Controllability and resource-rational planning

Falk Lieder, Noah D. Goodman, Quentin JM Huys contact: falk.lieder@gmail.com

- Controllability bounds the differential utility of different actions
- Therefore, rational agents should invest less time into planning, the less control they have over their environment
- What is the optimal tradeoff between planning time and expected gain, and how does it depend on controllability?
- Can the optimal tradeoff explain aberrant planning and decision making?

Resource-Rational Planning

Sample-based planning:

Here we model how the brain solves large Markov decision problems (MDPs) as Monte-Carlo tree-search based on [1]:

$$\hat{Q}(s,a) = \frac{1}{k} \sum_{i=1}^{k} \left(r(s,a,s_i) + \hat{V}(s_i) \right), \quad s_i \sim P(S_{t+1}|s_t,a)$$
 (1)

$$\hat{V}(s) = \max\{\hat{Q}(s, a_1), \cdots, \hat{Q}(s, a_N)\}$$
 (2)

- 1. $\hat{Q}(s,a)$: est. expected cumulative reward for action a in state s
- 2. V(s): value of state s

Resource-Rationality:

The resource-rational [2] decision which actions to simulate and how often (c) maximizes the value of computation (VOC):

$$\mathbf{c} = \arg \max_{\mathbf{c} \in \mathcal{C}^n} \text{VOC}(\mathbf{c})$$

$$\text{VOC}(\mathbf{c}) = \mathbb{E}_{P(B|c)} \left[\max_{a} \mathbb{E}_{P(Q,S|B)} \left[Q(s,a) \right] - \text{cost}(\mathbf{c}) \right]$$

Uncertain MDP and prior knowledge about control

In general, the MDP is partially unknown. Planning under uncertainty about outcome probabilities θ was formalized as an augmented MDP:

$$M(\boldsymbol{\theta}) = (\mathcal{S}' = \mathcal{S} \times \mathcal{B}, \mathcal{A}, P(S_{t+1}|S_t, a_t), P_{\boldsymbol{\theta}}(R_t|S_t, a_t))$$

$$P_{\boldsymbol{\theta}}(R_t|S_t, a_t) = \text{Multinomial}(\boldsymbol{\theta}_{s,a})$$

$$P_t(\boldsymbol{\theta}_{s,a}) = \text{Dirichlet}(B_t(s, a));$$

- B_t : belief about outcome probabilities
- S': combines world-state S_t with belief B_t
- $B_0(s, a) = \alpha \cdot \mathbf{1}$ is informed by abstract knowledge about control: high $\alpha \Rightarrow$ random outcome independent of $a \Rightarrow$ no control [3, 4]

Cognitive control as a meta-level MDP

VOC can be maximized by solving a simpler meta-level MDP [5]:

$$M^{\text{meta}} = (\mathcal{S}_Q, \mathcal{C}, P_S^{\text{meta}}, R^{\text{meta}}, s_0^{\text{meta}})$$
 (3)

- meta-level states $S_Q^t = \{(\mu_i^t, \tau_i^t)\}$ are beliefs about Q-values: $P(Q(s, a_i)) = \mathcal{N}(\mu_i^t, \tau_i^t)$.
- comp. actions C: \bot : stop planning, c_i : simulate action i
- P_S^{meta} : Bayesian learning from $q \sim \mathcal{N}(Q(s, a_i), \tau_i^{\text{sample}})$
- reward fct. R^{meta} : $-\cos(c_i)$ for computations, cumulative reward expected under current meta-level belief for \bot .

Analytic results enable efficient approximate solutions [5,6].

Resource-Rational Effects of Control

1. Effect on exploration vs. exploitation

Control determines the differential value of exploration vs. exploitation [3, 4]. Our model explains how controllability can be taken into account with a cognitively plausible amount of computation.

Estimated value of exploration in the 8-armed bandit task by [3] for high vs. low control based on 200 simulations with k = 2 samples per inner node.

2. Effect on mental effort

We derived bounds on the number of simulations n chosen by the optimal meta-level policy

$$n \leq \frac{k}{\min_{i} \tau_{i}^{\text{sample}}} \cdot \left(\frac{1}{c \cdot \sqrt{2\pi}} - \min_{i} \{\tau_{i}^{0} + \tau_{i}^{\text{sample}}\}\right)$$
$$n \geq \frac{1}{\max_{i} \tau_{i}^{\text{sample}}} \cdot \left(\frac{1}{c \cdot \sqrt{2\pi}} - \max_{i} \{\tau_{i}^{0} + \tau_{i}^{\text{sample}}\}\right).$$

- high cost of computation $c \Rightarrow$ low bounds.
- low control $(-\log(\alpha)) \Rightarrow$ high certainty τ_i^0 about $Q(s,a) \Rightarrow \text{low } n$.

Perceived uncontrollability makes it irrational to plan ahead.

Major Depression (MDD) and Control

Lower repeat modulation in MDD [3]:

- 8-armed bandit task with 8 sequential choices
- independent, unknown reward distributions $(R \in \{0, \dots, 9\})$
- MDD patients exerted less control: less likely to stick with good arms and move away from bad arms (repeat modulation).

Simulations:

perceived lack of control (high α) \Rightarrow reduced repeat modulation

Discussion

Alternative Explanations:

- 1. reduced processing speed \rightarrow increased cost of comp. \rightarrow less planning (see \rightarrow)
- 2. perceived lack of control impairs learning (cf. [7])

Conclusions

- 1. Resource-rationality [2] explains why people track control and how it shapes learning and decision-making
- 2. Impaired decision-making and learning [7] in major depression may result from the perceived lack of control (helplessness)
- 3. Uncontrollability reduces the utility of goal-directed decision making. This may trigger a shift to habitual or Pavlovian choice.

References

- [1] Kearns, Mansour, and Ng. Machine Learning, 49(2), November 2002.
- [2] Lieder, Griffiths, and Goodman. NIPS 2012, 2013.
- [3] Huys, Vogelstein, and Dayan. NIPS 2008, 2009.
- [4] Huys and Dayan. Cognition, (3), December 2009.
- [5] Hay, Russell, Tolpin, and Shimony. *UAI*, August 2012.
- [6] Hay and Russell. Technical report, EECS, UC Berkeley, 2011.
- [7] Lieder, Goodman, and Huys. In CogSci 2013, submitted.