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Abstract

Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow
simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling
task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to
deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential
Monte Carlo (‘‘particle filtering’’) methods, in combination with a detailed biophysical description of a cell, are used for
principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where
the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models
(such as channel densities, intercompartmental conductances, input resistances, and observation noise) are inferred
automatically from noisy data via expectation-maximisation. Overall, we find that model-based smoothing is a powerful,
robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of
recording noise.
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Introduction

Recent advances in imaging techniques allow measurements of

time-varying biophysical quantities of interest at high spatial and

temporal resolution. For example, voltage-sensitive dye imaging

allows the observation of the backpropagation of individual

action potentials up the dendritic tree [1–6]. Calcium imaging

techniques similarly allow imaging of synaptic events in

individual synapses. Such data are very well-suited to constrain

biophysically detailed models of single cells. Both the dimension-

ality of the parameter space and the noisy and (temporally and

spatially) undersampled nature of the observed data renders the

use of statistical techniques desirable. Here, we here use

sequential Monte Carlo methods (‘‘particle filtering’’) [7,8]—a

standard machine-learning approach to hidden dynamical

systems estimation—to automatically smooth the noisy data. In

a first step, we will do this while inferring biophysically detailed

models; in a second step, by inferring non-parametric models of

the cellular nonlinearities.

Given the laborious nature of building biophysically detailed

cellular models by hand [9–11], there has long been a strong

emphasis on robust automatic methods [12–19]. Large-scale

efforts (e.g. http://microcircuit.epfl.ch) have added to the need for

such methods and yielded exciting advances. The Neurofitter [20]

package, for example, provides tight integration with a number of

standard simulation tools; implements a large number of search

methods; and uses a combination of a wide variety of cost

functions to measure the quality of a model’s fit to the data. These

are, however, highly complex approaches that, while extremely

flexible, arguably make optimal use neither of the richness of the

structure present in the statistical problem nor of the richness of

new data emerging from imaging techniques. In the past, it has

been shown by us and others [18,21–23] that knowledge of the

true transmembrane voltage decouples a number of fundamental

parameters, allowing simultaneous estimation of the spatial

distribution of multiple kinetically differing conductances; of

intercompartmental conductances; and of time-varying synaptic

input. Importantly, this inference problem has the form of a

constrained linear regression with a single, global optimum for all

these parameters given the data.

None of these approaches, however, at present take the various

noise sources (channel noise, unobserved variables etc.) in

recording situations explicitly into account. Here, we extend the

findings from [23], applying standard inference procedures to well-

founded statistical descriptions of the recording situations in the

hope that this more specifically tailored approach will provide

computationally cheaper, more flexible, robust solutions, and that

a probabilistic approach will allow noise to be addressed in a

principled manner.

Specifically, we approach the issue of noisy observations and

interpolation of undersampled data first in a model-based, and

then in a model-free setting. We start by exploring how an

accurate description of a cell can be used for optimal de-noising

and to infer unobserved variables, such as Ca2+ concentration

from voltage. We then proceed to show how an accurate model of

a cell can be inferred from the noisy signals in the first place; this

relies on using model-based smoothing as the first step of a

standard, two-step, iterative machine learning algorithm known as
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Expectation-Maximisation [24,25]. The ‘‘Maximisation’’ step here

turns out to be a weighted version of our previous regression-based

inference method, which assumed exact knowledge of the

biophysical signals.

Overview
The aim of this paper is to fit biophysically detailed models to

noisy electrophysiological or imaging data. We first give an

overview of the kinds of models we consider; which parameters

in those models we seek to infer; how this inference is affected

by the noise inherent in the measurements; and how standard

machine learning techniques can be applied to this inference

problem. The overview will be couched in terms of voltage

measurements, but we later also consider measurements of

calcium concentrations.

Compartmental models. Compartmental models are

spatially discrete approximations to the cable equation

[13,26,27] and allow the temporal evolution of a compartment’s

voltage to be written as

CmdVx~
X

currentsx tð Þ
h i

dtz
ffiffiffiffi
dt
p

noisex

~
X

i

ax,iJx,i tð Þ
" #

dtz
ffiffiffiffi
dt
p

sNx tð Þ
ð1Þ

where Vx tð Þ is the voltage in compartment x, Cm is the specific

membrane capacitance, and Nx tð Þ is current evolution noise (here

assumed to be white and Gaussian). Note the important factor
ffiffiffiffi
dt
p

which ensures that the noise variance grows linearly with time dt.

The currents ax,iJx,i tð Þ we will consider here are of three types:

N Axial currents along dendrites

Ix,axial~fxy Vy tð Þ{Vx tð Þ
� �

ð2Þ

N Transmembrane currents from active (voltage-dependent),

passive, or other (e.g. Ca2+ -dependent) membrane conduc-

tances

Ix,channel c~gx,cox,c tð Þ Ec{Vx tð Þð Þ ð3Þ

N Experimentally injected currents

Ix,injected~RmIx tð Þ ð4Þ

where c indicates one particular current type (‘‘channel’’), Ec

its reversal potential and gx,c its maximal conductance in

compartment x, Rm is the membrane resistivity and Ix tð Þ is the

current experimentally injected into that compartment. The

variable 0ƒox,c tð Þƒ1 represents the time-varying open

fraction of the conductance, and is typically given by complex,

highly nonlinear functions of time and voltage. For example,

for the Hodgkin and Huxley (HH) K+ -channel, the kinetics

are given by oc tð Þ~n4 tð Þ, with

dn~ an Vð Þ 1{nð Þ{bn Vð Þnð Þdtz
ffiffiffiffi
dt
p

snNn tð Þ ð5Þ

and an Vð Þ,bn Vð Þ themselves nonlinear functions of the

voltage [28] and we again have an additive noise term. In

practice, the gate noise is either drawn from a truncated

Gaussian, or one can work with the transformed variable

~nn tð Þ~tanh{1 2n{1ð Þ. Similar equations can be formulated

for other variables such as the intracellular free Ca2+

concentration [27].

Noiseless observations. A detailed discussion of the case

when the voltage is observed approximately noiselessly (such as with

a patch-clamp electrode) is presented in [23] (see also [18,21,22]).

We here give a short review over the material on which the present

work will build. Let us henceforth assume that all the kinetics (such

as an Vð Þ) of all conductances are known. Once the voltage is

known, the kinetic equations can be evaluated to yield the open

fraction oc tð Þ of each conductance c of interest. We further assume

knowledge of the reversal potentials Ec, although this can be

relaxed, and of the membrane specific capacitance Cm (which is

henceforth neglected for notational clarity and fixed at 1 nF/cm2;

see [29] for a discussion of this assumption).

