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Objectives: Selecting patients with asymmetrical sensori-

neural hearing loss for further investigation continues to

pose clinical and medicolegal challenges, given the dispar-

ity between the number of symptomatic patients, and the

low incidence of vestibular schwannoma as the under-

lying cause. We developed and validated a diagnostic

model using a generalisation of neural networks, for

detecting vestibular schwannomas from clinical and

audiological data, and compared its performance with six

previously published clinical and audiological decision-

support screening protocols.

Design: Probabilistic complex data classification using a

neural network generalization.

Settings: Tertiary referral lateral skull base and a compu-

tational neuroscience unit.

Participants: Clinical and audiometric details of 129

patients with, and as many age and sex-matched patients

without vestibular schwannomas, as determined with

magnetic resonance imaging.

Main outcome measures: The ability to diagnose a

patient as having or not having vestibular schwannoma.

Results: A Gaussian Process Ordinal Regression Classifier

was trained and cross-validated to classify cases as ‘with’

or ‘without’ vestibular schwannoma, and its diagnostic

performance was assessed using receiver operator charac-

teristic plots. It proved possible to pre-select sensitivity

and specificity, with an area under the curve of 0.8025.

At 95% sensitivity, the trained system had a specificity of

56%, 30% better than audiological protocols with closest

sensitivities. The sensitivities of previously-published

audiological protocols ranged between 82–97%, and their

specificities ranged between 15–61%.

Discussion: The Gaussian Process ORdinal Regression

Classifier increased the flexibility and specificity of the

screening process for vestibular schwannoma when

applied to a sample of matched patients with and without

this condition. If applied prospectively, it could reduce

the number of ‘normal’ magnetic resonance (MR) scans

by as much as 30% without reducing detection sensitivity.

Performance can be further improed through incorporat-

ing additional data domains. Current findings need to be

reproduced using a larger dataset.

A vestibular schwannoma is a benign nerve sheath

tumour which most commonly arises from the Schwann

cells of the vestibular division of the eighth cranial nerve.1

It has a reported incidence of 1 in 100 000 and grows at

a slow mean rate of approximately 1.2 mm/year. Many

lesions reach a static size without surgical intervention

and a small proportion of tumours may spontaneously

regress.1 Conversely, tumour growth at the cerebello-pon-

tine angle can lead to potentially life-threatening neuro-

logical complications (Fig. S1),2 and furthermore, when

surgery is indicated, excision of a smaller tumour is asso-

ciated with less postoperative morbidity.2 This is therefore

a diagnosis that once suspected, should be secured or sat-

isfactorily discounted.

The majority of patients with a vestibular schwannoma

present with asymmetrical sensorineural hearing loss,3 but

in terms of the overall number of otolaryngology consul-

tations for the evaluation of audiovestibular symptoms,

this diagnosis remains an uncommon cause of a very

common presentation. Indeed, as many as one in five of

all patients presenting to general ENT clinics have symp-

toms which could be considered compatible with the

diagnosis of vestibular schwannoma.4 This presents the

otolaryngologist with the difficult diagnostic and medico-

legal conundrum of deciding which of the many patients

evaluated for audiovestibular symptoms are at higher risk

of harbouring a vestibular schwannoma, and should be
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further investigated with MRI. The need for careful

patient selection arises from the fact that MR does not at

this time lend itself to indiscriminate screening of large

numbers of patients, and furthermore, vestibular schwan-

noma as a condition does not fulfil the World Health

Organization criteria for population level screening.5 As a

result, there has been much interest in developing sensi-

tive and robust protocols to aid in the identification of

the at-risk patient group from amidst the large popula-

tion of patients with audiovestibular symptoms, so that

they may be selectively referred for MRI. Pure tone audi-

ometry, and the degree of hearing threshold asymmetry

has been used to achieve this objective, and a number of

audiometric decision-support protocols, with different

levels of sensitivity and specificity have been described

and implemented.6–10

The aim of the present study was to evaluate whether

machine-learning technology can further improve the sen-

sitivity and specificity of identifying patients at risk of har-

bouring a vestibular schwannoma based on clinical and

audiological data at presentation. Machine-learning, of

which Bayesian classifiers are an example, is a powerful

method for classifying and separating complex data. At

the beginning of the process, the ‘untrained’ system is

provided with large numbers of cases, where both the

input, in this case age and sex of the patient, presence of

unilateral tinnitus or episodic vertigo and pure tone

audiogram thresholds of each ear, and the outcome, the

presence or otherwise of a vestibular schwannoma are

known. In this way the machine ‘learns’ and discerns

complex patterns of input–outcome association and

adapts its internal algorithms, a process that is referred to

as training. The ‘trained’ system thus acquires the ability

to ‘predict’ whether a particular pattern of input variables,

such as the clinical and audiological data from a patient

with audiovestibular symptoms, is likely to be associated

with an underlying vestibular schwannoma. At this point,

the sensitivity and specificity of the system as a tool of

diagnosis can be assessed in the same way as for any diag-

nostic test with receiver operator characteristic plots.

