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Uncertainty coming from the noise in its neurons and the ill-posed nature
of many tasks plagues neural computations. Maybe surprisingly, many
studies show that the brain manipulates these forms of uncertainty in
a probabilistically consistent and normative manner, and there is now a
rich theoretical literature on the capabilities of populations of neurons to
implement computations in the face of uncertainty. However, one major
facet of uncertainty has received comparatively little attention: time. In
a dynamic, rapidly changing world, data are only temporarily relevant.
Here, we analyze the computational consequences of encoding stimulus
trajectories in populations of neurons. For the most obvious, simple, in-
stantaneous encoder, the correlations induced by natural, smooth stimuli
engender a decoder that requires access to information that is nonlocal
both in time and across neurons. This formally amounts to a ruinous
representation. We show that there is an alternative encoder that is com-
putationally and representationally powerful in which each spike con-
tributes independent information; it is independently decodable, in other
words. We suggest this as an appropriate foundation for understanding
time-varying population codes. Furthermore, we show how adaptation to
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temporal stimulus statistics emerges directly from the demands of simple
decoding.

1 Introduction

From the earliest neurophysiological investigations in the cortex, it be-
came apparent that sensory and motor information is represented in the
joint activity of large populations of neurons (Barlow, 1953; Georgopou-
los, Schwartz, & Kettner, 1983). There are by now substantial ideas and
data about how these representations are formed (Rao, Olshausen, &
Lewicki 2002), how information can be decoded from recordings of this
activity (Paradiso, 1988; Snippe & Koenderinck, 1992; Seung & Sompolin-
sky, 1993), and how various sorts of computations, including uncertainty-
sensitive, Bayesian optimal statistical processing can be performed through
the medium of feedforward and recurrent connections among the popula-
tions (Pouget, Zhang, Deneve, & Latham, 1998; Deneve, Latham, & Pouget,
2001). Critical issues that have emerged from these analyses are the forms
of correlations between neurons in the populations, whether these correla-
tions are significant for decoding and computation, and what sorts of prior
information are relevant to computations and can be incorporated by such
networks.

However, many theoretical investigations into population coding have
so far somewhat neglected a major dimension of coding: time. This is despite
the beautiful and influential analyzes of circumstances in which individ-
ual spikes contribute importantly to the representation of rapidly varying
stimuli (Bialek, Rieke, de Ruyter van Steveninck & Warland, 1991; Reinagel
& Reid, 2000; Rieke, Warland, de Ruyter van Steveninck, & Bialek, 1997;
Johansson & Birznieks, 2004) and the importance accorded to fast-timescale
spiking by some practical investigations into population coding (Wilson
& McNaughton, 1993; Schwartz, 1994; Zhang, Ginzburg, McNaughton, &
Sejnowski, 1998; Brown, Frank, Tang, Quirk, & Wilson, 1998). The assump-
tion is often made that encoded objects do not vary quickly with time and
that therefore spike counts in the population suffice. Even some approaches
that consider fast decoding (Brunel & Nadal, 1998; Van Rullen & Thorpe,
2001) treat stimuli as being discrete and separate rather than as evolving
along whole trajectories.

In this letter, we study the generic computational consequences of pop-
ulation coding in time. We analyze decoding in time as a proxy for com-
putation in time as it is the most comprehensive computation that can be
performed (accessing all information present). Decoding therefore consti-
tutes a canonical test (Brown et al., 1998; Zhang et al., 1998). We consider
a regime in which stimuli are not static and create sparse trains of spikes.
Decoding trajectory information from these population spike trains is thor-
oughly ill posed, and prior information about what trajectories are likely
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comes to play a critical role. We show that optimal decoding with ecologi-
cal priors formally couples together the spikes, making trajectory inference
computationally very hard. We thus consider the prospects for neural pop-
ulations to recode the information about the trajectory into new sets of
spikes that do support simple computations. Phenomena reminiscent of
adaptation emerge as a by-product of the maintenance of a computation-
ally advantageous code.

We analyze the extension of one of the simplest ideas about population
codes for static stimuli (Snippe & Koenderinck, 1992) to the case of trajec-
tories. This links a neurally plausible population encoding model with a
naturally realistic gaussian process prior. Unlike some previous work on
decoding in time (Brown et al., 1998; Zhang et al., 1998; Smith & Brown,
2003), we do not confine ourselves to recursively specifiable priors and can
therefore treat smoother cases. It is these smooth priors that render de-
coding, and likely other computations, hard and inspire an energy-based
(product of experts) recoding (Hinton, 1999; Zemel, Huys, Natarajan, &
Dayan, 2005), which makes for readier probabilistic computation.

Section 2 starts with a simple encoding model. It introduces the need
for priors, their shape, and analytical results for decoding in time. Section
3 shows how priors determine the form in which information is available
to downstream neurons. We show that the decoder corresponding to the
simple encoder can be extraordinarily complex, meaning that the encoded
information is not readily available to downstream neurons. Finally, sec-
tion 4 proposes a representation that has comparable power but for which
decoding requires vastly less downstream computation.

2 A Gaussian Process Prior Approach

As a motivating example, consider tennis. The player returning a serve
has to predict the position of the ball based on data acquired in fractions
of seconds. Experts compensate for the extraordinarily sparse stimulus
information with a very rich temporal prior over ball trajectories and thus
make predictions that are accurate enough to guarantee many a winning
return.

Figure 1 illustrates the setting of this article more formally. It shows an ar-
ray of neurons with partially overlapping tuning functions that emit spikes
in response to a stimulus that varies in time. These could be V1 neurons
responding to a target (the tennis ball) as it moves through their receptive
fields, or hippocampal neurons with place fields firing as a rat explores an
environment. The task is to decode the spikes in time, that is, recover the
trajectory of the stimulus (the ball’s position, say) based on the spikes, a
knowledge of the neuronal tuning functions (cf. Brown et al., 1998; Zhang
et al., 1998, for hippocampal examples), and some knowledge about the
temporal characteriztics of the stimulus (the prior). In Figure 1, the ordi-
nate represents the stimulus space (here one-dimensional for illustrative
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Figure 1: The problem: Reconstructing the stimulus as a function of time, given
the spikes emitted by a population of neurons. When a neuron with preferred
stimulus si emits a spike at time t, a black dot is plotted at (t, si ). A few example
tuning functions are shown in gray. The ordinate represents stimulus space,
with each neuron being positioned according to its preferred stimulus si . The
decoding problem is related to fitting a line through these points, which is
achievable only if there is prior information about the line to be fitted (e.g., the
order of a polynomial fit or the smoothness).

purposes) and the abscissa, time. Neuron i has preferred stimulus si . If it
emits a spike ξ i

t at time t, a dot is drawn at position (t, si ). The dots in Figure
1 thus represent the spiking activity of the entire population of neurons
over time. Our aim is to find, for each observation time T , a distribution
over likely stimulus values sT given all the spikes previous to T . This is
related to fitting a line representing the trajectory of the stimulus through
the points. It is a thoroughly ill-posed problem, for instance, because we are
not given any information about the stimulus at all between the spikes.

To solve this ill-posed problem, we have to bring in additional knowl-
edge in the form of a prior distribution about likely stimulus trajectories.
The prior distribution specifies the temporal characteriztics of the trajec-
tories (e.g., how smooth they are) and also whether they live within some
constrained part of the stimulus space. Subjects are assumed to possess such
prior information ahead of time—for instance, from previous exposures to
trajectories (a good tennis player will have seen many serves).

To gain analytical insight into the structure of decoding in this temporally
rich case, we consider a very simple spiking model p(ξ i

t |st) (c.f., Snippe
& Koenderinck, 1992, for the static case), augmented with a simple prior
over stimulus trajectories p(s). We thereafter follow standard approaches
(Zhang et al., 1998; Brown et al., 1998) by performing causal decoding and
thus recovering p(sT |ξ ) over the current stimulus sT at time T given all
the J spikes ξ ≡ {ξ i

tj
}J

j=1 at times 0 < {tj }J
j=1 < T in the observation period
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([0, T)), emitted by the entire population. Here, i = 1, . . . , N designates the
neuron that emitted the spike.

To state the problem in mathematical terms, we can write (at least for the
case that there is no spike at time T itself)

p(sT |ξ ) ∝ p(sT )p(ξ |sT ) (2.1)

= p(sT )
∫

dsT p(ξ |sT )p(sT |sT ), (2.2)

where, being slightly notationally sloppy, we are integrating over stimulus
trajectories sT up to, but not including, time T , but restricted to just those
trajectories that end at sT .

