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Abstract

Uncertainty arises in neural computations from noisy processing elements and the formally

ill-posed nature of many tasks. Taking appropriate decisions requires that uncertainty be repre-

sented and manipulated in a self-consistent manner, likely in standard cortical structures such

as population codes. There is a rich literature on the capability of populations of neurons to

support computations in the face of the two types of uncertainty. However, one major facet of

uncertainty has received rather little attention, namely time, as in a dynamic, rapidly changing

world, data is only temporarily relevant. Here, we analyse the computational consequences of

encoding stimulus trajectories in the activity of populations of neurons. For a simple, instanta-

neous, analytically tractable encoder, we show how the correlations induced by natural, smooth

stimuli lead to a decoding problem that can only be resolved by access to information that is non-

local both in time and across neurons. Such encodings are computationally ruinous; we show

that there is an alternative, computationally and representationally powerful, code in which each

spike contributes independent information, ie is independently decodeable.

1 Intro: Representation and computation

Sensory and motor information is represented in the joint activity of large populations of neu-
rons (Barlow, 1953; Georgopoulos et al., 1983). There are by now substantial ideas and data
about how these representations are formed (Rao et al., 2002), how information can be decoded
from recordings of this activity (Paradiso, 1988; Snippe and Koenderinck, 1992; Seung and Som-
polinsky, 1993), and how various sorts of computations, including uncertainty-sensitive, Bayesian
optimal statistical processing can be performed through the medium of feedforward and recurrent
connections amongst the populations (Pouget et al., 1998; Deneve et al., 2001). Critical issues
have emerged from these analyses, notably the existence and significance of correlations between
neurons for decoding and computation (Shamir and Sompolinsky, 2004; Seriès et al., 2005), and
the importance of various sorts of prior information.

However, albeit with some important exceptions, many theoretical investigations into popu-
lation coding have so far somewhat neglected a major dimension of coding, namely time. This
is despite the beautiful and influential analyses of circumstances in which individual spikes con-
tribute importantly to the representation of rapidly varying stimuli (Bialek et al., 1991; Reinagel
and Reid, 2000; Rieke et al., 1997; Johansson and Birznieks, 2004), and the importance accorded
to fast-timescale spiking by some practical investigations into population coding (Wilson and Mc-
Naughton, 1993; Schwartz, 1994; Brown et al., 1998; Zhang et al., 1998; Brown et al., 1998). The
assumption is often made that encoded objects do not vary quickly with time, and that therefore
firing rates in the population suffice. Even some approaches that consider fast decoding (Brunel
and Nadal, 1998; Van Rullen and Thorpe, 2001), treat stimuli as being discrete and separate, rather
than as evolving along whole trajectories.

In this paper, we study the coding and decoding (Brown et al., 1998; Zhang et al., 1998) of tra-
jectories in populations of spiking neurons. We consider a regime in which stimuli change rapidly
and create a sparse train of spikes; we thus analyse the extension to the case of trajectories of one
of the simplest ideas about population codes for static stimuli (Snippe and Koenderinck, 1992). De-
coding trajectory information is the most comprehensive computation that can be performed, and
is therefore our canonical test. When spiking is sparse, decoding becomes a thoroughly ill-posed
problem. Probabilistic prior information about the likely trajectories is critical for solving this prob-
lem, and we consider naturally realistic, smooth, Gaussian process priors. Unlike some previous
work on decoding in time (Brown et al., 1998; Zhang et al., 1998; Smith and Brown, 2003) we
do not confine ourselves to recursively specifiable priors, and can therefore treat smoother cases.
Smooth priors render decoding, and likely other computations, intractable, by formally coupling
spikes together. This effectively forces decoders to interpret exponentially many spike combina-
tions. We thus consider the possibility of an energy-based (Products of Expert; (Hinton, 1999;
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Figure 1: The problem: reconstructing the stimulus as a function of time given the spikes emitted
by a population of neurons. If a neuron with preferred stimulus si emits a spike at time t, a black
dot is plotted at (t, si). A few example tuning functions are shown in grey, indicating that the
ordinate represents stimulus space and the position of the neurons in that space according to their
preferred stimulus si.

Zemel et al., 2005)) spike-based recoding of the trajectory into a form that more readily supports
computations.

Section 2 starts with a simple encoding model. It introduces the need for priors, their shape,
and analytical results for decoding in time. Section 3 shows what aspects of the priors determine
the availability of information to downstream neurons. We show that the decoder corresponding to
the simple encoder can, in time, be complex, meaning that the encoded information is not readily
available to downstream neurons. We find that realistic priors lead to a code in which information
is not readily available. Finally, in section 4 we propose a representation that has comparable
power, but is computationally advantageous.

2 A Gaussian process prior approach

Figure 1 illustrates the general setting of the paper: an array of neurons with partially overlapping
tuning functions that emit spikes in response to a changing stimulus. Real-world examples of such
a setting include hippocampal neurons with place fields firing as a rat explores an environment,
or V1 neurons responding to a target as it moves through their receptive fields. We would like to
decode the spikes over time, ie recover the trajectory of the stimulus (the animal’s position, say)
based on the spikes and a knowledge of the neuronal tuning functions (cf Brown et al., 1998; Zhang
et al., 1998, for hippocampal examples). In figure 1, the ordinate represents the (1-dimensional)
stimulus space, the abscissa time. When a neuron with preferred stimulus si emits a spike ξi

t at
time t, we draw a dot at position (t, si). The dots in figure 1 thus represent the spiking activity
of an entire population of neurons over time. Our aim is then to find, for each observation time
T , a distribution over likely stimulus positions sT given all the spikes previous to that time. This
is related to fitting a line representing the trajectory of the stimulus through the points and is a
thoroughly ill-posed problem, given that between the spikes we are not given any information
about the stimulus at all.

To solve this ill-posed problem, we have to incorporate additional knowledge in the form of
a prior distribution about the stimulus trajectory. The prior distribution specifies the temporal
characteristics of the trajectories (eg how smooth they are), but also whether they live within some
constrained part of the stimulus space. Subjects can acquire such prior information from previous
exposures to trajectories.
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With the aim of gaining analytical insight into the structure of decoding in the temporal sce-
nario, we consider a very simple spiking model p(ξi

t|st) (Snippe and Koenderinck (1992, cf.) for
the static case), augmented with a simple prior over stimulus trajectories p(s). We thereafter
follow standard approaches (Zhang et al., 1998; Brown et al., 1998) by doing causal decoding
and recovering p(sT |ξ[0,T )) over the current stimulus sT at time T given all the J past spikes
ξ[0,T )define{ξi

tj
}, j = 1 · · · J , i = 1 · · ·N emitted at times 0 < {tj}Jj=1 < T by the population in

the observation period ([0, T )).
To state the problem in mathematical terms, let s[0,T ) be a vector containing the stimulus at all

the J times {tj}Jj=1, tj ∈ [0, T ) at which a spike was was emitted by a neuron in the population,
let p(ξ[0,T )|s[0,T )) be the likelihood of observing an entire population spike train ξ[0,T ) conditional
on the stimulus trajectory s[0,T ) (the spiking model) and let p(s[0,T ), sT ) be the prior over stimulus
trajectories. Using Bayes theorem and an expansion in terms of joint probability allows us to write
the distribution of interest as a posterior distribution

p(sT |ξ[0,T )) ∝ p(sT )p(ξ[0,T )|sT ) = p(sT )