This powerful approach to complex data classification

has been used in many areas of economic, engineering

and biomedical disciplines, and with increasing frequency

in clinical medicine for making diagnoses and predicting

outcome. It has for instance been used to predict survival

following treatment of laryngeal cancer more accurately

than the standard prognostic models.11

A secondary objective of the present study was to

evaluate the sensitivity and specificity of a number of pre-

viously-published decision-support protocols, comparing

them against the performance of the Bayesian classifier,

but also against known and accepted standards of care

for the sensitivity of screening tests in comparable areas

of medical practice.

Methods

Patient selection

Records of 129 patients with a proven diagnosis of vestib-

ular schwannoma (VS+) based on MR scans, and an equal

number of patients in whom this diagnosis was suspected,

but excluded on MRI (VS)) were reviewed. Variables used

for analysis included pure tone thresholds at 250 Hz,

500 Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz at the time of

presentation, as well as patient age and sex, and the pres-

ence or absence of unilateral tinnitus or episodic vertigo.

Data analysis

A Gaussian Process Ordinal Regression Classifier was

used to predict the likelihood of a patient having or not

having a vestibular schwannoma on the basis of clinical

and audiological data. This technology is a powerful

Bayesian classification method, which is based on a Gaus-

sian process. It is a generalisation of the neural network

technology, operating at the limit of infinitely many hid-

den units.12,13 This means that unlike finite neural net-

works, a Bayesian classifier makes no assumptions about,

and is not therefore restricted by the inherent complexit-

ies and interactions within the dataset, and can therefore

classify any dataset. In this study, following standard

machine learning procedure, we randomly spliced the

data into ten subsets. The train-test model was used to

ensure that the performance of the system was tested on

data which had not been used for training purposes, spe-

cifically to avoid the situation where a model based on

the whole dataset has excellent diagnostic performance

within the dataset, but bad generalisation to new data

with unknown outcomes. All permutations of the subsets

were used to train and test the classifier, with nine subsets

being used for training. After training, the model was

used to predict the probability of the presence of a vestib-

ular schwannoma on the remaining subset. To produce

the receiver operator characteristic, a threshold was cho-

sen. If the probability was greater than threshold, a ves-

tibular schwannoma was predicted. These predictions

were compared against the true outcome, and varying the

threshold from zero to unity produced the plot.

Evaluation of existing protocols

We tested the sensitivity and specificity of six published

vestibular schwannoma audiological screening protocols.

Sensorineural hearing loss and vestibular schwannoma 249

� 2007 The Authors

Journal compilation � 2007 Blackwell Publishing Limited, Clinical Otolaryngology, 32, 248–254



We were unable to test the protocol proposed by the

American Academy of Otolaryngology – Head and Neck

Surgery, as it requires the hearing thresholds to be tested

at 3 kHz, which we did not routinely do. The audiologi-

cal, and when required, clinical data were tested against

each protocol, with the outcome being whether or not

the protocol recommended MRI. A recommendation of

MRI in a patient subsequently proven as not having a

vestibular schwannoma was a false positive, while a ‘no

scan’ recommendation in a patient with a vestibular

schwannoma was a false negative, and so on. The sensi-

tivity and specificity of the different protocols were plot-

ted on the receiver operator characteristic plot. The

specificity of the each protocol was compared against the

specificity of the Bayesian model at the protocol’s corres-

ponding sensitivity level using chi-square statistic.

Results

General

Clinical, audiological and MRI details of 258 patients

were reviewed. There were 130 males and 128 females

and the average age at presentation was 53 ± 15 years

(± sd; range 16–97). On direct questioning, 121

patients (46%) reported unilateral tinnitus and 79

(30%) episodic vertigo. There were significant overlaps

in the degree of hearing threshold asymmetry between

patients with and without a vestibular schwannoma

across all frequencies (Fig. S2). Averaging the degree of

hearing threshold asymmetry across all frequencies

reduced but did not eliminate overlap between the two

populations (Fig. 1).