Equation 2.2 lays bare the two parts of the definition of the problem.
One is the likelihood p(ξ |sT ) of the spikes given the trajectory. This will be
assumed to arise from a Poisson-gaussian spiking model. The other is the
prior

p(sT )p(sT |sT ) = p(s) (2.3)

over the trajectories. This will be assumed to be a gaussian process.

2.1 Poisson-Gaussian Spiking Model. We first define the spiking
model. Let φi (s) be the tuning function of neuron i and assume independent,
inhomogeneous, and instantaneous Poisson neurons (Snippe & Koender-
inck, 1992; Brown et al., 1998; Barbieri et al., 2004). Let j be an index running
over all the spikes in the population, with i( j) reporting the index of the
neuron that spiked at time tj . Then, from the basic definition of an inho-
mogeneous Poisson process, the likelihood of a particular population spike
train ξ given the stimulus trajectory sT can be written as

p(ξ |sT ) =
∏

j

φi( j)(stj ) exp

(
−
∑

i

∫ T

0
dtφi (st)

)
(2.4)

∝
∏

j

φi( j)(stj ), (2.5)

assuming that the trajectories are such that we can swap the order of the
sum and the integral in the exp(·), that tuning functions are sufficiently
dense that the sum spiking rate is constant independent of the location of
the stimulus st , and that no two neurons ever fire together.
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Finally, we assume squared-exponential (gaussian) tuning functions,

φi (stj ) = φmax exp

(
−
(
stj − si

)2

2σ 2

)
,

where φmax is the maximal firing rate of a neuron and si the ith neuron’s
preferred stimulus. Combining this with our previous assumptions (see
equation 2.5) and completing the square implies that

p(ξ |sT ) ∝ φmax exp
(

− (sξ − θ )T (sξ − θ)
2σ 2

)
, (2.6)

where the spikes from the entire population have been ordered in time;
the j th component of both sξ and θ corresponds to the j th spike and is,
respectively, the stimulus at that spike’s time tj and the preferred stimulus
si of the neuron that produced it. Note that time is continuous here.

2.2 Gaussian Process Prior. The prior p(s) defines a distribution over
stimulus trajectories that are continuous in time. However, p(ξ |sT ) in
equation 2.6 depends on only the times tj at which neurons in the popula-
tion spike. Thus, in the integral in equation 2.2, we can formally marginalize
or integrate out all the nonspiking times, making the key quantity to be de-
fined by the prior to be p(sξ , sT ).

For a gaussian process (GP), this quantity is a multivariate gaussian,
defined by its (J + 1)-dimensional mean vector m and covariance matrix C,
which can in general depend on the times tj . We write the distribution as

p(sξ , sT ) ∼ N (m, C) Ctj tj ′ = c exp
(−α‖tj − tj ′ ‖ζ

)
. (2.7)

The parameter ζ ≥ 0 dictates the smoothness and the correlation structure
of the process. If ζ = 0, then the stimulus is assumed to be constant (we
sometimes call this the static case). Setting ζ = 1 corresponds to assuming
that the stimulus evolves as an Ornstein-Uhlenbeck (OU) or first-order
autoregressive process. This is the generative model underlying Kalman
filters (Twum-Danso & Brockett, 2001) and generates an autocorrelation
with the Fourier spectrum ∼1/ω2 often observed experimentally (Atick,
1992; Dong & Atick, 1995; Wang, Liu, Sanchez-Vives, & McCormick, 2003).
This can be generalized to nth-order autoregressive processes. Setting ζ = 2
leads to the opposite end of the spectrum, with smooth trajectories that
are non-Markovian. The parameter α dictates the temporal extent of the
correlations and c their overall size (c also parameterizes the scale of the
overall process). Example trajectories drawn from these priors for ζ = {1, 2}
are shown in Figure 2. For most of the letter, we will let m = 0. Assuming
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Figure 2: Example trajectories drawn from the prior distribution in equation 2.7.
(A) Examples for the smooth covariance matrix with ζ = 2. (B) The OU covari-
ance matrix, ζ = 1.

a GP prior with a particular covariance matrix is exactly equivalent to
regularizing the autocorrelation of the trajectory.

2.3 Posterior. Making these assumptions, we can write down the pos-
terior distribution p(sT |ξ ) analytically by solving equation 2.2. It is a simple
gaussian distribution with mean µ(T) and variance ν2(T) given in terms of
tuning function widths σ , the vector θ , and the covariance matrix C.

All three terms in equation 2.2 are now defined. The conditional dis-
tribution p(sξ |sT ) is given in terms of the partitioned covariance matrix
C,

p(sξ |sT ) = Nsξ

(
CξTC−1

TT sT ,
(
Cξξ − CξTC−1

TTCTξ

))
,

where Cξξ is the covariance matrix of the stimulus at all the spike times,
CTξ and CξT are vectors with the cross-covariances between the spike times
and the observation time T , and CTT is the marginal (static) stimulus prior
at the observation time (constant for the stationary processes considered
here). The corresponding partitioning of the matrix C is

C =


 Cξξ CξT

CTξ CTT


 . (2.8)
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The remaining two terms in equation 2.2 are given by p(sT ) = NsT (0, CTT )
and equation 2.6. As the integral in equation 2.2 is a convolution of two
gaussians, the variances add, and the integral evaluates to

p(ξ |sT ) =Nθ

(
CξTC−1

TT sT ,
(
Cξξ − CξTC−1

TTCTξ

)+ Iσ 2).
Finally, taking a product with p(sT ), renormalizing, and applying the matrix
inversion lemmas (see appendix A), we get

µ(T) = k(ξ , T) · θ(T) (2.9)

ν2(T) = CTT − k(ξ , T) · CξT (2.10)

k(ξ , T) = CTξ (Cξξ + Iσ 2)−1. (2.11)

The mean µ(T) of the gaussian posterior is thus a weighted sum of
the preferred stimulus of those neurons that emitted particular spikes. The
weights are given by what we term the temporal kernel k(ξ , T). As we will
see, the weight given to each spike will depend strongly on the time at which
it occurred. A spike that occurred in the distant past will be given small
weight. The posterior variance depends on only C and σ 2. Remember that
C depends on only the times of spikes, not the identities of the neurons that
fired them. The posterior variance ν2, similar to a Kalman filter, depends on
only when data are observed, not what data. This depends on the squared ex-
ponential nature of the tuning functions φ, and other tuning functions (e.g.,
with nonzero baselines) may not lead to this quality. However, it will not af-
fect the conclusions reached below. This posterior distribution p(sT |ξ ) is well
known in the GP literature as the predictive distribution (MacKay, 2003).

2.4 Structure of the Code. The operations needed to evaluate the pos-
terior p(sT |ξ ) give us insight into the structure of the code and will be
analyzed in section 3 for various priors. If the posterior is a function of
combinations of spikes, postsynaptic neurons have to have simultaneous
access to all those spikes. This point will be critical in temporal codes, as
the spikes to which access is required are spread out in time. Only if spikes
are interpretable independently can they be forgotten once they have been
used for inference. All information the spikes contribute to some future
time T ′ > T is then contained within p(sT |ξ ). If the posterior depends on
combinations of spikes (as will be the case for ecological, smooth priors),
information that can be extracted from a spike about times T ′ > T is not
entirely contained within p(sT |ξ ). As a result, past spikes have to be stored
and the posterior recomputed using them—an operation that is nonlocal in
time. We will show that under ecological priors, the posterior depends on
spike combinations and is thus complex. Decoding for the simple encoder
(the spiking model) is thus hard. In section 4, we will illustrate the type
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of computations (“recoding”) a network has to perform to access all the
information. This will be equivalent to finding a new, complex encoder in
time for which decoding is simple.

3 Effect of the Prior

The effect of the prior manifests itself very clearly in the temporal kernels
k(ξ , T) from equation 2.11 and the independence structure of the code. We
show this by analyzing a representative set of priors in terms of both the
behavior of the temporal kernels and the structure of the code, including
priors that generate constant, varyingly rough and entirely smooth trajecto-
ries. (MATLAB example code can be downloaded from http://www.gatsby.
ucl.ac.uk/∼qhuys/code.html.)