Knowledge of channel kinetics and voltage in each of the cell’s

compartments allows inference of the linear parameters

fxy,gc,x,Rm and of the noise terms by constrained linear regression

[23]. As an example, consider a single-compartment cell

containing one active (Hodgkin-Huxley K+) and one leak

conductance and assume the voltage Vt has been recorded at

sampling intervals dt for a time period of Ttotal. Let T~Ttotal=dt
be the number of data points and t index them successively

t~ 1, � � � ,Tf g:

Vtz1{Vt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dVt

~ gK|{z}
a1

n4
t Ek{Vtð Þdt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Jt,1

z gL|{z}
a2

EL{Vtð Þdt|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Jt,2

z Rm|{z}
a3

Itdt|{z}
Jt,3

zs
ffiffiffiffi
dt
p

NI ,t

~Jt
:azs

ffiffiffiffi
dt
p

NI ,t

ð6Þ

where we see that only gK , gL and Rm are now unknown; that they

mediate the linear relationship between dVt and Jt; and that these

parameters can be concatenated into a vector a as illustrated in

equation 6. The maximum likelihood (ML) estimate of a (in

vectorized form) and of s2 are given by

Author Summary

Cellular imaging techniques are maturing at a great pace,
but are still plagued by high levels of noise. Here, we
present two methods for smoothing individual, noisy
traces. The first method fits a full, biophysically accurate
description of the cell under study to the noisy data. This
allows both smoothing of the data and inference of
biophysically relevant parameters such as the density of
(active) channels, input resistance, intercompartmental
conductances, and noise levels; it does, however, depend
on knowledge of active channel kinetics. The second
method achieves smoothing of noisy traces by fitting
arbitrary kinetics in a non-parametric manner. Both
techniques can additionally be used to infer unobserved
variables, for instance voltage from calcium concentration.
This paper gives a detailed account of the methods and
should allow for straightforward modification and inclu-
sion of additional measurements.

Smoothing Biophysical Data
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âaML: argmax
a

p Vtf gT
t~1

��a� �
~ argmax

a
log p Vtf gT

t~1

��a� �

~ argmax
a

{
XT{1

t~1

dVt{Jtað Þ2

2dts2
zconst:

" #

~ argmin
a

dV{Jak k2 s:t: ai§0 Vi

ð7Þ

ŝs2
ML~

1

T{1
dV{JâaMLk k2 ð8Þ

where xk k2
~
P

i x2
i . Note that the last equality in equation 7

expresses the solution of the model fitting problem as a quadratic

minimization with linear constraints on the parameters and is

straightforwardly performed with standard packages such as

quadprog.m in Matlab. The quadratic log-likelihood in equation

7 and therefore the linear form of the regression depends on the

assumption that the evolution noise NI ,t of the observed variable

in equation 6 is Gaussian white noise. Parameters that can be

simultaneously inferred in this manner from the true voltage trace

are g, f , Rm, time-varying synaptic input strengths and the

evolution noise variances [23].

In the following, we will write all the dynamical equations as

simultaneous equations

dht~y htð Þdtz
ffiffiffiffiffiffiffiffi
Sdt
p

Nt ð9Þ

where Sii is the evolution noise variance of the ith dynamic

variable, Sij~0 if i=j and Nt denotes a vector of independent,

identically distributed (iid) random variables. These are Gaussian

for unconstrained variables such as the voltage, and drawn from

truncated Gaussians for constrained variables such as the gates.

For the voltage we have yV htð Þ~Jta=dt and we remind ourselves

that Jt is a function of ht (equation 6).

Observation noise. Most recording techniques yield

estimates of the underlying variable of interest that are much

more noisy than the essentially noise-free estimates patch-

clamping can provide. Imaging techniques, for example, do not

provide access to the true voltage which is necessary for the

inference in equation 7. Figure 1 describes the hidden dynamical

system setting that applies to this situation. Crucially,

measurements yt are instantaneously related to the underlying

voltage Vt by a probabilistic relationship (the turquoise arrows in

Figure 1) which is dependent on the recording configuration.

Together, the model of the observations, combined with the

(Markovian) model of the dynamics given by the compartmental

model define the following hidden dynamical system:

Dynamics model p htjht{1,hð Þ~N ht
ht{1zy htð Þdt,Sdtð Þ ð10Þ

Observation model p ytjht,hð Þ~N yt
Pht,s

2
Odt

� �
ð11Þ

where N x m,vð Þ denotes a Gaussian or truncated Gaussian

distribution over x with mean m and variance v and Pht

denotes the linear measurement process (in the following simply a

linear projection such that Pht~Vt or Pht~ Ca2z
� 	

t
). We assume

Gaussian noise both for the observations and the voltage; and

truncated Gaussian noise for the gates. The Gaussian assumption

on the evolution noise for the observed variable allows us to use a

simple regression (equation 7) in the inference of the channel

densities. Note that although the noise processes are i.i.d., the fact

that noise is injected into all gates means that the effective noise in

the observations can show strong serial correlations.

Importantly, we do not assume that h bas the same

dimensionality as y; in a typical cellular setting, there are several

unobserved variables per compartment, only one or a few of them

being measured. For Figure 2, which illustrates the particle filter

for a single-compartment model with leak, Na+ and K+ Hodgkin-

Huxley conductances, only Pht~Vt is measured, although the

hidden variable ht~ Vt,ht,mt,ntf g is 4-dimensional and includes

the three gates for the Na+ and K+ channels in the classical

Hodgkin-Huxley model. It is, however, possible to have y of

dimensionality equal to (or even greater than) h. For example, [5]

simultaneously image voltage- and [Ca2+]-sensitive dyes.

Expectation-Maximisation
Expectation-Maximisation (EM) is one standard machine-

learning technique that allows estimation of parameters in

precisely the circumstances just outlined, i.e. where inference

depends on unobserved variables and certain expectations can be

evaluated. The EM algorithm achieves a local maximisation of the

data likelihood by iterating over two steps. For the case where

voltage is recorded, it consists of:

1. Expectation step (E-Step): The parameters are fixed at their

current estimate hf ~ĥhk; based on this (initally inaccurate)

parameter setting, the conditional distribution of the hidden

variables p htjy1:T ; hf

� �
(where y1:T~ ytf g

T
t~1 are all the

observations) is inferred. This effectively amounts to model-

based smoothing of the noisy data and will be discussed in the

first part of the paper.

2. Maximisation step (M-Step): Based on the model-based

estimate of the hidden variables p htjy1:T ; hf

� �
, a new estimate

of the parameters ĥhkz1 is inferred, such that it maximises the

expected joint log likelihood of the observations and the inferred

Figure 1. Hidden dynamical system. The dynamical system
comprises the hidden variables h tð Þ and evolves as a Markov chain
according to the compartmental model and kinetic equations. The
dynamical system is hidden, because only noisy measurements of the
true voltage are observed. To perform inference, one has to take the
observation process p ytjht,hð Þ into account. Inference is now possible
because the total likelihood of both observed and unobserved
quantities given the parameters can be expressed in terms of these
two probabilistic relations.
doi:10.1371/journal.pcbi.1000379.g001

Smoothing Biophysical Data
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distribution over the unobserved variables. This procedure is a

generalisation of parameter inference in the case mentioned in

equation 7, where the voltage was observed noiselessly.