The overall performance of the Gaussian Process

Ordinal Regression Classifier

This is shown in Fig. 2. Area under the curve and d’ were

0.8025 and 1.2029, respectively. The model significantly

outperformed three of the protocols, and its specificity

was comparable with a further three at their correspond-

ing sensitivity levels. Table 1 shows the clinical and audi-

ological criteria of the different protocols.

Discussion

Background to the present study

In this preliminary study a Gaussian Process Ordinal

Regression Classifier12,13 was used to differentiate between

patients with and without vestibular schwannoma based

on clinical and audiological data collected during a rout-

ine otolaryngological consultation. Vestibular schwanno-

mas produce patterns of audiovestibular symptoms and

in particular asymmetrical sensorineural hearing-loss

which tend to be different between patients with and

without a vestibular schwannoma (Fig. 1 and Fig. S2).

This has been used to develop a number of different

audiological screening and decision-support protocols to

assist the otolaryngologist in risk-stratifying patients with

audiovestibular symptoms, to selectively refer those at

higher risk of harbouring a vestibular schwannoma for

MRI (Table 1).6–10 We hypothesised that machine learn-

Fig. 1. Distribution of the average hearing threshold asymmetry

across all measured frequencies between patients with and with-

out vestibular schwannoma (VS).

Fig. 2. Receiver operator characteristic plot of the Gaussian

Process Ordinal Regression Classifier. Area under the curve and

d’ were 0.8025 and 1.2029, respectively. A, Seattle Protocol;7 B,

Charing Cross Protocol;8 C, Nashville Protocol;10 D, Oxford

Protocol;9 E, UK Department of Health; F, Sunderland Proto-

col.6 *(P < 0.05; chi-square).
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ing could improve the sensitivity and specificity of this

risk-stratification process.

A brief description of Bayesian statistics

A Gaussian Process Ordinal Regression Classifier is a

Bayesian tool for classifying high-dimensional data and a

generalisation of neural network technology.12,13 In gen-

eral terms, Bayesian inference involves a likelihood func-

tion and a prior distribution, which are combined to form

the posterior distribution. The likelihood function is the

observation model and specifies the relative likelihood of

data, given a set of statistical parameters. The prior distri-

bution on the other hand embodies pre-existing know-

ledge or assumptions about the statistical parameters. The

posterior distribution over these parameters takes both

the data and the prior assumptions into account, arriving

at a fully probabilistic prediction over the distribution of

parameters. Inferring a distribution over parameters

means that they are treated as random variables and this

allows for the propagation of uncertainty through all

parts of the model to arrive at a consistent predictive dis-

tribution, rather than just a point prediction.14 A general

introduction to Bayesian statistics can be found in an art-

icle by Gurrin et al.15 and the current Gaussian process

ordinal regression model have been further explained

mathematically in the appendix.

Synopsis of key findings

The results of the present study indicate that this meth-

odology provides significant flexibility and favourable

combinations of sensitivity and specificity for differenti-

ating between patients with and without vestibular

schwannoma based on data collected during a routine

otolaryngological consultation. It significantly outper-

formed three of the previously-published audiological

screening protocols at their corresponding levels of

sensitivity and specificity. Moreover, setting the sensitivity

level to 95%, it reduced the number of false positive MR

scans by almost 30%, when compared with audiological

protocols with closest sensitivities to 95% (Fig. 3).

Comparing vestibular schwannoma with carotid artery

stenosis

The sensitivity level of 95% was chosen because it corres-

ponds with that of MR angiography for diagnosing caro-

tid artery stenosis, requiring surgical intervention

Table 1. A description of published audiological screening protocols for vestibular schwannoma

Name Clinical criteria Asymmetry of thresholds

A Seattle7 Nil ‡ 15 dB between the average of 1–8 KHz

B Charing Cross8 Nil ‡ 15 dB in any two neighbouring frequencies

if the average hearing threshold of the better

ear £ 30

dB‡ 20 dB in any two neighbouring

frequencies if the average hearing threshold

of the better ear >30 dB

C Nashville10 Nil ‡ 15 dB at any frequency between 0.5 and 4 KHz

D Oxford9 Unilateral tinnitus, age < 70 years ‡ 15 dB between the average of 0.5 to 8 KHz