3.1 Constant stimulus prior ζ = 0. We first show that our treatment
of the time-varying case is an exact generalization of the case in which
the stimulus is fixed (does not change relative to the mean m), by rederiv-
ing classical results for static stimuli. Snippe and Koenderinck (1992) have
shown that the posterior mean and variance (under a flat prior) is given by
a weighted spike count,

µ(T) =
∑

i ni (T)si

J (T)
ν2(T) = σ 2

J (T)
(3.1)

where ni (T) = ∫ T
0 dt ξ i

t is the ith neuron’s spike count and J (T) = ∑
i ni (T)

is the total population spike count at time T .
If we let ζ = 0, the matrix Cξξ = cnnT where n is a J (T) × 1 vector of

ones. Equations 2.9 to 2.11 can then be solved analytically:

(
(Cξξ + Iσ 2)−1)

i j = (σ 2 + c J (T))δi j − c
σ 2(σ 2 + c J (T))

k(ξ , T) = c
σ 2 + c J (T)

n

µ(T) = c
∑

i ni (T)si

σ 2 + c J (T)

ν2(T) = cσ 2

σ 2 + c J (T)
,

which is exactly analogous to equation 3.1 with an informative prior. The
temporal kernel k(ξ , T) does not decay but is flat, with a magnitude pro-
portional to 1/J (T). The contribution of each neuron to the mean µ(T)
is given by its spike count ni (T). Each spike is given the same weight,
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Figure 3: Comparison of static and dynamic inference. Throughout, the poste-
rior density p(sT |ξ ) is indicated by gray shading, the spikes are vertical (gray)
lines with dots, and the true stimulus is the line at the top of each plot. (A) Static
stimulus, constant temporal kernel. (B) Moving stimulus, constant temporal
kernel. (C) Static stimulus, decaying temporal kernel. (D) Moving stimulus, de-
caying temporal kernel. A and D show that only a match between true stimulus
statistics and prior allows the posterior to capture the stimulus well.

which is a sensible approach only if spikes are eternally informative about
the stimulus. This is true only if the covariance matrix is flat, which it-
self implies that the only time-varying component of the stimulus is in
the mean m and not the covariance C. If the stimulus is a varying func-
tion of time s(t), spikes at time t′ are informative only about the stimu-
lus at times t close to t′ and the influence of each spike on the posterior
should fade away with time. This is illustrated in Figure 3. Figure 3A shows
the present static case, where the stimulus does indeed not move; over
time, the posterior p(sT |ξ ) sharpens up around the true value. However,
if the stimulus does move, the posterior ends up at the wrong value (see
Figure 3B).

If the temporal kernel k(ξ , T) decays, this amounts to downweighting
spikes observed in the more distant past. In the following, we analyze the
behavior of p(sT |ξ ) and the optimal temporal kernel k(ξ , T) for various
stimulus autocorrelation functions. Figure 3C shows that a decaying kernel
leads to a posterior that widens inbetween spikes. This is incorrect if the
stimulus is static, but Figure 3D shows how such a decaying temporal kernel
would, in contrast to Figure 3B, allow p(sT |ξ ) to track the moving stimulus
correctly.



470 Q. Huys, R. Zemel, R. Natarajan, and P. Dayan

S
pa

ce

Time                          [s]
0.05 0.1 0.15 0.2 0.25 0.3

−1

0

1

Figure 4: Posterior distribution p(sT |ξ ) for OU prior. Same representation as in
Figure 1. The dashed line shows the actual stimulus trajectory used to generate
the spikes, the dots are the spikes, the posterior distribution is in gray scale,
and the solid line shows the posterior mean. Between spikes, the posterior
mean decays exponentially back toward the mean m (here 0), and the variance
approaches the static prior variance CTT .

3.2 Nonsmooth (Ornstein-Uhlenbeck) Prior ζ = 1. Setting ζ = 1 in the
definition of the prior (see equation 2.7) corresponds to assuming that the
stimulus evolves as a random walk with drift to zero (an OU process):

ds = −(1 − e−α)s(t)dt +
√

c(1 − e−2α)
√

dt d N(t), (3.2)

with gaussian noise N(t) ∼ N (0, 1) and parameters as in equation 2.7. The
O-U process is the underlying generative process assumed by standard
Kalman filters. The simplicity of Kalman-filter-like formulations explains
some of its wide applicability and success (Brown et al., 1998; Barbieri,
et al., 2004). However, as indicated visually by the example trajectories in
Figure 2, the rough trajectories this prior favors are not a good model of
smooth biological movements (see also section 5).

Figure 4 shows a sampled stimulus trajectory, sample spikes generated
from it, and the posterior distribution p(sT |ξ ). The mean of the posterior
does a good job of tracking the true underlying stimulus trajectory and is
never more than two standard deviations away from it. Between spikes, the
mean simply moves back to zero (albeit rather slowly given the parameters
associated with the Figure shown).

Figure 5A displays example temporal kernels k(ξ , T) for inference in this
process. They are very close to exponentials (note the logarithmic ordinate).
This makes intuitive sense as an OU process is a first-order Markov process
(it can be rewritten as a first-order difference equation). In fact, assuming
the spikes arrive regularly (replacing each of the interspike intervals (ISI)
by their average value 	 = 1

J

∑
j (tj − tj−1) ∝ 1

φmax
) allows us to write the
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Figure 5: OU temporal kernels for ζ = 1. (A) Example of temporal kernels. The
top traces are for lower and the bottom for higher average firing rates. The gray
traces show temporal kernels for Poisson spike trains. The components of the
vector k(ξ , T) are plotted against the corresponding spike time. The dashed
black traces show temporal kernels for regular spike arrivals (metronomic tem-
poral kernels). The true (gray) temporal kernels are relatively tightly bunched
around the metronomic temporal kernel. The firing rate affects the slope of the
kernel, but not its overall scale of the kernel. (B) The effect of the time since the
last spike on the temporal kernel is an overall multiplicative scaling. There is
no effect on the slope.

j th component of k(ξ , T) as

k j ≈ d1λ
j−1
1 ,

where d1 and λ1 are constants defined in appendix B. For such metronomic
spiking, k(ξ , T) is thus really simply a decaying exponential. Somewhat sim-
ilar expressions can be obtained for the original case of Poisson-distributed
ISIs (see appendix B). Figure 5A shows that the metronomic approxima-
tion provides a generally good fit, capturing especially the slope of the true
temporal kernels, which depends mostly on the correlation length α and
the maximal (or average) firing rate φmax. The remaining quality of the fit
is influenced most strongly by the match between 	 and the time since the
last spike T − tJ (which takes its effects through CTξ in equation 2.8 and
2.9–2.11). This determines the overall scale of the temporal kernel.

The factors influencing the slope of the temporal kernel and its height
do not interact greatly; that is, T − tJ does not affect the slope (shape) of the
temporal kernel, only its magnitude, as shown in Figure 5B (metronomic
temporal kernels are used for clarity, but the argument applies equally to
the exact kernel). Conversely, 	 affects mostly the slope. Replacing the true
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Figure 6: Comparison between exact and metronomic kernels. Same represen-
tation as in Figure 4. (A) Exact posterior p(sT |ξ ). (B) Approximate posterior
derived by replacing all ISIs by 	 but keeping T − tJ . This corresponds to
approximating the true kernels with the metronomic kernels in Figure 5. The
approximation is very close.

temporal kernels by metronomic temporal kernels, that is, replacing all
ISIs by 	 but keeping the time since the last spike T − tJ , does not greatly
degrade p(sT |ξ ) (cf. Figures 6A and 6B).

The dependence in Figure 5B can be understood by writing out the
integrand of equation 2.2 in detail for the OU prior. This factorizes over
potentials involving duplets of spikes because, as we show in appendix B,
C−1 is tridiagonal, implying that the elements of C−1 involve only two
successive spikes:

p(sξ , sT ) ∝ exp
(

−1
2

[
sξ sT

]T C−1
[

sξ

sT

])

= exp


−1

2


 J +1∑

j=1

s2
tj
C−1

tj tj
+

J∑
j=1

stjC−1
tj ,tj+1

stj+1






p(sξ , sT ) = ψ(sT )
J∏

j=1

ψ(stj , stj+1 ), (3.3)

where tJ stands for the time of the last spike, tJ −1 the time of the penultimate
one, and so on, and the observation time T = tJ +1. Note that the last equality
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Figure 7: Natural trajectories are smooth. (A) Position of a rat freely exploring a
square environment. (B) Covariance function of the position along the ordinate
(gray, dashed line) and a quadratic approximation (black, solid line). Note the
logarithmic ordinate. The smoothing applied to eliminate artifacts was of a
timescale short enough not to interfere with the overall shape of the covariance
function.

implies that the determinant also factors over spike pairs. This means that
the integrations over each spike in the main equation 2.2 can be written in
a recursive form akin to that used in message-passing algorithms (MacKay,
2003) and the exact Kalman filter.