The EM algorithm can be shown to increase the likelihood of

the parameters at each iteration [24,25,30,31], and will typically

converge to a local maximum. Although in combination with the

Monte-Carlo estimation these guarantees no longer hold, in

practice, we have never encountered nonglobal optima.

Methods

Model-based smoothing
We first assume that the true parameters h are known, and in

the E-step infer the conditional marginal distributions p htjy1:T ,hð Þ
for all times t. The conditional mean ShtT~

Ð
dhthtp htjy1:T ,hð Þ is

a model-based, smoothed estimate of the true underlying signal ht

at each point in time t which is optimal under mean squared error.

The E-step is implemented using standard sequential Monte Carlo

techniques [7]. Here we present the detailed equations as applied

to noisy recordings of cellular dynamic variables such as the

transmembrane voltage or intracellular calcium concentration.

The smoothed distribution p htjy1:T ,hð Þ is computed via a

backward recursion which relies on the filtering distribution

p htjy1:t,hð Þ, which in turn is inferred by writing the following

recursion (suppressing the dependence on h for clarity):

p htjy1:tð Þ!p ytjhtð Þp htjy1:t{1ð Þ

~p ytjhtð Þ
ð

dht{1p htjht{1ð Þp ht{1jy1:t{1ð Þ
ð12Þ

This recursion relies on the fact that the hidden variables are

Markovian

p htjh1, � � � ,ht{1ð Þ~p htjht{1ð Þ ð13Þ

Based on this, the smoothed distribution, which gives estimates of the

hiddenvariables that incorporate all, not just thepast, observations, can

then be inferred by starting with p hT jy1:Tð Þ and iterating backwards:

p htjy1:Tð Þ~
ð

dhtz1p ht,htz1jy1:Tð Þ

~

ð
dhtz1 p htz1jy1:Tð Þ p htz1jhtð Þp htjy1:tð ÞÐ

dh’t p htz1jh’tð Þp h’tjy1:tð Þ

ð14Þ

where all quantities inside the integral are now known.

Figure 2. Model-based smoothing. A: Data; generated by adding Gaussian noise (sO = 30 mV) to the voltage trace and subsampling every seven
timesteps (D= 0.02 ms and Ds = 0.14 ms). The voltage trace was generated by running the equation 1 for the single compartment with the correct
parameters once and adding noise of variance sO . B: Voltage paths corresponding to the N~30 particles which were run with the correct, known
parameters. C: Effective particle number Neff . As soon as enough particles have ‘drifted’ away from the data (Neff reaches the threshold N=2), a
resampling step eliminates the stray particles (they are reset to a particle with larger weight) all weights are reset to 1=N and the effective number
returns to N . D: expected voltage trace V̂Vt~

P
i w

ið Þ
t V

ið Þ
t +1 st. dev. in shaded colours. The mean reproduces the underlying voltage trace with high

accuracy. E: Conditional expectations for the gates of the particles (mean 61 st. dev.); blue: HH m-gate; green: HH h-gate; red: HH n-gate. Thus, using
model-based smoothing, a highly accurate estimate of the underlying voltage and the gates can be recovered from very noisy, undersampled data.
doi:10.1371/journal.pcbi.1000379.g002
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Sequential Monte Carlo
The filtering and smoothing equations demand integrals over

the hidden variables. In the present case, these integrals are not

analytically tractable, because of the complex nonlinearities in the

kinetics y :ð Þ. They can, however, be approximated using

Sequential Monte Carlo methods. Such methods (also known as

‘‘particle filters’’) are a special version of importance sampling, in

which distributions and expectations are represented by weighted

samples x ið Þ
 �N

i~1

p xð Þ&
XN

i~1

w ið Þd x{x ið Þ
� �

ð
dx p xð Þx~SxTp xð Þ&

X
i

w ið Þx ið Þ

with 0ƒw ið Þ
ƒ1,

P
i w ið Þ~1. If samples are drawn from the

distribution p xð Þ directly, the weights w~w ið Þ~1=N Vi. In the

present case, this would mean drawing samples from the

distributions p htjy1:tð Þ and p htjy1:Tð Þ, which is not possible

because they themselves depend on integrals at adjacent timesteps

which are hard to evaluate exactly. Instead, importance sampling

allows sampling from a different ‘‘proposal’’ distribution

x ið Þ*q xð Þ and compensating by setting w ið Þ~p x ið Þ� ��
q x ið Þ� �

.

Here, we first seek samples and forward filtering weights w
ið Þ

f such

that

p htjy1:tð Þ&
X

i

w
ið Þ

f ,td h ið Þ
t{ht

� �
ð15Þ

and based on these will then derive backwards, smoothing weights

such that

p htjy1:Tð Þ&
X

i

w
ið Þ

s,t d h ið Þ
t{ht

� �
: ð16Þ

Substituting the desideratum in equation 15 for time t{1 into

equation 12

p htjy1:tð Þ~p ytjhtð Þ
ð

dht{1p htjht{1ð Þp ht{1jy1:t{1ð Þ

&p ytjhtð Þ
X

j

w
jð Þ

f ,t{1p htjht{1
ðjÞ

� � ð17Þ

As a proposal distribution for our setting we use the one-step

predictive probability distribution (derived from the Markov

property in equation 13):

h
ið Þ

t *q htð Þ~p htjh ið Þ
t{1

� �
ð18Þ

where h
ið Þ

1:T is termed the ith ‘‘particle’’. The samples are made to

reflect the conditional distribution by adjusting the weights, for

which the probabilities p h
ið Þ

t

���y1:t

� �
need to be computed. These

are given by

p h
ið Þ

t

���y1:t

� �
&p ytjh

ið Þ
t

� �X
j

w
jð Þ

f ,t{1p h
ið Þ

t

���h jð Þ
t{1

� �

which involves a sum over p h
ið Þ

t

���h jð Þ
t{1

� �
that is quadratic in N . We

approximate this by

p h
ið Þ

t

���y1:t

� �
&p ytjh

ið Þ
t

� �
p h

ið Þ
t

���h ið Þ
t{1

� �
w

ið Þ
f ,t{1 ð19Þ

which neglects the probability that the particle i at time t could in

fact have arisen from particle j at time t{1. The weights for each

of the particles are then given by a simple update equation:

w
� ið Þ
f ,t ~w

ið Þ
f ,t{1p ytjh

ið Þ
t

� �
ð20Þ

w
ið Þ

f ,t~
w
� ið Þ
f ,tP

j w
� jð Þ
f ,t

ð21Þ

One well-known consequence of the approximation in equations

19–21 is that over time, the variance of the weights becomes large;

this means that most particles have negligible weight, and only one

particle is used to represent a whole distribution. Classically, this

problem is prevented by resampling, and we here use stratified

resampling [8]. This procedure, illustrated in Figure 2, results in

eliminating particles that assign little, and duplicating particles that

assign large likelihood to the data whenever the effective number of

particles Neff drops below some threshold, here Neff~N=2.