∫

ds[0,T ) p(ξ[0,T )|s[0,T ))p(s[0,T )|sT ) (1)

2.1 Poisson-Gaussian spiking model

The spiking model is as follows: Let φi(s) be the tuning function of neuron i and assume indepen-
dent, inhomogeneous and instantaneous Poisson neurons (Snippe and Koenderinck, 1992; Brown
et al., 1998; Barbieri et al., 2004). The likelihood of a particular population spike train ξ[0,T ) given
the stimulus trajectory s[0,T ) is then

p(ξ[0,T )|s[0,T )) =
∏

j

p(ξi
tj
|s[0,T )) =





∏

j

φi(stj
)



 exp(−
∑

j

φi(stj
)) ∝





∏

j

φi(stj
)



 (2)

The first equality stems from the assumption that all spiking events (across neurons) are inde-
pendent given the stimulus. The product over j implies a factorisation both across neurons i and
across time (via the instantaneous, inhomogeneous Poisson assumption). Associated to each spike
j there is a neuron i according to which neuron emitted the spike ξi

tj
at time tj . The final pro-

portionality stems from the assumption of dense tuning function coverage (the sum of the tuning
functions is constant for all s at all times). Finally, let us assume squared-exponential (Gaussian)
tuning functions

φi(stj
) = φmax exp

(

− (stj
− si)

2

2σ2

)

where φmax is the maximal firing rate of a neuron and si the ith neuron’s preferred stimulus.
Combining this with our previous assumptions (equation 2) allows us to write the spiking model
as

p(ξ[0,T )|s[0,T )) = φmax exp

(

− (s[0,T ) − θ)T (s[0,T ) − θ)

2σ2

)

(3)

where the spikes from the entire population have been ordered in time; the j th component of both
s[0,T ) and θ correspond to the jth spike and are, respectively, the stimulus at that spike’s time tj
and the preferred stimulus si of the neuron that produced it. Note that time is continuous here.

2.2 Gaussian process prior

The prior defines a density over possible stimulus trajectories, and thus a joint distribution over
the stimulus values at those times at which spikes are observed in the population. For a finite set of
spikes, this will be a finite set of values which can be represented by a vector, as mentioned above.
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Figure 2: Example trajectories drawn from the prior distribution in equation 4. A shows examples
for the smooth covariance matrix with ζ = 2, and B for the OU covariance matrix, ζ = 1.

One popular prior is a Gaussian process (GP) MacKay (2003), for which the joint distribution of
the stimulus at times at which spikes were observed (s[0,T )) and at the observation time (sT ) is a
multivariate Gaussian with mean m and covariance matrix C

p(s[0,T ), sT ) ∼ N (m, C) Ctjtj′
= c exp

(

−α‖tj − tj′‖ζ
)

(4)

Note that s[0,T ) is a vector because it contains the stimulus at the discrete set of times at which
we have observed spikes; time itself is still treated as being a continuous variable. The parameter
ζ ≥ 0 dictates the smoothness and the correlation structure of the process. ζ=0 is the static case
which assumes the stimulus does not vary over time. Setting ζ = 1 corresponds to assuming that
the stimulus evolves as a Ornstein-Uhlenbeck (OU) or first-order autoregressive process. This is the
generative model underlying Kalman filters (Twum-Danso and Brockett, 2001) and generates an
autocorrelation with the Fourier spectrum 1/f 2. We will generalise this to nth order autoregressive
processes. At the opposite end of the spectrum is ζ=2, for which trajectories are smooth and non-
Markovian. The parameter α dictates the temporal extent of the correlations and c their overall
size (c also parametrises the scale of the overall process). Example trajectories drawn from these
priors for ζ={1, 2} are shown in figure 2. For most of the paper, we will let m=0 without loss of
generality. Assuming a GP prior with a particular covariance matrix is equivalent to regularising
the autocorrelation of the trajectory.

2.3 Posterior

With these assumptions we can write down the posterior distribution p(sT |ξ[0,T )) analytically by
solving equation 1. It is a simple Gaussian distribution with mean µ(T ) and variance ν2(T ) given
in terms of tuning function widths σ, the vector θ and the covariance matrix C. For clarity, we
suppress the subscript [0,T ) in this section.

All three terms inside the integral of equation 1 are now known. The conditional distribution
p(s|sT ) is given in terms of the partitioned covariance matrix C:

p(s|sT ) = N (s|C[0,T )T C−1
TT sT , (C[0,T )[0,T ) − C[0,T )T C−1

TT CT [0,T )))

where we abuse notation and let C[0,T )[0,T ) be the covariance matrix between all the spike times,
CT [0,T ) and C[0,T )T are vectors with the covariances between the spike times and the observation
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time T and CTT is the marginal (static) stimulus prior at the observation time (constant for the
stationary processes considered here). The corresponding partitioning of the matrix C is

C =









C[0,T )[0,T ) C[0,T )T

CT [0,T ) CTT









(5)

The remaining two terms in equation 1 are given by p(sT ) = N (s|0, CTT ) and equation 3. As the
integral of equation 1 is a convolution, the variances add and the integral evaluates to

p(ξ|sT ) = N (θ|C[0,T )T C−1
TT sT , (C[0,T )[0,T ) − C[0,T )T C−1

TT CT [0,T )) + Iσ2)

and we only need to calculate the final product with p(sT ) and then renormalise. Application of
the Sherman-Morrison-Woodbury formula (the matrix inversion lemma) then leads to

µ(T ) = k(ξ[0,T ), T ) · θ(T ) (6)

ν2(T ) = CTT − k(ξ[0,T ), T ) · C[0,T )T (7)

k(ξ[0,T ), T ) = CT [0,T )(C[0,T )[0,T ) + Iσ2)−1 (8)

The mean µ(T ) of the posterior is thus a weighted sum of the preferred positions of those
neurons that emitted particular spikes. The weights are given by what we term the temporal kernel

k(ξ[0,T ), T ). As we will see, the weight given to each spike will depend strongly on the time at
which it occurred. A spike that occurred in the distant past will be given small weight. As for
conventional Kalman filters, the posterior variance depends only on the spike times, not on their
identities. That this is true depends on the squared exponential nature of the tuning functions
φ and other tuning functions may not lead to this quality. However, it will not affect most of
the conclusions reached below. This posterior distribution p(sT |ξ[0,T )) is well-known in the GP
literature as the predictive distribution (MacKay, 2003, chapter 45).