3.3 Smooth Prior ζ = 2. Setting ζ = 2 in the definition of the prior
(see equation 2.7) corresponds to assuming that the stimulus evolves as a
non-Markov random walk. Trajectories with this autocovariance function
are smooth (Figure 2A shows some sample trajectories generated from
the prior) and infinitely differentiable. The smoothness makes it a more
ecologically relevant prior for Bayesian decoding from movement-related
trajectories than nonsmooth priors since natural objects (and limbs) move
along smooth trajectories rather than jumping. As an example, Figure 7A
shows trajectories of a rat exploring a square environment (data kindly
provided by Lever, Wills, Cacucci, Burgess, & O’Keefe, 2002). Not only are
these natural trajectories smooth, but Figure 7B also shows that a squared
exponential covariance function closely approximates the real covariance
function.1

1 Only the center of the covariance function is shown here. Due to the small size of
the environment, the rat runs back and forth the entire available length, and there are
oscillating flanks to the covariance function for delays larger than those shown.
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Figure 8: Posterior distribution p(sT |ξ ) for the smooth prior. Same represen-
tation as in Figure 4. The arrow highlights where the smooth prior uses spike
combinations to constrain higher-order statistics of the process, such as velocity,
acceleration, and jerk. While the smooth prior correctly predicts that the stimu-
lus will continue away from the mean before returning back, the OU process can
predict a decay only back to the mean (see Figure 9). The first spike on the left is
the very first spike observed. As the spike history becomes more extensive, the
posterior distribution is seen to sharpen up and follow the stimulus accurately.

Figure 8 is the equivalent of Figure 4 for the smooth case and shows
the posterior p(sT |ξ ). The main dynamical difference between inference in
this smooth case and inference in the OU case is indicated by the arrow in
the Figure. While the OU process simply decays back to the mean (here,
zero for simplicity), the dynamics of the smooth posterior mean are much
richer. In the absence of spikes, the mean continues in its current direction
for a while before reversing back. As can be seen, this gives a better fit
to the underlying stimulus trajectory (the black dashed line) than would
otherwise have been achieved. It arises directly from the fact that the cor-
relations extend essentially beyond the last spike (and into the entire past).
For comparison, Figure 9 shows the posterior when the wrong prior is used.
The stimulus was generated from the smooth prior, but the OU prior was
used to infer the posterior. The arrow indicates where the infelicity of the
inaccurate posterior is most apparent, falling back to zero instead of predict-
ing that the stimulus will continue to move farther away from zero. In terms
of difference equations, the larger extent of correlations intuitively means
that the higher-order derivatives of the process are also “constrained” by
the covariance C.

The simple exponential temporal kernels observed in the OU process
cannot give rise to the reversals observed in the smooth process. Figure 10A
shows the temporal kernels for the smooth process, which have a distinc-
tively different flavor from the OU temporal kernels (shown in Figure 5),
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Figure 9: Posterior distribution p(sT |ξ ) for smooth stimulus but wrongly as-
suming an OU prior. The posterior is consistently wider than it should be (cf.
Figure 8). The arrow points out where the prediction is qualitatively wrong: the
OU prior allows for decay back only to zero, unlike the smooth prior. Note also
that the beneficial effect of a larger spike history observed in Figure 8 is absent
here.
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Figure 10: Temporal kernels for the smooth prior. (A) Exact (gray solid) and
metronomic (black dashed) temporal kernels for the smooth prior with ζ = 2.
The metronomic kernels again provide a close fit. (B) The metronomic temporal
kernels change in a complex manner as the observation time T is moved away
from the time of the last spike. Unlike in the OU case, this is not just a recur-
sively implementable multiplication. (C) The same qualitative behavior arises
for kernels derived from the empirical covariance function of the rat trajectories.

including oscillating terms multiplying the exponential decay. Most impor-
tant, the oscillating terms allow the weight assigned to a spike to dip below
zero; that is, a spike initially signifies proximity of the stimulus to the neu-
ron’s preferred stimulus but later swaps over, signaling that the stimulus
is not there anymore. This feature of the temporal kernels gives rise to the
reversals seen in the posterior mean.
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As in the OU case, the metronomic temporal kernel based on equal ISIs
gives a good description of the temporal kernel mostly for spikes in the more
distant past. Replacing the true temporal kernels by metronomic temporal
kernels (but keeping the exact time since the last spike T − tJ ) again does not
affect the posterior strongly. Nevertheless, the Kullback-Leibler divergence
between the true posterior and the metronomic posterior is larger in the
smooth than in the OU case (data not shown), indicating that the exact
timing of spikes is more important in the smooth inference.

Unlike in the OU case, there is no simple analytical expression for the
metronomic temporal kernel (let alone the true temporal kernel). In par-
ticular, Figure 10B shows that changing the time since the last observed
spike T − tJ does not simply scale the temporal kernel, but also changes the
shape of the temporal kernel (it produces a complicated phase shift of the
oscillating component). Again, for clarity, the metronomic kernels are used
as an illustration, but the argument also applies to the exact kernels. Local
structure has complex global consequences in the smooth case, with a single
new spike requiring individual reweighting of all past spikes depending
on their precise times. By comparison, for the OU process, the reweight-
ing involves multiplication by a single factor. Figure 10C shows that this
temporal kernel complexity is also a feature of the temporal kernel derived
from the covariance function of the empirical rat trajectories in Figure 7.

The fundamental difference between the OU and the smooth temporal
kernels arises from the difference in the factorization properties of the prior.
Because the inverse of the covariance matrix for ζ /∈ {0, 1}, and specifically
for ζ = 2, is dense, it does not factorize over spike combinations and there-
fore does not allow a recursive form. To see that a recurrence relation is
possible only for the OU prior that factorizes across duplets of spikes, write

p(sT |ξ ) =
∫

dsJ dsJ p(sT , sJ , sJ |ξ )

by expanding and integrating over the stimulus sJ at the time tJ of the last
spike, and sJ at the time of all the spikes apart from the last

∝
∫

dsJ p(sT , sJ )p(ξJ |sJ )
∫

dsJ p(sJ , ξ J |sT , sJ )

using Bayes rule, and the instantaneity of spiking

=
∫

dsJ p(sT , sJ )p(ξJ |sJ )
∫

dsJ p(ξ J |sJ )p(sJ |sT , sJ ),

again because the spikes are instantaneous,

=
∫

dsJ p(sT , sJ )p(ξJ |sJ )mT (sT , sJ , ξ J ). (3.4)
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Were mT (sT , sJ , ξ J ) independent of sT , this would be exactly like a recursive
update equation, with p(sT , sJ ) being the transition probability from the last
observed spike to the inference time T , p(ξJ |sJ ) being the innovation due
to the last observation (the likelihood of the last observed spike), and the
message mT (sJ , ξ J ) propagating the uncertainty from all the spikes other
than the last to the last one. However, for general priors, p(sJ |sT , sJ ), and
therefore also mT (sT , sJ , ξ J ), do depend on sT , so all spikes have to be used
to infer the posterior at each time T . To make the mT independent of sT , the
prior has to be Markov in individual spike timings, with

p(sJ |sT , sJ ) = p(sJ |sJ ), (3.5)

which makes

mT (sT , sJ , ξ J ) =
∫

dsJ p(ξ J |sJ )p(sJ |sJ ) (3.6)

≡ mT (sJ , ξ J ), (3.7)

which is indeed independent of sT . So for the OU process, the last message
mT (sJ , ξ J ) merely needs to be multiplied by the transition probability (see
Figure 5B). However, the smooth temporal kernel changes shape in a com-
plex way (corresponding to the dependence of the message mT (sT , sJ , ξ J )
in equation 3.4 on sT ). Again, this means that all spikes have to be kept in
memory for full inference. Note, finally, that this conclusion, and the fact
that there is a recursive form for the OU process, do not depend on the
particular spiking model assumed, verifying the assertion that the choice
of squared exponential tuning functions, although mathematically helpful,
does not pose limitations on our conclusions.

3.4 Intermediate (Autoregressive) Processes. There are cases interme-
diate to the smooth and the OU process that allow a partially recursive
formulation. For instance, the metronomic OU process can be generalized
to an autoregressive model of nth order by writing

st =
n∑

i=1

βi st−i	 + c
√

	ηt. (3.8)

In this case, the inverse covariance matrix C−1 is (2n + 1)-diagonal (see
appendix C), with entries determined directly by the βi . This implies that the
posterior factorizes over cliques ψ involving n + 1 spikes (see equation 3.3),
and that inference will be Markov in groups of n spikes. Zhang et al. (1998)
find that a two-step Bayesian decoder, which is an AR(2) process in our
terms, significantly improves decoding hippocampal place cell data.