It should be pointed out that it is also possible to interpolate

between observations, or to do learning (see below) from

subsampled traces. For example, assume we have a recording

frequency of 1=Ds but wish to infer the underlying signal at a

higher frequency 1=D, with DsƒD. At time points without

observation the likelihood term in equation 21 is uninformative

(flat) and we therefore set

w
ið Þ

f ,t~w
ið Þ

f ,t{1 ð22Þ

keeping equation 21 for the remainder of times. In this paper, we

will run compartmental models (equation 1) at sampling intervals

D, and recover signals to that same temporal precision from data

subsampled at intervals Ds§D. See e.g. [32] for further details on

incorporating intermittently-sampled observations into the alter-

native predictive distribution p htjh ið Þ
t{1,yt

� �
.

We have so far derived the filtering weights such that particles

are representative of the distribution conditioned on the past data

p htjy1:t,hð Þ. It often is more appropriate to condition on the entire

set of measurements, i.e. represent the distribution p htjy1:T ,hð Þ.
We will see that this is also necessary for the parameter inference

in the M-step. Substituting equations 15 and 16 into equation 14,

we arrive at the updates for the smoothing weights

w
ijð Þ

s,tz1,t~w
ið Þ

s,tz1

p h
ið Þ

tz1

���h ið Þ
t

� �
w

jð Þ
f ,tP

k

p h
ið Þ

tz1

���h kð Þ
t

� �
w

kð Þ
f ,t

w
jð Þ

s,t ~
X

i

w
ijð Þ

s,tz1,t

where the weights w
ijð Þ

s,tz1,t now represent the joint distribution of

the hidden variables at adjacent timesteps:

Smoothing Biophysical Data
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p ht,htz1jy1:Tð Þ&
X

i

X
j

w
ijð Þ

s,tz1,td h
ið Þ

tz1{htz1

� �
d h

jð Þ
t {ht

� �
:

Parameter inference
The maximum likelihood estimate of the parameters can be

inferred via a maximisation of an expectation over the hidden

variables:

ĥhML: argmax
h

p y1:T jhð Þ~ argmax
h

ð
dh1:T p y1:T ,h1:T jhð Þ,

where h1:T~ htf gT
t~1. This is achieved by iterating over the two

steps of the EM algorithm. In the M-step of the kth iteration, the

likelihood of the entire set of measurements y1:T with respect to

the parameters h is maximised by maximising the expected total

log likelihood [25]

ĥhkz1~ argmax
h

Slog p y1:T ,h1:T jhð ÞTp h1:T jy1:T ,hfð Þ,

which is achieved by setting the gradients with respect to h to zero

(see [31,33] for alternative approaches). For the main linear

parameters we seek to infer in the compartmental model

(a~ fxy,g,Rm


 �
), these equations are solved by performing a

constrained linear regression, akin to that in equation 7. We write

the total likelihood in terms of the dynamic and the observation

models (equations 10 and 11):

p y1:T ,h1:T jhð Þ~p h1jhð Þ P
T{1

t~1
p htz1jht,hð Þ

 �
P
T

t~1
p ytjht,hð Þ

 �

Let us assume that we have noisy measurements of the voltage.

Because the parametrisation of the evolution of the voltage is

linear, but that of the other hidden variables is not, we separate the

two as h~ V ,~hh
� 	

where ~hh are the gates of the conductances

affecting the voltage (a similar formulation can be written for

[Ca2+] observations). Approximating the expectations by the

weighted sums of the particles defined in the previous section, we

arrive at
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where xk k2
C~ 1

2
xTC{1x, m1 and S1 parametrise the distribution

p h1ð Þ over the initial hidden variables at time t~1, and J
jð Þ

t is the

tth row of the matrix J jð Þ derived from particle j. Note that
because we are not inferring the kinetics of the channels, the
evolution term for the gates (a sum over terms of the form

w
ijð Þ

s,tz1,t
~hh

ið Þ
tz1{

~hh
jð Þ

t {y h
jð Þ

t

� �
dt

��� ���2

~SS
) is a constant and can be

neglected. Now setting the gradients of equation 23 with respect

to the parameters to zero, we find that the linear parameters can

be written, as in equation 7, as a straightforward quadratic

minimisation with linear constraints

â~arg min
a

aTHa{2fTa s:t: ai§0Vi
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where we see that the Hessian H and the linear term f of the

problem are given by an expectation involving the particles.

Importantly, this is still a quadratic optimisation problem with

linear constraints, and which is efficiently solved by standard

packages. Similarly, the initialisation parameters for the unob-

served hidden variables are given by

m̂m1~
X

i

w
ið Þ

s,1h
ið Þ

1

ŜS1~
X

i

w
ið Þ

s,1 h
ið Þ

1 {m̂m1

� �
h

ið Þ
1 {m̂m1

� �T

which are just the conditional mean and variance of the particles

at time t~1; and the evolution and observation noise terms finally

by

ŝs2~
1

T{1ð Þdt

XT{1

t~1
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w
ijð Þ

s,tz1,t V
ið Þ

tz1{V
jð Þ

t {J
jð Þ

t a
� �2
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Thus, the procedure iterates over running the particle smoother in

section Sequential Monte Carlo and then inferring the optimal

parameters from the smoothed estimates of the unobserved

variables.

Results

Model-based smoothing
We first present results on model-based smoothing. Here, we

assume that we have a correct description of the parameters of the

cell under scrutiny, and use this description to infer the true

underlying signal from noisy measurements. These results may be

considered as one possible application of a detailed model.

Figure 2A shows the data, which was generated from a known,

single-compartment cell with Hodgkin-Huxley-like conductances

by adding Gaussian noise. The variance of the noise was chosen to

replicate typical signal-to-noise ratios from voltage-dye experi-

ments [2]. Figure 2B shows the N~30 particles used here, and

Figure 2C the number of particles with non-negligible weights (the

‘‘effective’’ number Neff of particles). We see that when Neff hits a

threshold of N=2, resampling results in large jumps in some

particles. At around 3 ms, we see that some particles, which

produced a spike at a time when there is little evidence for it in the

data, are re-set to a value that is in better accord with the data.

Smoothing Biophysical Data
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Figure 2D shows the close match between the true underlying

signal and the inferred mean V̂Vt~
P

i w
ið Þ

f ,tV
ið Þ

t , while Figure 2E

shows that even the unobserved channel open fractions are

inferred very accurately. The match for both the voltage and the

open channel fractions improves with the number of particles.

Code for the implementation of this smoothing step is available

online at http://www.gatsby.ucl.ac.uk/,qhuys/code.html.

For imaging data, the laser often has to be moved between

recording locations, leading to intermittent sampling at any one

location (see [34–36]). Figure 3 illustrates the performance of the

model-based smoother both for varying noise levels and for

temporal subsampling. We see that even for very noisy and highly

subsampled data, the spikes can be recovered very well.