E UK Department of Health Vertigo ‡ 20 dB at any frequency between 0.5 and 4 KHz

F Sunderland6 Unilateral tinnitus or Ménière’s

disease symptoms

‡ 20 dB between two neighbouring frequencies

Fig. 3. A comparison of the Gaussian Process Ordinal Regres-

sion Classifier with existing audiological screening protocols. A,

Seattle Protocol;7 B, Charing Cross Protocol;8 C, Nashville Pro-

tocol;10 D, Oxford Protocol;9 E, UK Department of Health; F,

Sunderland Protocol.6 The threshold levels (95% and 86%) cor-

respond to the pooled sensitivity of MR angiography (MRA)

and carotid ultrasonography (USS) for detecting significant

carotid artery stenosis on meta-analysis.16 The crosses on the

threshold lines correspond to the specificity of the system at

those levels.
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on meta-analysis.16 We believe that comparing vestibular

schwannoma with carotid artery stenosis is clinically

appropriate. Carotid stenosis, a potentially preventable

cause of embolic strokes17 is an uncommon cause of a

constellation of common and often non-specific symp-

toms, occurring in less than 5% of patients with compel-

ling symptoms and signs of transient ischaemic attacks.18

Like a vestibular schwannoma therefore, it is a diagnosis

that needs to be considered and excluded in a large num-

ber of patients. A cerebrovascular physician assessing

patients with possible transient ischaemic attack employs

carotid duplex ultrasonography, in particular, the

Doppler blood velocity within the carotid arteries to risk-

stratify patients for further investigation,19 in the same

way that an otolaryngologist may use hearing threshold

asymmetry to risk-stratify patients for vestibular schwan-

noma. The sensitivity and specificity of carotid duplex

ultrasonography varies depending on what Doppler velo-

city threshold is chosen,19 but the pooled sensitivity

of duplex ultrasonography on a meta-analysis has been

found to be 86%.16 Figure 3 provides further informa-

tion about sensitivities and specificities of different

protocols.

It is very reassuring to note therefore, that the sensitivi-

ties of a number of current audiological screening proto-

cols for risk-stratifying patients with suspected vestibular

schwannoma already exceed those of carotid duplex

ultrasonography for risk-stratifying patients as high-risk

or low-risk for stroke due to significant carotid artery ste-

nosis. The high sensitivities that can be achieved with

protocols like the Nashville come however at the expense

of high false positive rates (Fig. 3) which has significant

resource implications.

Strengths of the present study

Although, given the significant overlap between patients

with and without vestibular schwannoma (Fig. 1 and

Fig. S2), the Gaussian Process Ordinal Regression Classier

cannot also fully separate the two populations, it can sig-

nificantly reduce the number of false positive MR scans,

compared with current audiological protocols, while

maintaining detection sensitivity. Furthermore, it allows

units to pre-determine sensitivity and specificity levels,

which are most suited to their local policy and resource

availability, which might be particularly helpful in coun-

tries where MRI resources are not so widely available. An

important consideration in the development of audiologi-

cal protocols is ease of application in clinical settings. As

such, by necessity, they discard information. Furthermore,

they are applied to data that is non-linear in respect of

the underlying noise as well as the superimposed signal.

To address these, some protocols, like the Nashville10

recommend scanning in the presence of small single-fre-

quency asymmetry which produces good sensitivity but

poor specificity. Other protocols, like the Oxford,9 are

based on averaging across a range of frequencies and are

unable therefore to detect tumours whose compression of

the auditory nerve leads to changes in a limited number

of frequencies. Machine-learning application used in this

study makes use of the available information in its

entirety. We tested other technologies such as Support

Vector Machines which do not look at the entire dataset,

but the most discriminating features within it, and

obtained inferior results to those presented. Furthermore,

during the training process, the Bayesian classifier tests

out different possible interactions within and between the

data for their ability to differentiate between cases and

controls.

Clinical applicability

The trained system can be exported as software code, and

the resulting computer program can be used as a decision-

support tool in clinical practice as a desktop or Internet-

based application in a conceptually similar way to the

Adjuvant! System (http://www.adjuvantonline.com). The

latter is an Internet-based program which was developed

from the San Antonio oncology database. It allows the cli-

nician to obtain individualised information about the

prognosis and the likely efficacy of postoperative chemo-

therapy in an individual patient with cancer, based on the

clinical and pathological variables entered through the web

site or onto a Personal Digital Assistant. It is our

eventual intention to develop a non-commercial Internet-

based application, where clinicians could enter the clinical

details and hearing thresholds of their patients via a web

page, and obtain a ‘scan’ or ‘no scan’ recommendation, to

aid in the evaluation of patients with audiovestibular symp-

toms.