478 Q. Huys, R. Zemel, R. Natarajan, and P. Dayan

0

0.5

order =1

0

0.5

order =2

0

0.5

order =5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time [s]

A B

S
pa

ce

0.05 0.1 0.15 0.2

0

0.5

order =10

T−t
j
 [s]

0

0.5

order =3

ke
rn

el
                       s

iz
e  

                    (w
ei

gh
t)

Figure 11: Autoregressive processes of increasing order. (A) Samples from
processes of order n = {1, 2, 3, 5, 10} from top to bottom. The top process
corresponds to an OU process. (B) Metronomic temporal kernels k(ξ , T)
corresponding to the processes in A. The different lines (in varying shades
of gray) correspond to increasing the observation time T as in Figures 5 and 10.

Figure 11A shows sample trajectories from such processes of increasing
order. The coefficient vectors’ β was set here such that the nth difference
of the processes evolved as an OU process (see appendix C). The higher
the order, the smoother the processes that can be generated, and the more
oscillations are apparent in the temporal kernels. The OU and the smooth
processes (see section 3.3) are at opposite ends of this spectrum, with tridi-
agonal and dense inverse matrices, respectively.

The higher the order, the greater the complexity of the code. Indeed, the
complexity grows exponentially (since groups of n spikes have to be consid-
ered and the number of such groups increases exponentially). While natural
stimulus trajectories may not be indefinitely differentiable, the exponential
increase in complexity implies that any smoothness has great potential to
render the code complex.

4 Expert Spikes for Efficient Computation

Complex codes, following, for instance, from the assumption of natural
smooth priors, render the information inherent in the spikes hard to extract.
Efficient computation in time requires access to all encoded information and
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thus requires that the complex temporal structure of the code be taken into
account. Here, we show that information present in the complex codes can
be re-represented using codes that are straightforward to decode and use
in key probabilistic computations.

Specifically, we propose to decode each spike independently and multi-
ply together the contributions from all spikes. This corresponds to treating
each spike as an independent expert in a product of experts (PoE) setting
(Hinton, 1999):

p̂(sT |ξ ) = 1
Z(T)

∏
i

exp

(∑
t

gi (s, t)ξ i
T−t

)
. (4.1)

That is, each time a spike ξ i occurs, it contributes its same projection kernel
exp(gi (s, t)) to the posterior distribution p̂(sT |ξ ). To put it another way, for
each spike, we add the same stereotyped contribution to the log posterior
and then renormalize.

From the discussion in the preceding sections, it is immediately apparent
that the PoE approximation is a better approximation for the OU case than
for the smooth case. In the following, we first derive an approximate analyt-
ical expression for separable projection kernels gi (s, t) = fi (s)h(t) based on
metronomic spikes and the OU prior. We then remove any restrictions and
derive nonparametric, nonseparable gi (s, t) for both the OU and the smooth
temporal kernel and show that these still perform better for the OU process
than for the smooth process. Finally, we infer a new set of spikes ρξ such
that decoding according to the PoE model produces a posterior distribution
p̂(sT |ρξ ) that matches the true posterior distribution p(sT |ξ ) well for both
OU and smooth priors.

4.1 Approximate Projection Kernels

4.1.1 Metronomic Projection Kernels Section 3.2 showed that for the OU
process, the weight accorded a spike is approximately a decreasing expo-
nential function of the time elapsed since its occurrence and that replacing
the true temporal kernels by the metronomic temporal kernels (without
fixing the time since the last spike at 	) gives a qualitatively good approx-
imation (see Figure 4). This suggests writing an approximate distribution
with spatiotemporally separable projective kernels,

p̂(sT |ξ ) ∝
∏

i

φi (s)
∑

t ξ i
T−t e

−βt
(4.2)

=
∏

i

exp

(∑
t

log(φi (s))e−βt ξ i
T−t

)
(4.3)
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Figure 12: Separable projection kernel for the OU process: Comparison of true
p(sT |ξ ) (A) and p̂(sT |ξ ) from equation 4.3 (B). The left arrows indicate where
the variance of the approximate distribution diverges toward ∞ as T − tJ → ∞
rather than approaching CTT . The right arrows show the effect of this on the
mean or the approximate posterior, which returns to the prior mean m = 0 more
rapidly than the true posterior.

to use exactly the form of equation 4.1. We can thus also write

p̂(sT |A) ∝ ∏
i φi (s)Ai (T), (4.4)

where Ai (T) can be seen as an equivalent “activity” of each neuron. The
performance of this approximation is shown in Figure 12 for the OU process
(see also Zemel et al., 2005). There are a few differences between Figures 4
and 12. Keeping the φi (s) as before, the variance of this approximation
is ν̂2(T) = σ 2/

∑
i Ai (T). As the last observed spike recedes into the past,

this approaches infinity (left arrows in Figure 12), and the mean returns
to zero (right arrows in Figure 12). This is different from the case of exact
inference, which approaches the static prior with variance CTT . The mean
µ̂(T) = ∑

i si
Ai (T)∑
j Aj (T) is always normalized and returns to zero more slowly

than the variance increases. This introduces an inaccuracy, since the true OU
temporal kernels (shown in Figure 5) are not normalized

∑
t kt(ξ , T) < 1,

which arises because of the weight given to the spatial prior.
For the smooth case, no simple approximation of the form of equation 4.3

is viable. This can be seen, for instance, from the fact that the smooth
temporal kernels (see Figure 10) dip below zero (making it tricky to use
them in products).
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A B

Figure 13: Projection kernels inferred by equation 4.5 for OU (A) and smooth
(B) priors. Stimulus trajectories and corresponding population spike trains ξ

were generated until the update equations converged (approximately 2 · 104

spike trains). Both kernels have the shape of difference of gaussians for t = 0
and fall off exponentially with time. There is little nonseparable structure in
both cases.

4.1.2 Inferring Full Spatiotemporal Projection Kernels gi (s, t). To apply ex-
pression 4.1 to the smooth case, we inferred gi (s, t) in a nonparametric way
by discretizing time and space over which the distributions are defined
and minimizing the Kullback-Leibler divergence between the discretized
versions p(sT |ξ ) and p̂(sT |ξ ) with respect to the projection kernels,

gi (s, t) ← gi (s, t) − ε∇gi (s,t) DK L (p(sT |ξ )|| p̂(sT |ξ )), (4.5)

where DK L (p(s)||q (s)) = ∫
ds p(s) log p(s)

q (s) . Given that our approximation 4.1
is related to restricted Boltzmann machines (RBM), it is not surprising that
the gradient has a form akin to the wake-sleep algorithm (Hinton, Dayan,
Frey, & Neal, 1995):

∇gi (s,t) DK L (p(sT |ξ )|| p̂(sT |ξ )) =
∑

T

[ p̂(sT |ξ ) − p(sT |ξ )] ξi (T − t). (4.6)

Figure 13 shows the projection kernels inferred for the OU prior (see
Figure 13A) and the smooth prior (see Figure 13B). Both start, for t = 0 with
a spatial profile similar to a difference of gaussians (DOG), and then fall off
as exponentials of time. The kernels gi (s, t) shown here are for neurons i
with si close to 0, the center of the gaussian prior over the trajectories. The
projection kernels shown are for the same parameter settings as Figures 4
and 8, and the faster decay of the smooth projection kernels is due to the
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Figure 14: Projection kernels are independent of contrast. The left-most panel
shows an OU kernel for the same contrast (φmax) as in Figure 13; the contrast
is doubled in the middle and quadrupled in the right panel. All these are off-
center kernels with the same parameters as used in the other Figures. Despite a
slight slant toward the mean, the kernels are approximately separable.

shorter correlation timescale. For the OU process, the kernels for neurons i
with si > 0 become slightly slanted toward −1 over time (and the converse
holds for those with si < 0) to capture the decay to the mean (zero), which
is only a function of the distance from the mean. This effect is noticeable for
the OU but very small for the smooth kernels. Figure 14 shows off-center
OU kernels inferred for different contrast (by varying φmax). As can be seen,
the kernels are invariant to the contrast, and the slant effect is small. For the
parameter range explored here, both projection kernels are approximately
separable, indicating that the analytically derived motivation above may be
close to optimal and that, in the PoE framework of equation 4.1, separable
projection kernels may be the optimal choice even for the smooth prior.
However, simply using these projection kernels to interpret the original
spikes ξ results in an approximation that is far from perfect, especially in
the smooth case. Figure 15 compares the true posterior distribution and that
given by the approximation with the above projection kernels. The cost of
independent decoding is quantified in Figure 15A using