Figure 4 shows a different aspect of the same issue, whereby the

laser moves linearly across an extended linear dendrite. Here,

samples are taken every Ds timesteps, but samples from each

individual compartment are only obtained each NcompDs. The

true voltage across the entire passive dendrite is shown in

Figure 4A, and the sparse data points distributed over the dendrite

are shown in panel B. The inferred mean in panel C matches the

true voltage very well. For this passive, linear example, the

equations for the hidden dynamical system are exactly those of a

Kalman smoother model [37]; thus the standard Kalman

smoother performs the correct spatial and temporal smoothing

once the parameters are known, with no need for the more general

(but more computationally costly) particle smoother introduced

above. More precisely, in this case the integrals in equations 12

and 14 can be evaluated analytically, and no sampling is necessary.

The supplemental video S1 shows the results of a similar linear

(passive-membrane) simulation, performed on a branched simu-

lated dendrite (instead of the linear dendritic segment illustrated in

Figure 4).

We emphasize that the strong performance of the particle

smoother and the Kalman smoother here should not be surprising,

since the data were generated from a known model and in these

cases these methods perform smoothing in a statistically optimal

manner. Rather, these results should illustrate the power of using

an exact, correct description of the cell and its dynamics.

EM – inferring cellular parameters
We have so far shown model-based filtering assuming that a full

model of the cell under scrutiny is available. Here, we instead infer

some of the main parameters from the data; specifically the linear

parameters f ,gc,Rm, the observation noise sO and the evolution

noise s. We continue to assume, however, that the kinetics of all

channels that may be present in the cell are known exactly (see

[23] for a discussion of this assumption).

Figure 5 illustrates the inference for a passive multicompart-

mental model, similar to that in Figure 4, but driven by a square

current injection into the second compartment. Figure 5B shows

statistics of the inference of the leak conductance maximal

density gL, the intercompartmental conductance f , the input

resistance Rm and the observation noise sO across 50 different

randomly generated noisy voltage traces. All the parameters are

reliably recovered from 2 seconds of data at a 1 ms sampling

frequency.

Figure 3. Performance of the model-based smoother with varying observation noise sO and temporal subsampling Ds. True
underlying voltage trace in dashed black lines, the N~20 particles in gray and the data in black circles. Accurate inference of underlying voltage
signals, and thus of spike times, is possible with accurate descriptions of the cell, over a wide range of noise levels and even at low sampling
frequencies.
doi:10.1371/journal.pcbi.1000379.g003
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We now proceed to infer channel densities and observation

noise from active compartments with either four or eight channels.

Figure 6 shows an example trace and inference for the four

channel case (using Hodgkin-Huxley like channel kinetics). Again,

we stimulated with square current pulses. Only 10 ms of data were

recorded, but at a very high temporal resolution Ds =D= 0.02 ms.

We see that both the underlying voltage trace and the channel and

input resistance are recovered with high accuracy. Figure 7

presents batch data over 50 runs for varying levels of observation

noise sO. The observation noise here has two effects: first, it slows

down the inference (as every data point is less informative), but

secondly the variance across runs increases with increasing noise

(although the mean is still accurate). For illustration purposes, we

started the maximal K+ conductance at its correct value. As can be

seen, however, the inference initially moves gK away from the

optimum, to compensate for the other conductance misestima-

tions. (This nonmonotonic behavior in gK is a result of the fact that

the EM algorithm is searching for an optimal setting of all of the

cell’s conductance parameters, not just a single parameter; we will

return to this issue below.)

Parametric inference here has so far employed densely sampled

traces (see Figure 6A). The algorithm however applies equally to

subsampled traces (see equation 22). Figure 8 shows the effect of

subsampling. We see that subsampling, just as noise, slows down

the inference, until the active conductances are no longer inferred

accurately (the yellow trace for Ds = 0.5 ms). In this case, the total

recording length of 10 ms meant that inference had to be done

based on one single spike. For longer recordings, information

about multiple spikes can of course be combined, partially

alleviating this problem; however, we have found that in highly

active membranes, sampling frequencies below about 1 KHz led

to inaccurate estimates of sodium channel densities (since at slower

sampling rates we will typically miss significant portions of the

upswing of the action potential, leading the EM algorithm to

underestimate the sodium channel density). Note that we kept the

length of the recording in Figure 8 constant, and thus subsampling

reduced the total number of measurements.

As with any importance sampling method, particle filtering is

known to suffer in higher dimensions [38]. To investigate the

dependence of the particle smoother’s accuracy on the dimen-

sionality of the state space, we applied the method to a

compartment with a larger number of channels: fast (Naf ) and

persistent Na+ (NaP) channels in addition to leak (L) and delayed

rectivier (KDR), A-type (KA), K2-type (K2) and M-type (KM ) K+

channels (channel kinetics from ModelDB [39], from [9,40]).

Figure 9 shows the evolution of the channel intensities during

inference. Estimates of most channel densities are correct up to a

factor of approximately 2. Unlike in the previous, smaller example,

as either observation noise or subsampling increase, significant

biases in the estimation of channel densities appear. For instance,

the density of the fast sodium channel observed with noise of

standard deviation 20 mV is only about half the true value.

Figure 4. Inferring spatiotemporal voltage distribution from scanning, intermittent samples. A: True underlying voltage signal as a
function of time for all 15 compartments. This was generated by injecting white noise current into a passive cell containing 50 linearly arranged
compartments. B: Samples obtained by scanning repeatedly along the dendrite. The samples are seen as diagonal lines extending downwards, ie
each compartment was sampled in sequence, overall 10 times and 25 ms apart. Note that the samples were noisy (sO = 3.16 mV). C: Conditional
expected voltage time course for all compartments reconstructed by Kalman smoothing. The colorbar indicates the voltage for all three panels. Note
that even though there is only sparse data over time and space, a smooth version of the full spatiotemporal pattern is recovered. D: Variance of
estimated voltage. It is smallest at the observation times and rapidly reaches a steady state between observations. Due to the smoothing, which takes
future data into account, the variance diminishes ahead of observations.
doi:10.1371/journal.pcbi.1000379.g004
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It is worth noting that this bias problem is not observed in the

passive linear case, where the analytic Kalman smoother suffices to

perform the inference: we can infer the linear dynamical

parameters of neurons with many compartments, as long as we

sample information from each compartment [23]. Instead, the

difficulty here is due to multicollinearity of the regression

performed in the M-step of the EM algorithm and to the fact

that the particle smoother leads to biased estimation of covariance

parameters in high-dimensional cases [38]. We will discuss some

possible remedies for these biases below.