2.4 Structure of the code

The operations needed to obtain the posterior p(sT |ξ[0,T )) provide insight into the structure of
the code, and how it depends on the prior. If the posterior is a function of combinations of spikes,
postsynaptic neurons have to have simultaneous access to all those spikes. This point will be critical
in temporal codes, as the spikes to which access is required are spread out in time. Only if spikes
are interpretable independently, can they be forgotten once they have been used for inference. All
information the spikes contribute to some future time T ′ > T is then contained within p(sT |ξ[0,T ))
. If the posterior depends on combinations of spikes (as will be the case for natural, smooth priors),
information that can be extracted from a spike about times T ′ > T is not entirely contained within
p(sT |ξ[0,T )) . As a result, past spikes have to be stored and the posterior recomputed using them –
an operation that is nonlocal in time. We will show that under natural priors the posterior depends
on spike combinations and is thus complex. Decoding for the simple encoder (the spiking model)
is thus hard. In section 4, we will illustrate the type of computations (“recoding”) a network has
to perform to access all the information. This will be equivalent to finding a new, complex encoder
in time for which decoding is simple.

3 Effect of the prior

We next study how the temporal kernels k(ξ[0,T ), T ) from equation 8 and the structure of the code
depend on the prior. We analyse the behaviour of the temporal kernels and the structure of the
code for a representative set of priors, including those that generate constant, varyingly rough and
entirely smooth trajectories.
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Figure 3: Comparison of static and dynamic inferences. Throughout, the posterior distribution
p(sT |ξ[0,T )) is indicated by gray shading, the spikes are vertical (gray) lines with dots and the
true stimulus is the line at the top of each plot. A Static stimulus, constant temporal kernel B
Moving stimulus, constant temporal kernel. C Static stimulus, decaying temporal kernel. D Moving
stimulus, decaying temporal kernel.

3.1 Constant stimulus prior ζ = 0

We first show that our treatment of the time-varying case is an exact generalisation of the static
stimulus case by re-deriving classical results for static stimuli. Snippe and Koenderinck (1992)
have shown that the posterior mean and variance (under a flat prior) is given by a weighted spike
count

µ(T ) =

∑

i ni(T )si

J(T )
ν2(T ) =

σ2

J(T )
(9)

where ni(T ) =
∫ T

0
dt ξi

t is the ith neuron’s spike count and J(T ) =
∑

i ni(T ) is the total population
spike count at time T .

If we let ζ = 0, the matrix C[0,T )[0,T ) = cnn
T where n is a J(T )× 1 vector of ones. Equations 6

can then be solved analytically:

(

(C[0,T )[0,T ) + Iσ2)−1
)

ij
=

(σ2 + cJ(T ))δij − c
σ2(σ2 + cJ(T ))

k(ξ[0,T ), T ) =
c

σ2 + cJ(T )
n

µ(T ) =
c
∑

i ni(T )si

σ2 + cJ(T )

ν2(T ) =
cσ2

σ2 + cJ(T )

which is exactly analogous to equation 9 with an informative prior. The temporal kernel k(ξ[0,T ), T )
is now constant and ∝ 1/J . The contribution of each neuron to the mean µ(T ) is given by its spike
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Figure 4: Posterior distribution p(sT |ξ[0,T )) for OU prior. Same representation as in figure 1. The
dashed line shows the stimulus trajectory used to generate the spikes, the dots are the spikes, the
posterior distribution is in grey and the solid line shows the posterior mean.

count ni(T ). Each spike is given the same weight, which is only a sensible approach if spikes are
eternally informative about the stimulus. If the stimulus is a varying function of time s(t), spikes at
time t′ are only informative about the stimulus at times t close to t′ and the influence of each spike
on the posterior should fade away with time. This is illustrated in figure 3. Figure 3A shows the
present static case, where the stimulus does indeed not move. Over time, the posterior p(sT |ξ[0,T ))
sharpens up around the true value, but if the stimulus does move, the posterior ends up at the
wrong value (figure 3B). Only if the stimulus is static, is never forgetting about spikes the right
approach. Static inference corresponds to a constant kernel.

Imagine now that the temporal kernel k(ξ[0,T ), T ) decays and we forget about spikes in the
more distant past. Figure 3C shows that this leads to a posterior that widens inbetween spikes.
The posterior is wider than it should be. On the other hand, figure 3D shows how such a decay-
ing temporal kernel would, in contraposition to figure 3B, allow p(sT |ξ[0,T )) to nicely track the
stimulus. Dynamic inference corresponds to decaying kernels. In the following, we analyse the
behaviour of p(sT |ξ[0,T )) and the optimal temporal kernel k(ξ[0,T ), T ) for various stimulus auto-
correlation functions.

3.2 Non-smooth (Ornstein-Uhlenbeck) prior ζ = 1

Setting ζ=1 in the definition of the prior (equation 4) corresponds to assuming that the stimulus
evolves as a random walk with drift to zero (an Ornstein-Uhlenbeck process):

ds

dt
= −βs(t) + c

√
dt dη(t) (10)

with Gaussian noise dη
dt
∼ N (0, 1) and 0 ≤ β ≤ 1. The Ornstein-Uhlenbeck process is the under-

lying generative process assumed by standard Kalman filters. The simplicity of Kalman-filter like
formulations explains some of its wide applicability and success (eg Brown et al., 1998; Barbieri
et al., 2004). However, as indicated visually by the example trajectories in figure 2, the rough
trajectories this prior imposes are not a good model of smooth biological movements (see also
Discussion).
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Figure 4 shows the whole set of stimulus trajectory, spikes and posterior distribution p(sT |ξ[0,T ))
. The mean of the posterior does a good job of tracking the true underlying stimulus trajectory and
is never more than two standard deviations away from it. Between spikes, the mean simply moves
back to zero (albeit slowly in the figure shown).

Figure 5A displays example temporal kernels k(ξ[0,T ), T ) for inference in this process. They are
very close to exponentials (note the logarithmic ordinate). This makes intuitive sense as an OU
process is a first-order Markov process as it can be rewritten as a first-order difference equation.
In fact, assuming the spikes arrive regularly (ie replacing each of the inter-spike intervals (ISI) by
their average value ∆ = 1/J

∑

j tj − tj−1) allows us to write the jth component of k(ξ[0,T ), T ) as

kj ≈ d1λ
j−1
1

where d1 is some constant and λ = c exp(−1/τ) (see appendix A). For such metronomic spiking,
k(ξ[0,T ), T ) is thus really simply a decaying exponential. Similar expressions can be obtained for
the original case of Poisson distributed ISI’s (appendix A). Figure 5A shows that the metronomic
approximation provides a generally good fit, capturing especially the slope of the true temporal
kernels, which depends mostly on the correlation length α and on the maximal (or average) firing
rate φmax. The remaining quality of the fit is influenced most strongly by the match between ∆
and the time since the last spike T − tJ (which takes its effects through CT [0,T ) in equation 5 and
6-8), which determines the overall size of the temporal kernel.

The factors influencing the slope of the temporal kernel and its overall size do not interact
much, ie T − tJ does not affect the slope (shape) of the temporal kernel, only its size, as shown in
figure 5B (metronomic temporal kernels are used for clarity, but the argument applies equally to
the exact kernel). Conversely though less importantly, ∆ affects mostly the slope. Replacing the
true temporal kernels by metronomic temporal kernels, ie replacing all ISI’s by ∆ but keeping the
time since the last spike T − tJ does not degrade p(sT |ξ[0,T )) much (cf. figure 6A and figure 6B).