Limitations of the study

For this objective to be achieved however the findings of

the present preliminary study need to be replicated and

further tested for generalisability using much larger data-

sets. We are currently in the process of collecting more

cases and would warmly welcome a collaborative

approach. Another important limitation of this and other

studies using machine-learning methodology is their cul-

tural acceptability to medicine and by clinicians. The

majority of machine learning applications are, almost by

definition, ‘black box’ solutions whose inner workings

remain inaccessible to intuition even at a mathematical
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level, and yet from which clinicians are invited to obtain

assistance in making important decisions about the care

of their patients. This is a proposition that some clini-

cians regard with some scepticism. Machine-learning

technology has however been extensively used in

many fields including medicine and Otolaryngology11

and their more widespread acceptability and applica-

tion is something that can only be achieved as more

clinicians become familiar with their scope, abilities and

limitation.

Conclusions

We have shown that a Gaussian Process Ordinal Regres-

sion Classifier, and, accepting higher false positive rates, a

number of current audiological screening protocols have

sensitivity levels that are higher than those currently

accepted to be the standard of care for excluding carotid

artery stenosis.16 What constitutes an acceptable false neg-

ative rate is a question whose answer requires active input

from healthcare policymakers and funding bodies. We

believe that a ‘no scan’ recommendation from a sensitive

protocol, be that a machine-learning application or a

standard audiological screening protocol, as well as

absence of other sings and symptoms of cerebello-pontine

angle pathology following a careful history and clinical

examination satisfactorily discounts the diagnosis of

vestibular schwannoma as the underlying cause of audio-

vestibular symptoms. The only way to identify the small

minority of patients whose lesion may elude diagnosis is

by performing a blanket MR scan in all patients by the

mere virtue of their presentation to an otolaryngologist.

This would be a de facto population screening program

which cannot be undertaken without an explicit policy

decision on the part of healthcare funding bodies, and an

attending allocation of additional radiological resources

to achieve it.
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Figure S1. Radiology of a case.
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schwannoma.
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Appendix 1

A mathematical description of the machine learning pro-

cess. Let fxigN
i¼1 be training data from N patients. For

each patient, indexed by i¼ 1...N, xi is a D-dimensional

vector containing the data on the basis of which we

would like to predict the presence of vestibular schwan-

noma. In this study D ¼ 16 when all the data was used:

auditory thresholds for each ear at six frequencies and

age, sex and presence of tinnitus and vertigo. For each

patient output is a binary variable yi 2 {0,1} indicating

the presence (yi¼1) or absence (yi¼0) of vestibular

schwannoma.

The aim is to use a new patient’s input vector x and

the training data fyi; x
igN

i¼1 to probabilistically predict

whether the patient suffers from a vestibular schwanno-

ma, i.e. the probability Pðŷjx;DÞ. A Gaussian Process

Ordinal Regression Classifier (GPORC)12,13 achieves this

in several steps. First, GPORC partitions the real line into

two parts using a logit function, i.e. for each value

f 2 R on the real line, there is a pðŷ ¼ 1jf Þ. x is mapped

onto the real line, writing pðŷjf ðxÞÞ, i.e. rather than using

the simple input x, some function f(x) is used for predic-

tion. This is related to what hidden layers achieve in

neural networks and is a powerful approach.12,13

Rather than assuming a particular f(x) however, a

GPORC averages over all possible mappings, weighted by

some prior distribution p(f(x)) and the predictive distri-

bution of interest then becomes pðŷjxÞ ¼
R

df ðxÞpð ^yjfðxÞÞ.
This prior is chosen to incorporate the evidence from

the data D, writing the predictive prior given the data.

pðfðxÞjDÞ ¼
Z
pðfðxÞjfÞpðf jDÞdf

¼
Z
pðfðxÞjfÞ pðDjfÞpðfÞR

df 0pðDjf 0Þpðf 0Þ df

where f is a vector, with its ith component the mapping

f(xi) for each input data point xi and y is similarly a

vector with yi ¼ yi. The second equality holds by Bayes’

theorem. Let p(D|f)¼ip(y
i|f(xi)) be the likelihood of all

the outcomes y ¼ fyigNi¼1 given the input xi given by the

logit function described above. Let finally the joint

distribution p(f) of all hidden functions f(xi) for all i be a

normal distribution (this is a Gaussian Process

prior):12,13

pðfÞ ¼ Nð0;�Þ
X
ij

¼ expð� k
2

XD
d¼1

ðxid � xidÞ
2Þ

with parameter j > 0 which is chosen during training.

Then, using approximations to some of the hard inte-

grals, we can evaluate the distribution over outcomes

given the data: pðŷjx;DÞ ¼
R

dfðxÞpðŷjfðxÞpðfðxÞjDÞ.
Thus, assuming a joint prior p(f) over hidden functions

f(xi) of the data, together with a mapping from these hid-

den functions onto probabilities of binary events y allows

a full probabilistic data classification.
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