Somewhat surprisingly, however, these observed estimation

biases do not prove catastrophic if we care about predicting or

smoothing the subthreshold voltage. Figure 10A compares the

response to a new, random, input current of a compartment with

the true parameters to that of a compartment with parameters as

estimated during EM inference, while Figure 10B shows an

example prediction with S V{Vestj jT&3 mV. Note the large

plateau potentials after the spikes due to the persistent sodium

channel NaP. We see that even the parameters as estimated under

high noise accurately come to predict the response to a new,

previously unseen, input current. The asymptote in Figure 10A is

determined by the true evolution noise level (here s = 1 mV): the

more inherent noise, the less a response to a specific input is

actually predictable.

Some further insight into the problem can be gained by looking

at the structure of the Hessian of the total likelihood H around the

true parameters. We estimate H by running the particle smoother

with a large number of particles once at the true parameter value;

more generally, one could perform a similar analysis about the

inferred parameter setting to obtain a parametric bootstrap

estimate of the posterior uncertainty. Figure 11 shows that,

around the true value, changes in either the fast Na+ or the

Figure 5. Inferring biophysical parameters from noisy measurements in a passive cell. A: True voltage (black) and noisy data (grey dots)
from the 5 compartments of the cell with noise level sO = 10 mV. B–E: Parameter inference with EM. Each panel shows the average inference time
course6one st. dev. of one of the cellular parameters. B: Leak conductance; C: intercompartmental conductance; D: input resistivity; E: Observation
noise variance. The grey dotted line shows the true values. The coloured lines show the inference for varying levels of noise sO . Blue: sO = 1 mV,
Green: sO = 5 mV, Red: sO = 10 mV, Cyan: sO = 20 mV, Magenta: sO = 50 mV. Throughout Ds = 1 ms = 10D. Note that accurate estimation of the leak,
input resistance and noise levels is even possible when the noise is five times as large as that shown in panel A. Inference of the intercompartmental
conductance suffers most from the added noise because the small intercompartmental currents have to be distinguished from the apparent currents
arising from noise fluctuations in the observations from neighbouring compartments. Throughout, the underlying voltage was estimated highly
accurately (data not shown), which is also reflected in the accurate estimates of sO.
doi:10.1371/journal.pcbi.1000379.g005
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K2-type K+ channel have the least effect; i.e., the curvature in the

loglikelihood is smallest in these directions, indicating that the

observed data does not adequately constrain our parameter

estimates in these directions, and prior information must be used

to constrain these estimates instead. This explains why these

channels showed disproportionately large amounts of inference

variability, and why the prediction error did not suffer catastroph-

ically from their relatively inaccurate inference (Figure 10A). See

[23] for further discussion of this multicollinearity issue in large

multichannel models.

Figure 6. Example inference for single compartment with active conductances. A: Noisy data, sO = 10 mV; B: True underlying voltage
(black dashed line) resulting from current pulse injection shown in E. The gray trace shows the mean inferred voltage after inferring the paramter
values in C. C: Initial (blue +) and inferred parameter values (red 6) in percent relative to true values (gray bars ḡNa = 120 mS/cm2, ḡK = 20 mS/cm2,
ḡLeak = 3 mS/cm2, Rm = 1 mS/cm2). At the initial values the cell was non-spiking. D: Magnified view showing data, inferred and true voltage traces for
the first spike. Thus, despite the very high noise levels and an initially inaccurate, non-spiking model of the cell, knowledge of the channel kinetics
allows accurate inference of the channel densities and very precise reconstruction of the underlying voltage trace.
doi:10.1371/journal.pcbi.1000379.g006

Figure 7. Time course of parameter estimation with HH channels. The four panels show, respectively, the inference for the conductance
parameters A: gNa B: gK C: gL and D: Rm. The thick coloured lines indicate the mean over 50 data samples and the shaded areas 1 st. dev. The colours
indicate varying noise levels sO. Blue: sO = 1 mV, Green: sO = 5 mV, Red: sO = 10 mV, Cyan: sO = 20 mV. The true parameters are indicated by the
horizontal gray dashed lines. Throughout Ds =D= 0.02 ms. The main effect of increasing observation noise is to slow down the inference. In addition,
larger observation noise also adds variance to the parameter estimates. Throughout, only 10 ms of data were used.
doi:10.1371/journal.pcbi.1000379.g007
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Estimation of subthreshold nonlinearity by
nonparametric EM

We saw in the last section that as the dimensionality of the state

vector ht grows, we may lose the ability to simultaneously estimate

all of the system parameters. How can we deal with this issue? One

approach is to take a step back: in many statistical settings we do

not care primarily about estimating the underlying model

parameters accurately, but rather we just need a model that

predicts the data well. It is worth emphasizing that the methods we

have intrduced here can be quite useful in this setting as well. As

an important example, consider the problem of estimating the

subthreshold voltage given noisy observations. In many applica-

tions, we are more interested in a method which will reliably

extract the subthreshold voltage than in the parameters underlying

the method. For example, if a linear smoother (e.g., the Kalman

smoother discussed above) works well, it might be more efficient

and stable to stick with this simpler method, rather than

attempting to estimate the parameters defining the cell’s full

complement of active membrane channels (indeed, depending on

the signal-to-noise ratio and the collinearity structure of the

problem, the latter goal may not be tractable, even in cases where

the voltage may be reliably measured [23]).

Of course, in many cases linear smoothers are not appropriate.

For example, the linear (Kalman) model typically leads to

oversmoothing if the voltage dynamics are sufficiently nonlinear

(data not shown), because action potentials take place on a much

faster timescale than the passive membrane time constant. Thus it

is worth looking for a method which can incorporate a flexible

nonlinearity and whose parameters may not be directly interpret-

able biophysically but which nonetheless leads to good estimation

of the signal of interest. We could just throw a lot of channels into

the mix, but this increases the dimensionality of the state space,

hurting the performance of the particle smoother and leading to

multicollinearity problems in the M-step, as illustrated in the last

subsection.

A more promising approach is to fit nonlinear dynamics

directly, while keeping the dimensionality of the state space as

small as possible. This has been a major theme in computational

neuroscience, where the reduction of complicated multichannel

models into low-dimensional models, useful for phase plane

analysis, has led to great insights into qualitative neural dynamics

[26,41].

As a concrete example, we generated data from a strongly

nonlinear (Fitzhugh-Nagumo) two-dimensional model, and then

attempted to perform optimal smoothing, without prior knowledge

of the underlying voltage nonlinearity. We initialized our analysis

with a linear model, and then fit the nonlinearity nonparame-

trically via a straightforward nonparametric modification of the

EM approach developed above.

In more detail, we generated data from the following model

[41]:

dVt~ 1=tVð Þ f Vtð Þ{utzItð Þdtz
ffiffiffiffi
dt
p

sV NV tð Þ ð25Þ

dut~{ 1=twð Þutdtz
ffiffiffiffi
dt
p

suNu tð Þ, ð26Þ

where the nonlinear function f Vð Þ is cubic in this case, and Nu tð Þ
and NV tð Þ denote independent white Gaussian noise processes.