To understand the dependence in figure 5B, we write out the integrand of equation 1 in detail
for the OU prior and find that it factorises over potentials involving duplets of spikes because C−1

is tridiagonal and the elements of C−1 only involve two spikes.

p(s[0,T ), sT ) ∝ exp

(

−1

2

[

s[0,T )sT

]T C−1

[

s[0,T )

sT

])

= exp



−1

2





J+1
∑

j=1

s2tj
C−1

tjtj
+

J
∑

j=1

stj
C−1

tj ,tj+1
stj+1









p(s[0,T ), sT ) = ψ(sT )

J
∏

j=1

ψ(stj
, stj+1

) (11)

where tj stands for the time of the last spike, tJ−1 the time of the penultimate one etc., and the
observation time T = tJ+1. Note that the last equality implies that the determinant also factors
over spike pairs. This means that the integrations over each spike in the main equation 1 can be
pulled into the integral and the equation can be written in a recursive form akin to that used in
message passing algorithms (MacKay, 2003):

p(sT |ξ[0,T )) ∝ ψ(sT )

∫

dstj
p(ρtj

|stj
)ψ(sT , stj

)

∫

dstJ−1
p(ξtJ−1

|stJ−1
)ψ(stj

, stJ−1
) · · ·

= ψ(sT )

∫

dstj
p(ξtj

|stj
)ψ(sT , stj

)mtj
(tJ−1) (12)

Here mtj
(tJ−1) is the “message” passed from all spikes up to the penultimate spike to be incor-

porated into the posterior by multiplying it with ψ(sT , stj
), ie by a simple scaling of the entire

temporal kernel. This formulation again reminds us of the Kalman filter equations.
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Figure 7: Natural trajectories are smooth. A Position of a rat freely exploring a square environment.
B Covariance function of the position along the ordinate (gray, dashed line) and a quadratic ap-
proximation (black, solid line). Note the logarithmic ordinate. The smoothing applied to eliminate
artefacts was of a timescale short enough not to interfere with the overall shape of the covariance
function.

3.3 Smooth prior ζ = 2

Setting ζ=2 in the definition of the prior (equation 4) corresponds to assuming that the stimulus
evolves as a non-Markov random walk. Trajectories with this autocovariance function are smooth
(cf figure 2A shows some trajectories generated from the prior) and infinitely differentiable. The
smoothness makes it a more natural and informative prior for Bayesian decoding from movement-
related trajectories than non-smooth priors. Figure 7A shows trajectories of a rat exploring a
square environment (data kindly provided by (Lever et al., 2002)). Not only are these natural tra-
jectories smooth, but figure 7B also shows that a squared exponential covariance function closely
approximates the real covariance function. 1

Figure 8 shows the equivalent of figure 4 for the smooth case. The posterior p(sT |ξ[0,T )) is
shown in the top panel of the figure. The main dynamical difference between inference in this
smooth case and inference in the OU case is indicated by the arrows in the figure. While the OU
process simply decays back to the mean (here zero for simplicity), the dynamics of the smooth
posterior mean are much richer in that, in the absence of spikes, the mean continues in its current
direction for a while before reversing back. As can be seen, this gives a better fit to the underlying
trajectory (black dotted line) than would otherwise have been achieved. It arises directly from the
fact that the correlations extend beyond the last spike (into the entire past in fact). For comparison,
figure 9 shows the posterior when the wrong prior is used. The stimulus was generated from the
smooth prior, but the OU prior was used to build the posterior. The arrow indicates where the
posterior behaves suboptimally, falling back to zero instead of predicting that the stimulus will
continue to move further away from zero. In terms of difference equations, the larger extent of
correlations intuitively mean that the higher order derivatives of the process are also “constrained”
by the covariance C.

1Only the centre of the covariance function is shown here. Due to the small size of the environment, the rat runs back
and forth the entire available length and there are oscillating flanks to the covariance function for delays larger than those
shown.
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Figure 10: Temporal kernels for the smooth prior A shows exact (gray solid) and metronomic
(black dashed) temporal kernels for the smooth prior with ζ = 2. B shows how the metronomic
temporal kernels change as the observation time T is moved away from the last spike. C shows the
same as panel B, but for the empirical covariance function derived from the rat trajectories.

The simple exponential temporal kernels observed in the OU process cannot give rise to the
reversals observed in the smooth process. Figure 10A shows the temporal kernels for the smooth
process, which have a distinctively different flavour from the OU temporal kernels, including oscil-
lating terms multiplying the exponential decay. Most importantly, the oscillating terms allow the
weight assigned to a spike to dip below zero, ie a spike initially signifies proximity of the stimulus
to the neuron’s preferred position, but later on swaps over, signalling that the stimulus is not there
any more etc. This feature of the temporal kernels gives rise to the reversals seen in the posterior
mean.

As in the OU case, the metronomic temporal kernel based on equal ISI’s gives a good description
of the temporal kernel mostly for spikes in the more distant past. Replacing the true temporal
kernels by metronomic temporal kernels (but keeping the exact time since the last spike T − tJ )
again does not affect the posterior strongly, but the KL-divergence between the true posterior and
the metronomic posterior is larger in the smooth than in the OU case (data not shown), indicating
that the exact timing of spikes has greater weight in the smooth inference.

Unlike in the OU case, there is no simple analytic expression for the metronomic temporal
kernel (let alone the true temporal kernel). Critically, as shown in figure 10B, changing the time
since the last observed spike T − tJ does not simply scale the temporal kernel, but also changes the
shape of the temporal kernel (it produces a complicated phase shift of the oscillating component).
Again, for clarity, the metronomic kernels are used as an illustration. The same argument applies
to the exact kernels. Thus, local structure has complex global consequences in the smooth, but
not the OU case. The simple rescaling of the OU temporal kernel by the time since the last spike
can be achieved without a memory of all past spikes, by simply scaling the products k(ξ[0,T ), T )θ
for µ(T ) or k(ξ[0,T ), T )C[0,T )T for ν2(T ). Conversely, for the smooth process, all spikes need to be
re-weighted individually. A memory of all past spikes needs to be kept at all times. Figure 10C
shows that this temporal kernel complexity is also a feature of the temporal kernel derived from
the covariance function of the empirical rat trajectories in figure 7.

The fundamental difference between the OU and the smooth temporal kernels arises from the
difference in the factorisation properties of the prior. As the inverse of the covariance matrix for
ζ /∈ {0, 1}, and specifically for ζ = 2, is dense, it does not factorise over spike combinations and
therefore does not allow a recursive form as in equation 12. A recurrence relation as in equation 25
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is only possible for the OU prior which factories across duplets of spikes. To see this, write

p(sT |ξ[0,T )) =

∫

dstJ
p(sT , stJ

|ξ0:T )

∝
∫

dstJ
p(sT , stJ

)p(stJ
|ξtJ

)

∫

ds0:tJ−1
p(s0:tJ−1

, ξ0:T |sT , stJ
)

=

∫

dstJ
p(sT , stJ

)p(stJ
|ξtJ

)

∫

ds0:tJ−1
p(ξ0:tJ−1

|s0:tJ−1
)p(s0:tJ−1

|sT , stJ
)

=

∫

dstJ
p(sT , stJ

)p(stJ
|ξtJ

)mT (sT , stJ
) (13)

where tJ stands for the time at which the last spike was observed. The first equality is just an
expansion, the proportionality follows from Bayes rule and an expansion and the final equality fol-
lows from the assumption of instantaneous spiking. This now looks rather like an update equation.
p(sT , stJ