〈
1
T

∑
t

D(p(sT |ξ )|| p̂(sT |ξ ))
H(p(sT |ξ ))

〉
p(s,ξ )

, (4.7)

where H(p) is the entropy of p and the average is over many stimulus
trajectories s ∼ N (0, C) and spikes ξ ∼ p(ξ |s). This quantity can also be
interpreted as a percentage information loss. It is larger for the smooth
than for the OU process, showing that the OU process suffers much
less from the approximation than the smooth prior. Visually, there are
no gross differences between p(sT |ξ ) and p̂(sT |ξ ) for the OU prior (see
Figures 15B and 15D). However, for the smooth prior, the arrows in
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Figure 15: Comparison of true distribution p(sT |ξ ) and approximate distribu-
tion p̂(sT |ξ ) given by equation 4.1 with projection kernels inferred by equa-
tion 4.5 and shown in Figure 13. Organization is the same as in previous figures.
(A) 〈 1

T

∑
t D(p(sT |ξ )|| p̂(sT |ξ ))/H(p(sT |ξ ))〉p(ξ ,s) ± 1 standard deviation for both

priors. (B, C) p(sT |ξ ). (D, E) The corresponding p̂(sT |ξ ) for the same spikes. (B,
D) A stimulus generated from the OU prior. (C, E) The smooth prior. p̂(sT |ξ ) is a
good approximation for the OU prior but fails for the smooth prior. The arrows
indicate where the approximation fails fundamentally in a similar way to that
shown in Figure 9.

Figures 15C and 15E indicate areas where a large mismatch is introduced
by the independent treatment of the spikes, which discards all informa-
tion contained in spike combinations. This mismatch is entirely to be
expected.

4.2 Recoding: Finding Expert Spikes. The previous section has shown
that an independent interpretation of spikes is more costly with the smooth
than with the OU prior. In this section, we show that it is possible to find
a new set of “expert” spikes ρ, such that each spike can be interpreted
independently and the posterior distribution is matched closely for both
the OU and the smooth prior. This recoding thus takes spikes ξ that are
redundant in a decoding sense and produces a new set of spikes ρ that
can be easily used for efficient neural computation because the decoding
redundancy has been eliminated. We first infer real-valued activities aξ and
then proceed to infer actual spikes ρ. We use neurally implausible methods
to infer the new set of spikes ρ. In a companion paper we will explore the
capability of neurally plausible spiking networks to do this recoding and
to use the resulting simple code for probabilistic computations in time (see
also Zemel, Huys, Natarajan, and Dayan, 2004).
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Figure 16: Inferring activities A for the OU prior. (A) True posterior p(sT |ξ ).
(B) Approximate posterior p̂(sT |A), which matches arbitrarily well (for this
example, 〈DK L〉T ∼ 10−5 and the entropy 〈H〉T ∼ 2, making the information
loss 	I ∼ 10−5). (C) Activities A for all neurons. The vertical black lines with
dots indicate the original spike times ξ . Each thin line along the gray surface is
the “activity” of one neuron as a function of time. There is a small amount of
activity away from the spikes, but zeroing this affects the match between p(sT |ξ )
and p̂(sT |A) only marginally.

4.2.1 Activities. Given a set of projection kernels gi (s, t) from the previous
section, we can go back and infer the optimal activities A ≥ 0 of neurons by
writing

p̂(sT |A) ∝ exp

(∑
i,t

Ai (T − t)gi (s, t)

)
. (4.8)

If we let Ai (T − t) = exp(Bi (T − t)) and minimize with respect to B the
Küllback-Leibler divergence from the true posterior, we simultaneously
enforce A ≥ 0:

Bi (t) ← Bi (t) − ε∇Bi (t) DK L (p(sT |ξ )|| p̂(sT |A)) . (4.9)

The results of this procedure are shown for both the OU process (see Fig-
ure 16) and for the smooth process (see Figure 17). Figures 16A and 17A
show the true spikes ξ and the corresponding distribution p(sT |ξ ). Fig-
ures 16B and 17B show the approximate distributions p̂(sT |A) defined in
equation 4.8 for the optimal activities A inferred with equation 4.9. The
continuous nature of the activation functions means that they can contain
as much information as the distribution itself, and indeed we find empir-
ically that arbitrarily close matches are possible (exemplified by the two
Figures; in both cases 〈DK L〉T ∼ 10−5). Figures 16C and 17C finally show



Fast Population Coding 485

A C

B

Figure 17: Inferring activities A for the smooth prior. (A) True posterior p(sT |ξ ).
(B) Approximate posterior p̂(sT |A), which matches arbitrarily well (for this
example, 〈DK L〉T ∼ 10−5 and the entropy 〈H〉T ∼ 2, making the information
loss 	I ∼ 10−5). (C) Activities A for all neurons. The vertical black lines with
dots indicate the original spike times ξ . Each thin line along the gray surface
is the “activity” of one neuron as a function of time. There is a small amount
of activity away from the spikes, which allows the approximation p̂(sT |A) to
“bend” between spikes. Unlike in the OU case, zeroing this small activity affects
the match between p(sT |ξ ) and p̂(sT |A) strongly.

the inferred activities A. Most important, we see that the inferred activities
(one gray line for each neuron) are very sparse (in time and across neurons),
suggesting that there might indeed be a set of (zero-one) spikes that leads
to a good approximation via equation 4.1. On the other hand, the activities
line up closely with the original spikes ξ (vertical black lines with dots),
and it may be that the approximations with the original spikes in the previ-
ous paragraph already gave us the best possible approximation. For the OU
prior (see Figure 16), the activities in spikeless times are extremely small, and
zeroing them does not significantly worsen the approximation with p̂(sT |A).
However, for the smooth prior (see Figure 17), there is residual activity be-
tween the peaks, the zeroing of which significantly worsens the quality of
approximation by p̂(sT |A) (data not shown). The very close approximation
found here is not surprising. The distribution to be matched and the ac-
tivities are discretized on the same spatial grid and are both positive, real
quantities. As we have not imposed any constraints on A beyond positiv-
ity, the entropy of A can match any entropy in the distributions p(sT |ξ ).
This, however, will change drastically when the activities are forced to be
binary.

4.2.2 Spikes via Simulated Annealing. To check whether there exists in fact
a set of spikes ρξ such that decoding according to equation 4.1 results in a
posterior distribution p̂(sT |ρ) that matches p(sT |ξ ) closely for the smooth
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prior, we assume, as before, the projection kernels gi (s, t) inferred above and
find a set of spikes ρ that minimizes DK L (p(sT |ξ )|| p̂(sT |ρ)), where p̂(sT |ρ)
given by

p̂(sT |ρ) = 1
Z(T)

∏
i

exp

(∑
t

gi (s, t)ρi
T−t

)
. (4.10)

This is the same interpretation we gave the original spikes in equation 4.1.
Our aim is thus to find a new set of spikes that satisfies

ρ = arg min
ρ

DK L (p(sT |ξ )|| p̂(sT |ρ)). (4.11)

This is a highly nonconvex discrete problem, so we applied standard simu-
lated annealing techniques.2 Figure 18 shows the results. Figure 18A shows
the distribution p(sT |ξ ) based on the original spikes. Figure 18B shows
p̂(sT |ρ) using the projection kernels shown in Figure 13. The arrow in Fig-
ure 18B indicates where the new set of spikes performs better than the
original, independently interpreted, spikes and matches the shifting distri-
bution by adding a new spike. This is a qualitative improvement on what
is possible by interpreting the original spikes according to equation 4.1 (see
Figure 15) and is most pronounced for the smooth case. From the close
match between p(sT |ξ ) and p̂(sT |A), we expect the overall minimum KL
divergence to depend strongly on the projective kernels. Figure 18C shows
the effect of scaling the inferred projection kernel gi (s, t). The increase in
accuracy due to an increase in the number of spikes offsets the decrease
in accuracy due to the absence of prior information. The more spikes are
allowed, the closer this scheme is to the one where rates are allowed. Thus,
the prior has here literally been replaced by spikes; the input spikes have
been “augmented” with spikes that represent information contributed by
past spikes in accordance with a prior over stimulus trajectories. Figure 18D
shows relative average KL divergences over 100 sets of new spike trains,
for different scalings of the gi (s, t). In general, the projection kernels found
here form an overcomplete basis set. By scaling them down and allowing
more spikes, we come closer to the setting in the previous section where we
allowed continuous activities rather than 0-1 spikes.