Figure 8. Subsampling slows down parametric inference. Inference of the same parameters as in previous Figure (A: Rm , B: gNa, C: gK , D:
gLeak), but the different colours now indicate increasing subsampling. Particles evolved at timesteps of D= 0.04 ms. The coloured traces inference
with show sampling timesteps of Ds = {0.01,0.02,0.05,0.1,0.5} ms respectively. All particles were run with a D= 0.01 ms timestep, and the total
recording was always 10 ms long, meaning that progressive subsampling decreased the total number of data points. Thus, it can be seen that
parameter inference is quite relatively to undersampling. At very large subsampling times, 10 ms of data supplied too few observations during a
spike to justify inference of high levels of Na+ and K+ conductances, but the input resistance and the leak were still reliably and accurately inferred.
doi:10.1371/journal.pcbi.1000379.g008
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Then, given noisy observations of the voltage Vt (Figure 12, left

middle panel), we used a nonparametric version of our EM

algorithm to estimate f Vð Þ. The E-step of the EM algorithm is

unchanged in this context: we compute E VtjYð Þ and E utjYð Þ,
along with the other pairwise sufficient statistics, using our

standard particle forward-backward smoother, given our current

estimate of f Vð Þ. The M-step here is performed using a penalized

spline method [42]: we represent f Vð Þ as a linearly weighted

combination of fixed basis functions fi Vð Þ:

f Vð Þ~
X

k

hkfk Vð Þ,

and then determine the optimal weights h by maximum penalized

likelihood:

ĥh~arg min
h

1

2s2
V dt

X
t

X
ij

w
ijð Þ

s,tz1,t V
ið Þ

tz1{V
jð Þ

t
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t zItz
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 !2

dV :

The first term here corresponds to the expected complete

loglikelihood (as in equation (23)), while the second term is a

penalty which serves to smooth the inferred function f Vð Þ (by

penalizing non-smooth solutions, i.e., functions f Vð Þ whose

Figure 9. Time course of parameter estimation in a model with eight conductances. Evolution of estimates of channel densities for
compartment with eight channels. Colours show inference with changes in the observation noise sO and the subsampling Ds. True levels are
indicated by dotted gray lines. A: Ds = .02 ms, sO = {1,2,5,10,20} mV respectively for blue, green, red, cyan and purple lines B: sO = 5 mV,
Ds = {.02,.04,.1,.2,.4} ms again for blue, green, red, cyan and purple lines respectively. Thick lines show median, thin lines show 10 and 90% quantiles of
distribution across 50 runs.
doi:10.1371/journal.pcbi.1000379.g009
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derivative has a large squared norm); the scalar l serves to set the

balance between the smoothness of f Vð Þ and the fit to the data.

Despite its apparent complexity, in fact this expression is just a

quadratic function of h (just like equation (24)), and the update ĥh
may be obtained by solving a simple linear equation. If the basis

functions fk Vð Þ have limited overlap, then the Hessian of this

objective function with respect to h is banded (with bandwidth

equal to the degree of overlap in the basis functions fk Vð Þ), and

therefore this linear equation can be solved quickly using sparse

banded matrix solvers [42,43]. We used 50 nonoverlapping simple

step functions to represent f Vð Þ in Figures. 12–13, and each

M-step took negligible time (%1 sec). The penalty term l was fit

crudely by eye here (we chose a l that led to a reasonable fit to the

data, without drastically oversmoothing f Vð Þ); this could be done

more systematically by model selection criteria such as maximum

marginal likelihood or cross-validation, but the results were

relatively insensitive to the precise choice of l. Finally, it is worth

noting that the EM algorithm for maximum penalized likelihood

estimation is guaranteed to (locally) optimize the penalized

likelihood, just as the standard EM algorithm (locally) optimizes

the unpenalized likelihood.

Results are shown in Figures 12 and 13. In Figure 12, we observe a

noisy version of the voltage Vt, iterate the nonparametric penalized

Figure 10. Predictive performance of inferred parameter settings on new input current. A: Parameter estimates as shown in Figure 9A
were used to predict response to a new input stimulus. The plot shows the absolute error averaged over the entire trace (3000 timesteps,
Dt = .02 ms), for 40 runs. Thick lines show the median, shaded areas 10 and 90% quantiles over the same 40 runs as in Figure 9. Blue: sO = 1 mV,
Green: sO = 2 mV, Red: sO = 5 mV, Cyan: sO = 10 mV, Magenta: sO = 20 mV. Note logarithmic y axis. B: Example prediction trace. The dashed black line
shows the response of the cell with the true parameters, the red line that with the inferred parameters. The observation noise was sO = 20 mV, while
the average error for this trace Æ|V2Vest|æ = 2.96 mV.
doi:10.1371/journal.pcbi.1000379.g010

Figure 11. Eigenstructure of Hessian H with varying observation noise. Eigenvector 1 has the largest (.104), and eigenvector 8 respectively
the smallest eigenvalue (,0.5). Independently of the noise, the smalles eigenvectors involve those channels for which inference in Figure 9 appeared
least reliable: the fast Na+ and the K2-type K+ channel.
doi:10.1371/journal.pcbi.1000379.g011
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EM algorithm ten times to estimate f Vð Þ, then compute the inferred

voltage E VtjYð Þ. In Figure 13, instead of observing the noise-

contaminated voltage directly, we observe the internal calcium

concentration. This calcium concentration variable Ct followed its

own noisy dynamics,

dCt~ {Ct=tCzr Vtð Þð Þdtz
ffiffiffiffi
dt
p

sCNC tð Þ,

where NC tð Þ denotes white Gaussian noise, and the r Vtð Þ term

represents a fast voltage-activated inward calcium current which

activates at 220 mV (i.e., this current is negligible at rest; it is

effectively only activated during spiking). We then observed a noisy

fluorescence signal Ft which was linearly related to the calcium

concentration Ct [32]. Since the informative signal in Ft is not its

absolute magnitude but rather how quickly it is currently changing

Figure 12. Estimating subthreshold nonlinearity via nonparametric EM, given noisy voltage measurements. A, B: input current and
observed noisy voltage fluorescence data. C: inferred and true voltage trace. Black dashed trace: true voltage; gray solid trace: voltage inferred using
nonlinearity given tenth EM iteration (red trace from right panel). Note that voltage is inferred quite accurately, despite the significant observation
noise. D: voltage nonlinearity estimated over ten iterations of nonparametric EM. Black dashed trace: true nonlinearity; blue dotted trace: original
estimate (linear initialization); solid traces: estimated nonlinearity. Color indicates iteration number: blue trace is first and red trace is last.
doi:10.1371/journal.pcbi.1000379.g012

Figure 13. Estimating voltage given noisy calcium measurements, with nonlinearity estimated via nonparametric EM. A: Input
current. B: Observed time derivative of calcium-sensitive fluorescence. Note the low SNR. C: True and inferred voltage. Black dashed trace: true
voltage; gray solid trace: voltage inferred using nonlinearity following five EM iterations. Here the voltage-dependent calcium current had an
activation potential at 220 mV (i.e., the calcium current is effectively zero at voltages significantly below 220 mV; at voltages .10 mV the current is
ohmic). The superthreshold voltage behavior is captured fairly well, as are the post-spike hyperpolarized dynamics, but the details of the resting
subthreshold behavior are lost.
doi:10.1371/journal.pcbi.1000379.g013
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(dCt=dt is dominated by r Vtð Þ during an action potential), we plot

the time derivative dFt=dt in Figure 13; note that the effective signal-

to-noise in both Figures 12 and 13 is quite low.

