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Exact kernels k

Assumption: independent, identical Poisson neurones

We find the posterior distribution over the stimulus at time T given all spikes observed so far (up 

to time T) by Bayes theorem

Assumption: Gaussian process prior over entire stimulus (trajectory)

Result: Posterior distribution is a simple Gaussian 

θτ = preferred position of neurone that emitted spike at time t k
T-t

 = “weight” of spike at time t

Exact and metronomic kernels

Exact posterior variance

Example: Posterior distribution for a Ornstein-Uhlenbeck and smooth prior

Observation time T relative to most recent spike

Inferring the temporal and spatial kernels separately, 

a good approximation is only obtained for the OU process.

Metronomic

Minimize Kullback Leibler Divergence with respect to projective fields

A simple case with two 

spikes elucidates the two 

types of dependence on
tpike times

When allowing spatiotemporally nonseparable projective fields 

we still infer approximately separable projective fields. 

A good approximation is only obtained for the OU process.

Approximate posterior distribution by

treating each spike as an expert in a Product of Experts

Example: Hippocampus, smooth trajectories

OU process

Dependence on σ 2 

As encoding width σ 2 increases 
the covariance vector C

lT
 is 

projected onto eigenvectors of 

lower frequency.

OU process x = 1 Smooth process x = 2

a) depends only on spike and observation times, not on spike locations

b) determines the weight of each spike

c) has a shape that is determined by the covariance of the Gaussian process prior
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Representation of time-varying probabilistic information in a population of spiking neurones

Spike-by-spike decoding: The effect of each spike

is described by a kernel 

depends on the prior

depends on other spikes if the process is smoother than OU

Width of the posterior

Narrower encoding tuning functions are always better (in the dense regime)

Approximations treating each spike as an expert in a Product of Experts setting

Projective fields tend to be separable

Interactions between spikes can not be captured by independent treatment of the spikes in smooth process

Interactions between spikes do not produce spatiotemporally inseparable projective fields

use two-layer recurrent network [2]

Brown et al. (1998)

Smooth process

O
U

 p
ro

c
e
s
s

S
m

o
o

th
 p

ro
c
e
s
s

We present an exact 

expression for the posterior

And a simple approximation

Gaussian process prior

Probabilistic population coding in time

Stimulus inference on timescale of spike production

is an underconstrained problem need prior

We analyse a very simple case

Gaussian process prior over stimulus trajectory

Bell-shaped tuning functions

Independent Poisson noise

Narrower encoding tuning functions (smaller σ2) gives narrower posterior 

for fixed number of spikes

Posterior distribution