Note the different coding strategy indicated by the arrows, especially in
Figure 18C. Here, spikes are positioned such that they take into account

2 From the very strong sensitivity of our simulated annealing results to the procedure
used to reduce the temperature, we infer that the optima are not very well separated, with
a number of similar sets of spike trains doing approximately equally well. We rendered
the procedure more global by evaluating, at each step, the decrease in cost that would
accompany switching every spike and accepting one of the best switches probabilistically.
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Figure 18: Inferring new spikes for smooth prior. (A) Original spikes with
p(sT |ξ ). (B) p̂(sT |ρ) with projection kernels gi (s, t) given by equation 4.5.
(C) p̂(sT |ρ) with scaled projection kernels gi (s, t)/4. Note the increased firing
rate. Arrows explained in the text. (D) Percentage change in KL divergences
between p(sT |ξ ) and p̂(sT |ρ) for projection kernels scaled by factors of 1/2 and
1/4 relative to the KL divergence of the unscaled kernel. (E) Cross-correlations
between neurons for a few different time lags. Black lines: original spikes ξ . Gray
lines: recoded spikes ρ for unscaled projection kernels. The autocorrelation has
been scaled to unity, except at zero lag, where the autocorrelation was excluded
and scaling was performed with respect to the maximal cross-correlation.

what has already been expressed by previous spikes: spikes are positioned
with respect to the distribution that has already been encoded. To put it
another way, there are explicit relations among the new spikes that are not
directly explained by the stimulus itself. Figure 18E shows this more clearly.
The black traces show the stimulus-based (“signal”) correlations of the
original spikes ξ . The gray lines show the correlations of the recoded spikes
ρ. At lag 0 (bottom of the Figure), flanks appear in the cross-correlation
functions, but at greater lags, the cross-correlations are flatter for the recoded
than for the original spikes. Requiring independently decodable spikes has
introduced instantaneous correlations and flattened the spatial profile of
cross-correlations over time—a sign of adaptation to temporal statistics.
Thus, here we find that the maintenance of a simple code results in the
emergence of what appear to be adaptive properties.
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5 Discussion

Here, we have analyzed the structure of a Bayesian, optimal decoder in a
simple, analytically tractable model. The results are a direct generalization
of decoding in the static gaussian-Poisson encoding model (Snippe & Koen-
derinck, 1992). We show that the structure of the decoder depends on the
prior over stimulus trajectories in time, that realistic priors render decoding
hard (nonlocal in time and space), and that an independent code in which
information is readily available for computational purposes exists. Finally,
we showed that apparently adaptive properties of a coding scheme may
result from the requirement of a constant, simple code. We are currently
working on a biologically plausible network that approximates this recod-
ing and uses the resulting code for flexible probabilistic computations (see
also Zemel et al., 2004).

The main innovation in our work is the way we used the gaussian pro-
cess prior over stimulus trajectories. Figure 7 indicates that the exponential
prior with ζ = 2 is a good model of natural movements, as they tend to
be smooth. Classically, natural stimuli have been characterized as having
autocorrelation structures that fall off exponentially (Dong & Atick, 1995),
corresponding to a power spectrum that falls off as a power law function
of frequency (∝ 1/ωb). However, smooth trajectories in time have a much
faster (exponential) spectral falloff ∝ exp(−ω2).

Most previous work has assumed priors within the OU class (Brown et
al., 1998; Smith & Brown, 2003; Barbieri et al., 2004; Kemere et al., 2004;
Gao, Black, Bienenstock, Shoham, & Donoghue, 2002), perhaps because of
the recursive formulation of decoding. However, Zhang et al. (1998) use a
two-step Bayesian decoder corresponding to a second-order autoregressive
process (AR(2)) with coefficients that fall off as squared exponentials (their
equation 43). This two-step decoder is much more competent than a one-
step decoder (corresponding to an AR(1) process) on hippocampal place
cell data.

Of course, more complex priors are also possible. For instance, Kemere
et al. (2004) point one way forward. They showed the benefits for decoding
from motor cortex spikes of using a rich, modular prior based on separate
models for each of the (seven) possible arm movements to be extracted.

In terms of our framework, Figure 15A illustrates the cost of neglect-
ing the prior temporal structure and treating all spikes independently. The
differences between inference in the smooth and OU case (e.g., the over-
shoot in Figure 8, which is not seen in Figure 4) also indicate qualitatively
what information is lost by applying Kalman-filter-like formulations to de-
coding. The absolute magnitude of this effect depends on the specifics of
the true model, and so remains an empirical question for psychophysical
or physiological test. If spikes are dense relative to the movement in the
stimulus (the likelihood term in equation 2.2 dominates, either via a very
small noise (low σ ) or high firing rates (large φmax)), the contribution of the
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prior will be small, and approximation by a recursive prior (as in Brown
et al., 1998; Zhang et al., 1998) may suffice. However, if spikes are sparse,
the prior will be more important and approximations more costly. Finally,
in many cases, the correct prior can be acquired only from experience,
which itself may be costly. While it is sensible to expect nervous systems
to acquire detailed and correct informative priors (Körding & Wolpert,
2004; Körding, Ku, & Wolpert, 2004; Adams, Graf, & Ernst, 2004), it re-
mains to be seen whether incorporation of informative priors is generally
feasible for decoding applications in engineering domains (e.g., brain-
machine-interfaces).

The historical approach to population coding is based on ideas of Fisher
information. The Fisher information arises from notions of asymptotic nor-
mality where there are many “data”—long-spike counting windows and
many neurons. In the asymptotic limit, the posterior distribution is well
approximated by a gaussian with width (JIF )−1 where J is the number of
data points or spikes in our case. This is a linear expansion where each
data point (spike) contributes the same amount 1/IF to the variance of the
posterior. We, like others before us (Brunel & Nadal, 1998; Bethge, Roter-
mund, & Pawelzik, 2002), are interested in the case where the population
as a whole has emitted few spikes, as indicated in Figure 1—in regimes far
from the asymptotic limit. For us, spikes can contribute varied amounts:
some (typically the most recent) very much more than others (the most
distant). As an analog of Fisher information, it is possible to study the
dependence of the posterior variance ν2(T) on the width of the encoding
tuning functions σ 2 and the dimensionality. In our simple model, we find
similar results to previously reported ones (Snippe & Koenderinck, 1992;
Zhang & Sejnowski, 1999) (data not shown). However, as we are always in
the sparse spike limit, the information per spike is of most relevance, and
the posterior variance is strictly increasing in σ , the width of the encoding
tuning functions, independent of the dimensionality. If there were dense
spiking, the population firing rate (Zhang & Sejnowski, 1999; Silberberg,
Bethge, Markram, Pawelzik, & Tsodyks, 2004; DeCharms & Zador, 2000;
Knight 1972) might carry enough information to overwhelm any prior.

Three assumptions about the encoding model merit discussion. First,
the bell-shaped form of the tuning functions, asymptoting at 0, is only very
roughly realistic. However, the arguments in sections 3.2 and 3.3 about the
recursive and nonrecursive structure of the decoder depend on the nature
of the prior (ζ = 1 and ζ = 2), and so will generalize. The most fundamental
change would be that the variance of the posterior would depend not only
on spike timing but also on the relative tuning preferences of the neurons
that emit the spikes.

Second, we assume an instantaneous relationship between the rate of
the inhomogeneous Poisson process and the stimulus. This should be for-
mally straightforward to relax if the dependence on the stimulus history
can be approximated by a linear filter (a discrete sum) as is standard for
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linear-nonlinear-Poisson like model neurons (Paninski, 2003). In that case,
the likelihood term in equation 2.5 will become a function of the stimulus
at a number of times, each of which enters equation 2.2. Each spike will
thus contribute as many entries to the covariance matrix as its linear fil-
ter extends in time. The extra complexity of decoding in this case is not
completely clear.

The third questionable assumption is that spiking is independent across
time (the Poisson process assumption) and neurons. The actual degree of
independence is, of course, hotly debated (Averbeck et al., 2006; DeCharms
& Zador, 2000). In fact, the signal correlations that we assume induce
some of the same issues for decoding that the noise correlations dis-
cussed in those references. Thus, our work can be seen as casting this
debate in a slightly different light by showing that it is possible to re-
code correlated spiking in a particular, independently interpretable, form.
Our companion paper (Natarajan et al., 2006) considers a network- (rather
than a simulated-annealing-) based implementation of recoding. Note that
Nirenberg, Carcieri, Jacobs, and Latham (2001) have studied independent
interpretability (in the spikes of retinal ganglion cells) in a less model-
dependent manner.