The nonparametric EM-smoothing method effectively estimates

the subthreshold voltage Vt in each case, despite the low

observation SNR. In Figure 12, our estimate of f Vð Þ is biased

towards a constant by our smoothing prior; this low-SNR data is

not informative enough to overcome the effect of the smoothing

penalty term here; indeed, since this oversmoothed estimate of

f Vð Þ is sufficient to explain the data well, as seen in the left panels

of Figure 12, the smoother estimate is preferred by the optimizer.

With more data, or a higher SNR, the estimated f Vð Þ becomes

more accurate (data not shown). It is also worth noting that if we

attempt to estimate Vt from dFt=dt using a linear smoother in

Figure 13, we completely miss the hyperpolarization following

each action potential; this further illustrates the advantages of the

model-based approach in the context of these highly nonlinear

dynamical observations.

Discussion

This paper applied standard machine learning techniques to the

problem of inferring biophysically detailed models of single

neurones automatically and directly from single-trial imaging

data. In the first part, the paper presented techniques for the use of

detailed models to filter noisy and temporally and spatially

subsampled data in a principled way. The second part of the paper

used this approach to infer unknown parameters by EM.

Our approach is somewhat different from standard approaches

in the cellular computational neuroscience literature

([12,14,15,19], although see [18]), in that we argue that the

inference problem posed is equivalent to problems in many other

statistical situations. We thus postulate a full probabilistic model of

the observations and then use standard machine learning tools to

do inference about biophysically relevant parameters. This is an

approach that is more standard in other, closely related fields in

neuroscience [44,45]. Importantly, we attempt to use the

description of the problem in detail to arrive at as efficient as

possible a method of using the data. This implies that we directly

compare recording traces (the voltage or calcium trace), rather

than attempting to fit measures of the traces such as the ISI

distribution, and the sufficient statistics that are used for the

parameter inference involves aspects of the data these parameters

influence directly. One alternative is to include a combination of

such physiologically relevant objective functions and to apply more

general fitting routines [46,47]. A key assumption in our approach

is that accurately fitting the voltage trace will lead to accurate fits

of such other measures derived from the voltage trace, such as the

inter-spike interval distribution. In the present approach this

means that variability is explicitly captured by parameters internal

to the model. In our experience, this is important to avoid both

overfitting individual traces and neglecting the inherently

stochastic nature of neural responses.

A number of possible alternatives to sequential Monte Carlo

methods exist, such as variations of Kalman filtering like extended or

unscented Kalman filters [48,49], variational approaches (see [50])

and approximate innovation methods [45,51,52]. We here opted for

a sequential Monte Carlo method because it has the advantage of

allowing the approximation of arbitrary distributions and expecta-

tions. This is of particular importance in the problem at hand

because a) we specifically wish to capture the nonlinearities in the

problem as well as possible and b) the distributions over the

unobserved states are highly non-Gaussian, due to both the

nonlinearities but also due to unit bounds on the gates.

Model-based smoothing thus provides a well-founded alterna-

tive to standard smoothing techniques, and, importantly, allows

smoothing of data without any averaging over either multiple cells

or multiple trials [53]. This allows the inference of unobserved

variables that have an effect on the observed variable. For

example, just as one can infer the channels’ open fractions, one

can estimate the voltage from pure [Ca2+] recordings (data not

shown). The formulation presented makes it also straightforward

to combine measurements from various variables, say [Ca2+] and

transmembrane voltage, simply by appropriately defining the

observation density p ytjht,hð Þ. We should emphasize, though, that

the techniques themselves are not novel. Rather, this paper aims to

point out to what extent these techniques are promising for cellular

imaging.

The demand, when smoothing, for an accurate knowledge of

the cell’s parameters is addressed in the learning part of the paper

where some of the important parameters are inferred accurately

from small amounts of data. One instructive finding is that adding

noise to the observations did not hurt our inference on average,

though it did make it slower and more variable (note the wider

error bars in Figure 7). In the higher-dimensional cases, we found

that the dimensions in parameter space which have least effect on

the models’ behavior were also least well inferred. This may

replicate the reports of significant flat (although not disconnected)

regions in parameter space revealed in extensive parametric fits

using other methods [19]. A number of parameters also remain

beyond the reach of the methods discussed here, notably the

kinetic channel parameters; this is the objective of the non-

parametric inference in the last section of the Results, and also of

further ongoing work.

A number of additional questions remain open. Perhaps the

fundamental direction for future research involves the analysis

of models in which the nonlinear hidden variable ht is high-

dimensional. As we saw in section EM – inferrring cellular

parameters, our basic particle smoothing-EM methodology can

break down in this high-dimensional setting. The statistical

literature suggests two standard options here. First, we could

replace the particle smoothing method with more general (but

more computationally expensive) Markov chain Monte Carlo

(MCMC) methods [54] for computing the necessary sufficient

statistics for inference in our model. Designing efficient MCMC

techniques suitable for high-dimensional multicompartmental

neural models remains a completely open research topic.

Second, to combat the multicollinearity diagnosed in Figure 11

(see also Figure 6 of [23]), we could replace the maximum-

likelihood estimates considered here with maximum a posteriori

(maximum penalized likelihood) estimates, by incorporating

terms in our objective function (7) to penalize parameter

settings which are believed to be unlikely a priori. As discussed

in section Estimation of subthreshold nonlinearity by nonparametric EM,

the EM algorithm for maximum penalized likelihood estimation

follows exactly the same structure as the standard EM

algorithm for maximum likelihood estimation, and therefore

our methodology may easily be adapted for this case. Finally, a

third option is to proceed along the direction indicated in

section Estimation of subthreshold nonlinearity by nonparametric EM:

instead of attempting to fit the parameters of our model

perfectly, in many cases we can develop good voltage smoothers

using a cruder, approximate model whose parameters may be

estimated much more tractably. We expect that a combination

of these three strategies will prove to be crucial as optimal

filtering of nonlinear voltage- and calcium-sensitive dendritic

imaging data becomes more prevalent as a basic tool in systems

neuroscience.
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Supporting Information

Video S1 Kalman smoother video. The video shows the inference

of the underlying voltage in a passive cell from intermittent

recordings along the dendrites. The left panel shows the true

voltage; the middle panel the measurements (black means no

measurement from that dendritic location at that time, cf. Figure 4);

and the right panel the reconstructed voltage in the entire cell.

Found at: doi:10.1371/journal.pcbi.1000379.s001 (1.63 MB

MOV)
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