) is a transition probability from the last observed spike to the inference time T , p(stJ
|ξtJ

)
is the innovation due to the last observation (the likelihood of the last observed spike). Inside the
integral however we have, next to the likelihood of all past spikes p(ξ0:tJ−1

|s0:tJ−1
), also the term

p(s0:tJ−1
|sT , stJ

), which does depend on sT and means that the spikes are reweighted as a function
of sT : the message mT (sT , stJ

) is a function of sT . All spikes have to be used to infer the posterior
at each time T . To make the integral independent of sT , the prior has to be Markov in individual
spikes, which is only the case for the OU process:

pOU(sT |ξ[0,T )) =

∫

dstJ
p(sT , stJ

)p(stJ
|ξtJ

)

∫

ds0:tJ−1
p(ξ0:tJ−1

|s0:tJ−1
)p(s0:tJ−1

|stJ
)

=

∫

dstJ
p(sT , stJ

)p(stJ
|ξtJ

)mT (stJ
) (14)

Thus, while the time to the last spike simply multiplies the temporal kernel in the OU process, (the
message mT (stj

) is multiplied by the transition probability, see equations 12 and 14 and figure 5,
right panel), the smooth temporal kernel changes shape in a complex way (corresponding to the
dependence of the message mT (sT , stj

) in equation 13 on sT ). Again, this means that all spikes
have to be kept in memory for full inference.

3.4 Intermediate (autoregressive) processes

There are intermediate cases between the smooth and the OU process that allow a partially re-
cursive formulation. For illustrative purposes, let us generalise the metronomic OU process to an
autoregressive model of nth order we write

st =

n
∑

i=1

βist−i∆ + c
√

∆ηt (15)

The set of βi directly specifies an inverse covariance matrix C−1 (see appendix B), which is (2n+1)-
diagonal. This implies that the posterior factorises over cliques ψ involving n + 1 spikes (see
equation 11), and that a recursive formulation similar to that in equation 14 is possible. Here,
however, the inference will be Markov in groups of n spikes. Zhang et al. (1998) find that a 2-step
Bayesian decoder, which is an AR(2) process in our terms, aids decoding from hippocampal cell
data significantly.

Figure 11A shows samples from such processes of increasing order. The coefficients β where
here set such that the nth difference of the process evolved as an OU process (see appendix B). The
higher the order, the smoother the processes that can be generated and the more oscillations are
apparent in the temporal kernels. The OU and the smooth processes (see section 3.3) are at the
opposite end of this spectrum, with tridiagonal and dense inverse matrices respectively.
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nomic temporal kernels k(ξ[0,T ), T ) corresponding to the processes in panel A. The different lines
correspond to an increasing observation time T as in figures 5 and 10.
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The higher the order, the higher the complexity of the code. That is, to decode, it becomes
necessary to remember larger numbers of spikes, and also compute or approximate the inverses
of larger covariance matrices. While natural stimulus trajectories may not be indefinitely differen-
tiable, the increase in complexity implies that any smoothness has significant potential to render
the code complex.

4 Expert spikes for efficient computation

Complex codes, such as that following from the assumption of natural smooth priors, have detri-
mental effects on the computational availability of information. Efficient computation in time
requires access to all encoded information, and thus requires that the complex temporal structure
of the code be taken into account. Here, we show that information present in the complex codes
can be re-represented by codes that are straightforward to decode and to use in key probabilistic
computations.

Specifically, we propose to treat each spike as an independent expert in a product of experts
(PoE) setting (Hinton, 1999; Zemel et al., 2005)

p̂(sT |ξ[0,T )) =
1

Z(T )

∏

i

exp

(

∑

t

gi(s, t)ξ
i
T−t

)

(16)

ie each time a spike ξi occurs, it contributes its same projection kernel exp(gi(s, t)) to the posterior
distribution p̂(sT |ξ[0,T )) (for each spike, we add the same, stereotyped contribution to the log
posterior and then renormalise).

From the discussion in the preceding sections, it is immediately apparent that the PoE approxi-
mation is a better approximation for the OU case than for the smooth case. In the following we first
derive an approximate analytical expression for separable projection kernels gi(s, t) = fi(s)h(t)
based on metronomic spikes and the OU prior. We then remove any restrictions and derive non-
parametric, non-separable gi(s, t) for both the OU and the smooth temporal kernel and show that
these perform better for the OU process than for the smooth process. Finally we infer a new set
of spikes ρ[0,T ) such that decoding according to the PoE model produces a posterior distribution
p̂(sT |ρ[0,T )) that matches the true posterior distribution p(sT |ξ[0,T )) well both for OU and smooth
priors.

4.1 Approximate projection kernels

4.1.1 Metronomic projection kernels

We have seen in section 3.2 that the weight given to a spike is approximately a decreasing exponen-
tial function of the time elapsed since its occurrence, and that replacing the true temporal kernels
by the metronomic temporal kernels (without fixing the time since the last spike at ∆) gives a
qualitatively good approximation (bottom panel, figure 4). This suggests writing an approximate
distribution with spatiotemporally separable projective kernels

p̂(sT |ξ[0,T )) ∝
∏

i

φi(s)
P

t
ξi

T−tκt =
∏

i

φi(s)
ai(T ) κt ∝ exp(−βt) (17)

where ai(T ) is an equivalent “activity” of each neuron. The performance of this approximation is
shown in figure 12 for the OU process (see also Zemel et al., 2005). There are a few differences
between figure 4B and 12. Keeping the φi(s) as before, the variance of this approximation is
ν̂2(T ) = σ2/

∑

i ai(T ). As the last observed spike recedes into the past this approaches infinity
(black arrows in figure 12) and the mean returns to zero (gray dashed arrows in figure 12). This
is different in the exact inference, which approaches the static prior with variance CTT . The mean
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Figure 12: Separable projection kernel for OU process: comparison of true p(sT |ξ[0,T )) (panel A)
and p̂(sT |ξ[0,T )) from equation 17 (panel B). Arrows are explained in the text.

µ̂(T ) =
∑

i sibi(T ) where bi(T ) = ai(T )/
∑

j aj(T ), which is always normalised and returns to
zero more slowly. However,

∑

t kt(ξ[0,T ), T ) < 1 due to the implicit presence of a spatial prior
(some weight is given to the prior, which means that the sum of the weights of the evidence ≤ 1).
Because the smooth temporal kernels dip below zero however, this formulation is not applicable
to the smooth case.

