P {
J/mY

..--..."'

L

:

Introduction

Imaging methods give us unprecedented access to detailed cellular data.

Djurisic et al. 2004
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However, these data often suffer from

a) small signal-to-noise ratio (voltage-sensitive dyes)
b) confounds by unobserved variables (calcium for voltage dyes,
voltage for calcium dyes)

Here we propose to address both issues in a probabilistic framework. We will
use knowledge about the kinetics of the cell under investigation to smooth the
noisy data, and to infer unobserved processes.
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- Measure M at various points in time

- Want to infer underlying variable V over same time interval

- Only infer some probability distribution p(V|M) or even, just
some aspects of that distribution, such as maximum, or mean.
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Given V(t) we can evaluate V(t+1)
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Also know how measurement relates to voltage

M, = Vi+ o0& p(M|Vy) = N(Vi,00)
Together, these distributions
define the likelihood for hidden (MynlVi) (V)Tl:[l V)PVt Vi)
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observations

Use this knowledge to find voltage traces with high likelihood.

Model-based optimal interpolation and filtering
for noisy, intermittent biophysical recordings
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Or rather, find particular voltage traces that allow us to evaluate
quantities of interest, such as the mean:

<Vir> = /dvlsz(V1:T|M1:t)
p(Vi.r| M) i
= davi. Vi ~ V7. i
/ 174 1.T)\ d(Viz) ] zz: 1.7 W
So we draw samples from the approximate q(V(1:T))
Vl?::T N Q(Vl:T) - p(Vi| M)

Q(Vli:T)
The approximate q(V) is given recursively by

qa/t) — p(m Vl:t——l:Ml:t)

< p(Vi|Vic1)p(Vic1|Viie—o, Mi.p—2)p(M¢|Vy)

Which means we simply run lots of neurones at once, and weigh
them by the likelihood they give to the data.

wi' = w o p(Mi|VY) by = wi/ (3 wi?)

Data

If we have access to the
true dynamics of the
neurone under
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As long as we have a kinetic model, it allows us to infer other
hidden variables too, in particular [Ca**] can be inferred from
Voltage signals, and conversely voltage signals can be inferred
from [Ca**] recordings

Inferring [Ca**] from voltage data
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Inferring voltage from [Ca**] data

Voltage HH gates
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Channel densities

So far we have assumed exact knowledge of both channel kinetics and channel
concentrations. Here we relax these assumptions and also infer channel
concentrations.

EM

The EM algorithm iterates between finding the hidden variables, and updating
the parameters that depend on them. Given channel densities g, we have
above found a set of probable underlying voltages {V' .}. Given the true

voltage, the densities are easily found by setting:

& = argmax||V —Jg||? Jel = > geodt)(E- V()
g c I,
However, we have a set of samples rather than the true V, so we set instead
g = argmax <|\V — Jg|\2>
g Q(VI:T)

which depends only on three expected sufficient statistics

<Jct<]c"t> <Jct‘/t> <Jct%+1>
where averages are over marginal distributions p(V,|M. .) and p(V,,V .M. .)

To obtain marginals given all data, we add a backward update to the weights:
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Inferring channel densities from
noisy data

Here we started from a 5
non-spiking channel =
configuration and found L -
a set of channel o Volhee |
densities that leads to
spiking and matches
the data well. Note that
only few data points
make out the action
potential.
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There may be many channel
density combinations that lead to
acceptable reconstructions.

Knowledge of kinetics and channel densities can be used to

smooth noisy, subsampled data

infer unobserved variables (voltage, open fractions, calcium)

infer even fast variables from slow (but not very noisily
observed) variables — voltage from calcium

Knowledge of kinetics can be used to infer channel densities from
very noisy data.

But:
EM is plagued by local minima — need good initial conditions
(eg a spiking neurone)
Particle filters are just importance samplers —in high
dimensions, rely on accurate sampling distribution.
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