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Introduction
• Controllability bounds the differential utility of different actions

• Therefore, rational agents should invest less time into planning,
the less control they have over their environment

• What is the optimal tradeoff between planning time and expected
gain, and how does it depend on controllability?

• Can the optimal tradeoff explain aberrant planning and decision
making?

Resource-Rational Planning
Sample-based planning:
Here we model how the brain solves large Markov decision problems
(MDPs) as Monte-Carlo tree-search based on [1]:

Q̂(s, a) =
1

k

k∑
i=1

(
r(s, a, si) + V̂ (si)

)
, si ∼ P (St+1|st, a) (1)

V̂ (s) = max{Q̂(s, a1), · · · , Q̂(s, aN )} (2)

1. Q̂(s, a): est. expected cumulative reward for action a in state s

2. V (s): value of state s

Resource-Rationality:
The resource-rational [2] decision which actions to simulate and how
often (c) maximizes the value of computation (VOC):

c = argmax
c∈Cn

VOC(c)

VOC(c) = EP (B|c)

[
max

a
EP (Q,S|B) [Q(s, a)]− cost(c)

]
Uncertain MDP and prior knowledge about control
In general, the MDP is partially unknown. Planning under uncertainty
about outcome probabilities θ was formalized as an augmented MDP:

M(θ) = (S ′ = S × B,A, P (St+1|St, at), Pθ(Rt|St, at))

Pθ(Rt|St, at) = Multinomial(θs,a)

Pt(θs,a) = Dirichlet(Bt(s, a));

• Bt: belief about outcome probabilities

• S ′: combines world-state St with belief Bt

• B0(s, a) = α ·1 is informed by abstract knowledge about control:
high α ⇒ random outcome independent of a ⇒ no control [3, 4]

Cognitive control as a meta-level MDP
VOC can be maximized by solving a simpler meta-level MDP [5]:

Mmeta =
(
SQ, C, Pmeta

S , Rmeta, smeta
0

)
(3)

• meta-level states St
Q = {(µt

i, τ
t
i )} are beliefs about Q-values:

P (Q(s, ai)) = N (µt
i, τ

t
i ).

• comp. actions C: ⊥: stop planning, ci: simulate action i

• Pmeta
S : Bayesian learning from q ∼ N (Q(s, ai), τ

sample
i )

• reward fct. Rmeta: −cost(ci) for computations, cumulative re-
ward expected under current meta-level belief for ⊥.

Analytic results enable efficient approximate solutions [5, 6].

Resource-Rational Effects of Control
1. Effect on exploration vs. exploitation

Control determines the dif-
ferential value of explo-
ration vs. exploitation [3,
4]. Our model explains how
controllability can be taken
into account with a cogni-
tively plausible amount of
computation.

Estimated value of exploration in the
8-armed bandit task by [3] for high vs.
low control based on 200 simulations
with k = 2 samples per inner node.

2. Effect on mental effort
We derived bounds on the number of simulations n chosen by the
optimal meta-level policy

n ≤ k
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• high cost of computation
c ⇒ low bounds.

• low control (− log(α)) ⇒
high certainty τ0i about
Q(s, a) ⇒ low n.

Perceived uncontrollability makes it irrational to plan ahead.

Major Depression (MDD) and Control
Lower repeat modulation in MDD [3]:

• 8-armed bandit task with 8 sequential choices

• independent, unknown reward distributions (R ∈ {0, · · · , 9})

• MDD patients exerted less control: less likely to stick with good
arms and move away from bad arms (repeat modulation).

Simulations:
perceived lack of control (high α) ⇒ reduced repeat modulation

Discussion
Alternative Explanations:

1. reduced processing speed → increased
cost of comp. → less planning (see –>)

2. perceived lack of control impairs learn-
ing (cf. [7])

Conclusions
1. Resource-rationality [2] explains why people track control and

how it shapes learning and decision-making

2. Impaired decision-making and learning [7] in major depression
may result from the perceived lack of control (helplessness)

3. Uncontrollability reduces the utility of goal-directed decision
making. This may trigger a shift to habitual or Pavlovian choice.
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