4.1.2 Inferring full spatiotemporal projection kernels gi(s, t)

To apply expression 16 to the smooth case, we inferred gi(s, t) in a nonparametric way by discretiz-
ing time and space over which the distributions are defined and minimising the Kullback-Leibler
divergence between the discretized versions p(sT |ξ[0,T )) and p̂(sT |ξ[0,T )) wrt. the projection ker-
nels

gi(s, t)← gi(s, t)− ε∇gi(s,t)DKL(p(sT |ξ[0,T ))||p̂(sT |ξ[0,T ))) (18)

Given that our approximation 16 is related to restricted Boltzmann machines (RBM), it is not
surprising that the gradient has a form akin to the wake-sleep algorithm (Hinton et al., 1995):

∇gi(s,t)DKL(p(sT |ξ[0,T ))||p̂(sT |ξ[0,T ))) =
∑

T

[

p̂(sT |ξ[0,T ))− p(sT |ξ[0,T ))
]

ξi(T − t) (19)

Figure 13 shows the projection kernels inferred for the OU prior (figure 13A) and the smooth
prior (figure 13B). Both fall off as exponentials of time and start out with a spatial profile simi-
lar to a difference of Gaussians (DOG). The projection kernels shown are for the same parameter
settings as figures 4 and 8, and the faster decay of the smooth projection kernels is due to its
shorter correlation timescale. Overall, both projection kernels are approximately separable, in-
dicating that the analytically derived motivation above may be close to optimal and that, in the
PoE framework of equation 16, separable projection kernels may be the optimal choice even for
the smooth prior. However, simply using these projection kernels to interpret the original spikes
ξ[0,T ) results in an approximation that is far from perfect, especially in the smooth case: Fig-
ure 14 compares the true posterior distribution and that given by the approximation with the
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∑
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spikes. B,C are for a stimulus generated from the OU prior and D,E for the smooth prior. Arrows:
see text.
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Figure 15: Inferring activities a for the OU prior. A true posterior p(sT |ξ[0,T )) B approximate
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above projection kernels. The cost of independent decoding is quantified in figure 14A using
〈 1

T

∑

tD(p(sT |ξ[0,T ))||p̂(sT |ξ[0,T )))〉p(s) and is alrger for the smooth than for the OU process. Vi-
sually, there are no gross differences between p(sT |ξ[0,T )) and p̂(sT |ξ[0,T )) for the OU prior (fig-
ure 14B and C) but for the smooth prior the arrows in figures 14D and E indicate areas where a
large and qualitatively expected mismatch is introduced by the PoE treatment of the spikes.

4.2 Recoding: Finding expert spikes

The previous section has shown that an independent interpretation of spikes is more costly for the
smooth than the OU prior. In this section we show that it is possible to find a new set of “expert”
spikes ρ[0,T ), such that each spike can be interpreted independently and the posterior distribution
is matched closely for both the OU and the smooth prior. This recoding thus takes spikes ξ[0,T )

that are redundant in a decoding sense and produces a new set of spikes ρ[0,T ) that can be easily
used for efficient neural computation because the decoding redundancy has been eliminated. We
first infer real-valued activities a[0,T ) and then proceed to infer actual spikes ρ[0,T ). We here use
neurally implausible methods to infer the new set of spikes ρ. In a companion paper (Natarajan
et al., 2005), we explore the capability of neurally plausible spiking networks to both do this
recoding, and to use the resulting simple code for probabilistic computations in time.

4.2.1 Activities

Given a set of projection kernels gi(s, t) from the previous section, we can go back and infer the
optimal activities a[0,T ) ≥ 0 of neurons by writing

p̂(sT |a[0,T )) ∝ exp





∑

i,t

ai(T − t)gi(s, t)



 . (20)
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Figure 16: Inferring activities a for the smooth prior. Same organisation as in figure 15.

If we let ai(T − t) = exp(bi(T − t)) and minimise the DKL wrt. b[0,T ), we simultaneously enforce
a[0,T ) ≥ 0:

bi(t)← bi(t)− ε∇bi(t)DKL(p(sT |ξ[0,T ))||p̂(sT |a[0,T ))) (21)

The results of this procedure are shown for both the OU process (figure 15) and for the smooth
process (figure 16). Figure 15A and 16A show the true spikes ξ[0,T ) and the corresponding distri-
bution p(sT |ξ[0,T )). Figures 15B and 16B show the approximate distributions p̂(sT |a[0,T )) defined
in equation 20 for the optimal activities a[0,T ) inferred with equation 21. They match extremely
closely with 〈DKL〉 ∼ 10−5. Figures 15C and 16C finally show the inferred activties a[0,T ). Most
importantly, we see that the inferred activities (one grey line for each neuron) are very sparse (in
time and across neurons), suggesting that there might indeed be a set of (zero-one) spikes that
leads to a good approximation via 16. On the other hand, the activities line up closely with the
original spikes ξ[0,T ) (vertical black lines with dots) and it may be that the approximations with the
original spikes in the previous paragraph already gave us the best possible approximation. For the
OU prior (top row), the activities in spikeless times are extremely small and zeroing them does not
significantly worsen the approximation with p̂(sT |a[0,T )) . However, for the smooth prior (bottom
row), there is residual activity between the peaks, the zeroing of which significantly worsens the
quality of approximation by p̂(sT |a[0,T )) (data not shown).

4.2.2 Spikes via simulated annealing

To check whether there exists in fact a set of spikes ρ[0,T ) such that decoding according to equa-
tion 16 results in a posterior distribution p̂(sT |ρ[0,T )) that matches p(sT |ξ[0,T )) closely for the
smooth prior, we assume, as before, the projection kernels gi(s, t) inferred above and find a set of
spikes ρ[0,T ) that minimises D(p(sT |ξ[0,T ))||p̂(sT |ρ[0,T ))), where p̂(sT |ρ[0,T )) given by

p̂(sT |ρ[0,T )) =
1

Z(T )

∏

i

exp

(

∑

t

gi(s, t)ρ
i
T−t

)

(22)

which is the same interpretation we gave the original spikes in equation 16. Our aim is thus to find
a new set of spikes that satisfies

ρ[0,T ) = arg min
ρ[0,T )

D
(

p(sT |ξ[0,T ))||p̂(sT |ρ[0,T ))
)

(23)
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with projection kernels gi(s, t) given by equation 18 C p̂(sT |ρ[0,T )) with scaled projection kernels
gi(s, t)/4. Note the increased firing rate. Arrows explained in the text. D shows the KL-divergence
between p(sT |ξ[0,T )) and p̂(sT |ρ[0,T )) for projection kernels scaled by factors of 1, 1/2 and 1/4
respectively. E Cross-correlations between neurons for a few different time lags. Black lines:
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This is a highly non-convex discrete problem, so we applied standard simulated annealing tech-
niques2. Figure 17 shows the results. Figure 17A shows the original spikes distribution p(sT |ξ[0,T ))
. Figure 17B shows p̂(sT |ρ[0,T )) using the projection kernels shown in figure 13. The arrow in
17B indicates where the new set of spikes performs better than the original, independently in-
terpreted spikes and matches the shifting distribution by adding a new spike. (Remember from
figure 14 that simply interpreting the original spikes according to 16 would not allow us to match
the downward slope in between spikes.) Overall, the improvement achieved by the new set of
spikes ρ[0,T ) is much greater for the smooth than the OU process (compare figure 14A and the
bars for the unscaled projection kernels in figure 17D). From the close match between p(sT |ξ[0,T ))
and p̂(sT |a[0,T )) , we expect the ultimately achievable KL-divergence to dependent strongly on the
projective kernels. Figure 17C shows the effect of scaling the inferred projection kernel gi(s, t).
There are more spikes but the match is better. Figure 17D shows average KL-divergencies over
100 sets of new spike trains, for different scalings of the gi(s, t). In general, the projection kernels
found here form an overcomplete basis set. By scaling them down and allowing more spikes, we
come closer to the setting in the previous section where we allowed continuous activities rather
than 0-1 spikes.

