X;, X,} or {X,, X5} yields a
consistent estimate of pr(x;|X;).



Does the world look like
this?
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X1

Or this?
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Potential outcomes

Untreated Y;(0)

Treated Yi(1)

Rubens, Imbens, Athey



No bias in RCT

Measurement YO TE=E(Y,-Y,)

1
N Y Yi(0) = Y(i)




No bias in RCT

Measureme
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Quasiexperiments

Observational Quasi- Experiments
experiments

>

Causal validity

Idea: find something that is locally kinda random

Marinescu, Lawlor, Kording, Nature Human Behavior, In press



Estimate effect of certificate
of merit

probability
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Lawlor, Marinescu, Kording,
eXalnmn sScore

NHB, in press



Does winning merit
certificate help?
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Sanity checks

Cheating

e visible as discontinuity in co-variates

Fuzziness

e visible as smooth treatment changes



Variance of RDD estimators

e requires ~3 times as many samples as experiment

302

2
NpandwidthP

Vargpp(op) &

e how to choose bandwidth? E.g. crossvalidation



Obvious optimization
problem (linear)
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Reinforcement learning without Exploration



Neural data analysis:
Intracellular recordings
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o
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p(fire neuron b) p(fire neuron a)

1
maximum input drive



Preplanned RDD

e Often more ethical: e.g. help the poorest districts
e instead of random

e same in medicine, apply to those who are highest risk



Instrumental variable




Optogenetics is not local
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Massive confounding
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Instrumental variables




Civic engagement - college
relation

e Distance to nearest college as instrument

e Does it affect p(register to vote)?



Example

Distance attend
to college college

N

> Register

Groenwold et al



For us

stimulation X . ,postsynaptic
+- refractory SPIKIng neuron

N/

All the brain




Instrumental variables

S
o E[C|A, =1]-E[C|A, =0
o1V =
EIA|A, =1]—-E[A|A. =0

Wald estimator (1940)



Weight estimate

Instrumental variables

BC AC
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Many neurons
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log(Mean square error)

107!

102

IV helps. A lot.

— g =99 — g =44 g =30
— [/ = == CCH
\\

6 x 10 10 2 x 10°* 3 x 10°*
log(N trials)



Why it matters

e Optogenetics is arguably the best causal tool we have
e But crazy hard (2p) to target individual cells

e Use causal inference tricks to cure confounding



An aside

e Medicine has
e many thresholds

e many random assignments (e.g. doctors)

e Confounding literally kills



One more pseudoexperiment:
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Caveats

The lure of causal statements: Rampant mis-inference
of causality in estimated connectivity

Mehler & Kording

shoutout: Manjari Narayan (@neurostats)



Take home message

We really mean causality when we talk about mechanism

In many cases we provide no relevant information re
causality

Perturbations are gold standard. But do not scale

Quasiexperiments are important set of approximation
ideas



Acknowledgements

ML
Ari Benjamin
Hugo Fernandes

Video tracking
Claire Chambers
Gaiqing Kong
Julian Yarkoni
Shaofei Wang

Bad ML

Luca Lonini
Sohrob Saeb
David Mohr

Ben Recht
Orianna Demasi

Causality

 Joana Marinescu
 Pat Lawlor

* Mikkel Lappernd

* Funding
* NIH, NSF



Stevenson’s Law

10 ¢
" N=56
-
O
S Doubling Time: .
2 7.4+ 0.4 years Sy °
8 102?
O [
O
O
@
o
>
wn
S
S A
c 10F
© L
+
>
£ .
N

o
10°

1950 1960 1970 1980 1990 2000 2010
Publication Date



Getting data from brains

Typing: 100 bits/s record, 20 bits/s me
Eye movement: 20 bits/s

EEG: .5 bits/s

EMG Hand movement BMI: 2bits/s

Dancing? 200 muscles*8bits/muscle*100/s
=160K bits/s



Take home: Standard ML

e Work really well, fast

e Challenge people to get better results with brain intuitions

e Set baseline

e QK, lets talk about non-standard now



Machine Learning in Data Driven
Medicine: how to not do it wrong

Shameless plug: Please read 10 simple rules for structuring papers
AFAIK: Most tweeted scientific paper, ever