The advantage of independent interpretability (based on equation 4.1)
is not confined to decoding. For instance, combining information from dif-
ferent modalities—as in multisensory integration (Ernst and Banks, 2002;
Hillis, Ernst, Banks, & Landy, 2002) or sensorimotor integration (Zemel et al.,
2005; Körding and Wolpert, 2004)—becomes straightforward and requires
only an addition in the log domain or single-neuron (Chance, Abbott, &
Reyes, 2002; Salinas & Abbott, 1996; Poirazi, Brannon, & Mel, 2003a, 2003b)
or population (Deneve et al., 2001) multiplication.

Recoding produces spike trains that lack temporal redundancy. It is the
exact dynamic analog of efficient coding approaches based on producing
population activities lacking, for example, spatial correlations (Srinivasan,
Laughlin, & Dubs, 1982; Atick, 1992; Nirenberg et al., 2001). As such, it
displays phenomena that are strongly reminiscent of adaptation in the static
domain. Note, however, that the rationale for adaptation here is different—
it is a by-product of the requirement for a computationally efficient code.
This rationale may find application outside our particular domain.

Finally, the probabilistic coding here arises only from the ill-posed na-
ture of recovering the spike train from a sparse set of noisy spikes. A
more fundamental form of so-called computational uncertainty (Zemel,
Dayan, & Pouget, 1998) arises in cases such as the aperture problem (Weiss
& Adelson, 1998), when the information in the sensory input is ambigu-
ous in a way that does not depend on noise. Various approaches to com-
putational uncertainty have been suggested in the static case (Anderson,
1994; Barber, Clark, & Anderson, 2003; Zemel et al., 1998; Sahani & Dayan,
2003), but their extension to our dynamic framework remains an open
problem.
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Appendix A: Matrix Inversion Lemmas

For a matrix partitioned as in equations 2.8, or generally

E =
(

A B
C D

)
,

it can be shown that the following equalities hold by inverting E:

(D − CA−1B)−1 = D−1 + D−1C(A − BD−1C)−1BD−1 (A.1)

(D − CA−1B)−1CA−1 = D−1C(A − BD−1C)−1. (A.2)

These identities allow us to perform the final multiplication p(ξ |sT )p(sT ),
here written in the log domain, and then to renormalize:

log(p(ξ |sT )p(sT )) = −1
2

{
sT

[
C−1

TT + C−1
TTCTξ

(
Cξξ − CξTC−1

TTCTξ + Iσ 2
)−1

CξTC−1
TT

]
sT

− 2sTC−1
TTCξT

[
Cξξ − CξTC−1

TTCTξ + Iσ 2]−1 · θ + const.
}

thus ν2(T) =
(
C−1

TT + C−1
TTCTξ

(
Cξξ + Iσ 2 − CξTC−1

TTCTξ

)−1
CξTC−1

TT

)−1

.

Making the following substitutions

A = Cξξ + Iσ 2 B = CξT

C = CTξ D = CTT

allows us to apply equation A.1 and write out the variance in equation 2.10.
The mean finally is obtained by writing out

µ(t) = ν2(T)C−1
TTCξT

[
Cξξ − CξTC−1

TTCTξ + Iσ 2]−1 · θ

= (D − CA−1B)D−1C(A − BD−1C)−1 · θ

and applying equation A.2 to directly yield equation 2.9.
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Appendix B: OU Process

Replacing each of the ISIs by the average value 	, we get a Kac-Murdock-
Szego Toeplitz matrix for which the analytical inverse is (Dow, 2003):

C = c




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


 C−1 = 1

c(1 − ρ2)




1 −ρ 0 0
−ρ 1 + ρ2 −ρ 0
0 −ρ 1 + ρ2 −ρ

0 0 −ρ 1


 ,

where ρ = exp(−α	). Rewriting equation 2.11 as k(ξ , T) = CTξC−1
ξξ /

σ 2(C−1
ξξ + I/σ 2)−1, we note that CTξC−1

ξξ ≈ δi−1; only the first component of
this vector is one, and all others are zero. The second factor is

A−1 = (C−1 + I/σ 2) = 1
(a − 1)σ 2




a −ρ 0 0 0
−ρ a + ρ2 −ρ 0 0
0 −ρ a + ρ2 −ρ 0
0 0 −ρ a + ρ2 −ρ

0 0 0 −ρ a


 ,

where a = c
σ 2 (1 − p2) + 1. We know A−1A = I. Neglecting the prefactor for

a moment, the first row of A (which is the one of interest) therefore has to
satisfy the following recurrence relation:

A2,1 = (a A1,1 − 1)/ρ (B.1)

Ak+2,1 = (a/ρ + ρ)Ak+1,1 − Ak,1 for n > 3 (B.2)

AN,1/AN−1,1 = ρ/a . (B.3)

Equation B.2 is a simple two-term linear recurrence equation and can be
solved with boundary conditions given by equations B.1 and B.3. The char-
acteristic equation of equation B.2 is

r2 − (a/ρ + ρ)r + 1 = 0 with real roots

λ1,2 = 1
2

(
a/ρ + ρ ±

√
(a/ρ + ρ)2 − 4

)
.

Including the boundary conditions leads to a solution

An,1 = d1λ
n−1
1 + d2λ

n−1
2

d1 =
(

a − λ1ρ − (a − λ2ρ)
(aλ1 − ρ)
(aλ2 − ρ)

(
λ1

λ2

)N−2
)−1
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d2 = 1 − d1(a − λ1ρ)
a − λ2ρ

.

One of the eigenvalues will always be greater than 1, the other less than 1,
but both are positive. As Cξξ is symmetric, so are A−1 and A, and the first
column of A is equal to its first row, which we pick out by premultiplying
with CTξC−1

ξξ . This vector A1,1:N is exactly the sum of two exponentials we
saw when using regular spikes to infer the temporal kernel k(ξ , T), and the
nth component of k(ξ , T), kn, is given by

kn = [CTξ (Cξξ + Iσ 2)−1]n = (a − 1)σ 2 An,1 = (a − 1)σ 2(d1λ
n−1
1 + d2λ

n−1
2

)
.

(B.4)

If λ1 is the larger eigenvalue, we see that the corresponding coefficient
d1 will be ≈ (λ2/λ1)N, which is very small. The contribution of the larger λ

will grow only very slowly and be seen only for the very distant spikes. On
the other hand, d2 will be ≈ 1/(a − λ2ρ). For all intents and purposes, the
temporal kernel will be decaying exponentially with a negative spike time
constant log λ2. Furthermore, if the second boundary condition (for time 0)
is moved to −∞, the result is a pure exponential. Both the analytical and
numerical kernels are plotted in Figure 5.

Relaxing the assumption of metronomic spiking gives a matrix A−1,
which is still tridiagonal but the elements of which are not equal. Writing
matrix C as

C =




1 a ab abd

a 1 b bd

ab b 1 d

abd bd d 1


 C−1 =




1
1−a2 − a

1−a2 0 0

− a
1−a2

1−a2b2

(1−a2)(1−b2) − b
1−b2 0

0 − b
1−b2

1−b2d2

(1−b2)(1−d2) − d
1−d2

0 0 − d
1−d2

1
1−d2


 ,

(B.5)

where a = ce−α|t1−t2|, b = ce−α|t2−t3|, and soon, leads to a set of equations
similar to equations B.2 and B.3 but including more terms.

Appendix C: Autoregressive Processes of Second and Higher Order

An nth-order gaussian autoregressive sequence of length T as produced
by equation 3.8 can be written as a sample from a multivariate normal
distribution in the following way: Let b = [1,−β1,−β2,−β3, . . . , βN] and
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let Bt = [0t,β, 0T−n−t], where 0t stands for a vector of zeros of length t. The
inverse covariance matrix of the process is given by

C−1 =
T−n−1∑

t=0

BtBT
t . (C.1)

For the coefficients of b to define a stationary and finite process, C must be
Toeplitz. One way of generating a finite process from the b is by letting the
nth derivative of the process evolve as an OU process,

s(n)
t = β0s(n)

t−1 + c
√

	ηt, (C.2)

in which case the coefficients of the vector b are given by

β i = nCi (−β0)i−1, (C.3)

where nCi is the binomial coefficient. To enforce stationarity, we have to
finally perform a subtraction,

C−1 =
(

T−1∑
t=0

BtBT
t

)
−

T∑
t′=T−n

B−1
t B−T

t , (C.4)

where we abuse notation and B−1 stands for B−1
t = [0t, βN, βN−1, . . . ,

β1, 0T−n−t].
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