Note the different coding strategy indicated by the arrows, especially in figure 17C: here, spikes
are positioned such that they take into account what has already been expressed by previous spikes
– spikes are positioned wrt. the already encoded distribution, ie there are explicit relations amongst
the spikes that are not explained by the stimulus. Figure 17E shows this more clearly. The black
traces show the correlations of the original spikes ξ, which are purely due to stimulus correlations.
The grey lines show the correlations of the recoded spikes ρ. At lag 0 (bottom of the figure), flanks
appear in the crosscorrelations functions, but at greater lags the crosscorrelations are flatter for the
recoded than for the original spikes. Requiring independently decodeable spikes has introduced
instantaneous correlations and flattened the spatial profile of crosscorrelations over time.

5 Discussion

In the present work we have analysed the structure of a Bayesian, optimal decoder in a sim-
ple, analytically tractable model. The results are a direct generalisation of decoding in the static
Gaussian-Poisson encoding model (Snippe and Koenderinck, 1992). We showed that the structure
of the decoder depends on the prior over stimulus trajectories in time; that realistic priors render
decoding hard (nonlocal in time and space) and that an independent recoding exists in which
information is readily available for computational purposes. We are currently working on a bio-
logically plausible network that approximates this recoding and uses the resulting code for flexible
probabilistic computations Zemel et al. (2005); Natarajan et al. (2005).

The main innovation in our work is the nature of the informative prior over stimulus trajectories.
Figure 7 indicates that the exponential prior with ζ = 2 is a good model of natural movements as
they tend to be smooth. Smooth trajectories have power spectra that roll off with (temporal)
frequency f more like a square exponential ∝ exp(−f 2) than the power law ∝ 1/f b which is a
common finding for less structured natural inputs.

Partially as a result of recursive formulations, which do generate power-law spectra, most pre-
vious work has assumed rougth priors within the OU class (Brown et al., 1998; Smith and Brown,
2003; Barbieri et al., 2004; Kemere et al., 2004; Gao et al., 2002). However, Zhang et al. (1998)
use a 2-step Bayesian decoder corresponding to a second-order autoregressive process (AR(2))
with coefficients that fall off as a squared exponentials (their equation 43). This 2-step decoder
performs much better than a 1-step decoder (corresponding to an AR(1) process) on hippocampal

2From the very strong sensitivity of our simulated annealing results to the procedure used to reduce the temperature, we
infer that the optima are not very well-separated, with a number of similar sets of spike trains doing approximately equally
well. We rendered the procedure more global by evaluating, at each step, the decrease in cost that would accompany
switching every spike, and accepting one of the best switches probabilistically.
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place cell data. In terms of applications, such as brain-machine-interfaces, Kemere et al. (2004)
decode from the motor cortex of monkeys making arm movements to one of seven targets. They
show that use of a rich, modular prior consisting of separate priors for movements to each of the
targets greatly improves decoding. In a similar Bayesian vein, we have shown here that correct
treatment of prior temporal structure significantly ameliorates decoding. Figure 14A illustrates
the cost of treating all spikes independently. The differences between inference in the smooth
and OU case (eg the overshoot in figure 8 which is not seen in 4) also indicate qualitatively what
information is lost by applying Kalman-filter like formulations to decoding. How large this effect
is in quantitative terms depends on the exact specifics of the true model. If spikes are dense (ie

the likelihood term in equation 1 dominates), the difference may not be large and an approximate
prior such as the recursive priors used by Brown et al. (1998); Zhang et al. (1998) may suffice.
If spikes are sparse however, the reliance on the prior will be more marked and inference with
the wrong prior more costly. Furthermore, the gains from inference with the correct prior have to
outweigh the cost of estimating the correct prior. The priors here are presumably empirical priors,
inferred from previous experience of the stimulus statistics. While it is sensible to expect nervous
systems to acquire detailed and correct informative priors (Körding and Wolpert, 2004; Körding
et al., 2004), it remains to be seen whether this is a generally feasible for decoding applications
like brain-machine-interfaces.

A number of recent decoding approaches to population coding have looked at Fisher informa-
tion. Fisher information arises from notions of asymptotic normality where there is a great deal of
“data”, ie long spike counting windows and many neurons. In the asymptotic limit, the posterior
distribution is well-approximated by a Gaussian with width (JIF )−1 where J is the number of
data points or spikes in our case. This is a linear expansion where each data point (spike) con-
tributes the same amount 1/IF to the variance of the posterior. By contrast, more like Brunel and
Nadal (1998); Bethge et al. (2002), we have considered the regime far from the asymptotic limit
(albeit with a model which has a permanently Gaussian posterior), where spikes contribute very
varied amounts. Remember that spikes contribute varied amounts because they can contribute
large amounts. As J →∞, each spike contributes infinitesimally small amounts. Nevertheless, by
analogy with the Fisher information, it is possible to study the dependence of the posterior vari-
ance ν2(T ) on the width of the encoding tuning functions σ2 and the dimensionality. In our simple
model, we find results similar to previously reported ones (Snippe and Koenderinck, 1992; Zhang
and Sejnowski, 1999) (data not shown). However, as we are always in the sparse spike limit, only
the information per spike is of relevance, and the posterior variance is strictly increasing in σ, the
width of the encoding tuning functions, independent of the dimensionality. If there were dense
spiking, the population firing rate (Zhang and Sejnowski, 1999; Silberberg et al., 2004; DeCharms
and Zador, 2000; Knight, 1972) might carry enough information to overwhelm any prior.

Two assumptions about the encoding model need to be discussed. Firstly, the bell-shaped form
of the tuning functions is only very roughly realistic. However, the structure of the code depends on
the prior only (see section 3.3), and the shape of the tuning functions does not affect our argument.
The most fundamental change would be that the variance of the posterior would depend not only
on spike timing but also on which neurons emit the spikes, and the posteriors could also become
multimodal in some regimes. Secondly, we assume an instantaneous relationship between the
hazard rate of the inhomogeneous Poisson process and the stimulus. There are two aspects to
this instantaneity: Dependence only on the current stimulus st and independence from the spike
history. The first is easily relaxed if the dependence on the stimulus history can be approximated
by a linear filter (a discrete sum) as generally done in standard spike-triggered averaging. In that
case, the likelihood term 2 is a function of the stimulus at a number of times each of which enters
equation 1, ie each spike contributes as many entries to the covariance matrix as its linear filter
extends in time. However, future work will need to evaluate the impact of history dependence.

Whether brains preferentially utilise independent or more elaborate codes such as correlational
ones is a hotly debated topic (Pouget et al., 2003; DeCharms and Zador, 2000). The focus has
mostly been on noise correlations (which are absent in the present work as we assume indepen-
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dent, inhomogeneous Poisson spiking). Here the correlational nature of the code arises through
the temporal correlations in the input signal, ie we show that natural, smooth, priors induce codes
that have certain computational properties akin to some found in static correlational codes. Fore-
most amongst these is that decoding becomes hard (nonlocal in time) and may impair an animal’s
capacity to perform efficient computation (Zohary et al., 1994; Shadlen et al., 1996).

With efficient coding arguments (Barlow, 1961, 1989; Atick, 1992), this suggest that the early
sensory system should take the prior into account to produce an independently interpretable code.
Nirenberg et al. (2001) analyse the cost of neglecting noise correlations present and thus ask
whether the code is independently interpretable – a question of interest with respect to stimulus
correlations too. As a first step, we have here shown that there exist sets of spikes ρ[0,T ) inde-
pendently interpretable in time that can encode the same distributions as the original spikes ξ[0,T )

. Once each spike can be interpreted according to equation 16, combining information from eg

different modalities (as in multisensory integration (Ernst and Banks, 2002; Hillis et al., 2002) or
sensorimotor integration (Zemel et al., 2005; Körding and Wolpert, 2004)) becomes straightfor-
ward and only requires a multiplication.

We will present neurally plausible implementations of this recoding in a companion paper
(Natarajan et al., 2005). This recoding has the aim of producing spike trains that lack temporal

redundancy and is the dynamic analogue of efficient coding efforts that produce population activ-
ities lacking eg spatial correlations (Srinivasan et al., 1982; Atick, 1992; Nirenberg et al., 2001).
While we here motivate the recoding as a generic manipulation that requires full access to the
encoded information and is implied by any computation efficient in the data, producing indepen-
dently interpretable spikes may arguably be a good objective for an early sensory system. In our
companion paper we also show how the recoded spikes allow neurally plausible spiking networks
to implement probabilistic computations in a straightforward manner (see also Zemel et al., 2005).

Our most pressing lacuna is that we have considered only a simple form of uncertainty – that
arising from sparse and partial observation. In cases such as the aperture problem; (Weiss and
Adelson, 1998), ill-posedness leads to a more fundamental form of uncertainty which appears to
require that distributions be explicitly encoded. While a number of approaches have successfully
addressed these issues in the static case (Anderson, 1994; Barber et al., 2003; Zemel et al., 1998;
Sahani and Dayan, 2003), they are still beyond the current dynamic framework.
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A OU process

Replacing each of the ISI’s by the average value ∆, we get a Kac-Murdock-Szego Toeplitz matrix
for which the analytical inverse is (Dow, 2003):

C = c









1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1









C−1 = c









1 −ρ 0 0
−ρ 1 + ρ2 −ρ 0
0 −ρ 1 + ρ2 −ρ
0 0 −ρ 1









where ρ = exp(−α∆). rewriting equation 8 as k(ξ[0,T ), T ) = CTτC−1
ττ /σ

2(Cττ + I/σ2)−1, we note
that CTτC−1

ττ ≈ δi−1, ie only the first component of this vector is one, all others are zero. The
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second factor

A
−1 = (C + I/σ2) = (a− 1)σ2













a −ρ 0 0 0
−ρ a+ ρ2 −ρ 0 0
0 −ρ a+ ρ2 −ρ 0
0 0 −ρ a+ ρ2 −ρ
0 0 0 −ρ a













where a = c
σ2 e

α∆ + 1. We know A
−1

A = I. Neglecting the pre-factor for a moment, the first
row of A (which is the one of interest) therefore has to satisfy the following recurrence relation:

A2,1 = (aA1,1 − 1)/ρ (24)

Ak+2,1 = (a/ρ+ ρ)Ak+1,1 −Ak,1 for n > 3 (25)

AN,1/AN−1,1 = ρ/a (26)

Equation 25 is a simple two-term linear recurrence equation and can be solved, and equations 24
and 26 give the boundary conditions. The characteristic equation of equation 25 is

r2 − (a/ρ+ ρ)r + 1 = 0 with real roots λ1,2 =
1

2

(

a/ρ+ ρ±
√

(a/ρ+ ρ)2 − 4
)

Including the boundary conditions leads to a solution

An,1 = d1λ
n−1
1 + d2λ

n−1
2

d1 =

(

a− λ1ρ− (a− λ2ρ)
(aλ1 − ρ)
(aλ2 − ρ)

(

λ1

λ2

)N−2
)−1

d2 =
1− d1(a− λ1ρ)

a− λ2ρ

One of the eigenvalues will always be > 1, the other < 1, but both positive. As Cττ is symmetric, so
are A

−1 and A, and the first column of A is equal to its first row which we pick out by premulti-
plying with CTτC−1

ττ . This vector A1,1:N is exactly the sum of two exponentials we saw when using
regular spikes to infer the temporal kernel k(ξ[0,T ), T ) and the nth component of k(ξ[0,T ), T ), kn is
given by

kn = [CTτ (Cττ + Iσ2)−1]n = (a− 1)σ2An,1 = (a− 1)σ2(d1λ
n−1
1 + d2λ

n−1
2 ). (27)

If λ1 is the larger eigenvalue, we see that the corresponding coefficient d1 will be ≈ (λ2/λ1)
N

which is very small. The contribution of the larger λ will grow only very slowly and only be seen
for the very distant spikes. On the other hand, d2 will be ≈ 1/(a − λ2ρ). For all intents and
purposes, the temporal kernel will be decaying exponentially with a negative ’spike time constant’
log λ2. Furthermore, if the second boundary condition (for time 0) is moved to −∞, the result is a
pure exponential. Both the analytical and numerical kernels are plotted in figure 5.

Relaxing the assumption of metronomic spiking, gives a matrix A
−1 which is still tridiagonal,

but the elements of which are not equal. Writing matrix C as

C =









1 a ab abd
a 1 b bd
ab b 1 d
abd bd d 1









C−1 =











1
1−a2 − a

1−a2 0 0

− a
1−a2

1−a2b2

(1−a2)(1−b2) − b
1−b2

0

0 − b
1−b2

1−b2d2

(1−b2)(1−d2) − d
1−d2

0 0 − d
1−d2

1
1−d2











where a = ce−α|t1−t2|, b = ce−α|t2−t3| etc. This lead to a set of equations similar to 25-26, but
including more terms.
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B Autoregressive processes of second and higher order

An nth order Gaussian autoregressive sequence of length T as produced by equation 15 can
be written as a sample from a multivariate normal distribution in the following way: Let b =
[1,−β1,−β2,−β3, · · · , βN ] and let Bt = [0t,β,0T−n−t], where 0t stands for a vector of zeros of
length t. The inverse covariance matrix of the process is given by

C−1 =
T−n−1
∑

t=0

BtBT
t (28)

For the coefficients of b to define a stationary and finite process, C must be Toeplitz. One way of
generating a finite process from the b is by letting the nth derivative of the process evolve as an
OU process

s
(n)
t = β0s

(n)
t−1 + c

√
∆ηt (29)

in which case the coefficients of the vector b are given by

βi = nCi(−β0)
i−1 (30)

where nCi is the binomial coefficient. To enforce stationarity, we have to finally perform a subtrac-
tion:

C−1 =

(

T−1
∑

t=0

BtBT
t

)

−
T
∑

t′=T−n

B−1
t B−T

t (31)

where we abuse notation and B−1 stands for B−1
t = [0t, βN , βN−1, · · · , β1,0T−n−t]
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