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a b s t r a c t

Mathematically rigorous descriptions of key hypotheses and theories are becoming more common in
neuroscience and are beginning to be applied to psychiatry. In this article two fictional characters,
Dr. Strong and Mr. Micawber, debate the use of such computational models (CMs) in psychiatry. We
present four fundamental challenges to the use of CMs in psychiatry: (a) the applicability ofmathematical
approaches to core concepts in psychiatry such as subjective experiences, conflict and suffering; (b)
whether psychiatry is mature enough to allow informativemodelling; (c) whether theoretical techniques
are powerful enough to approach psychiatric problems; and (d) the issue of communicating clinical
concepts to theoreticians and vice versa. We argue that CMs have yet to influence psychiatric practice,
but that they help psychiatric research in two fundamental ways: (a) to build better theories integrating
psychiatry with neuroscience; and (b) to enforce explicit, global and efficient testing of hypotheses
through more powerful analytical methods. CMs allow the complexity of a hypothesis to be rigorously
weighed against the complexity of the data. The paper concludes with a discussion of the path ahead. It
points to stumbling blocks, like the poor communication between theoretical and medical communities.
But it also identifies areas in which the contributions of CMs will likely be pivotal, like an understanding
of social influences in psychiatry, and of the co-morbidity structure of psychiatric diseases.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past two decades, computational and theoretical ap-
proaches have blossomed in many fields related to the brain,
ranging from cellular and network neuroscience to cognitive psy-
chology and behavioural economics. More recently attempts have
also been made to apply computational approaches to psychiatry.
However, their usefulness for psychiatry is as yet uncertain. Here
we debate both sides of the argument. We present a discussion be-
tween a sceptic and an enthusiast. In a final section, we will at-
tempt tomap out a useful way forward informed by these different
arguments.

Two definitions are needed before we begin. First, we will
use ‘‘psychiatry’’ for ‘‘mental health care’’ very generally. Second,
the term ‘‘computational model’’ (CM) conventionally means any
model on a computer. This overly broad category is meaningless
because it encompasses any model that one might test using a sta-
tistical package on a computer. We will concentrate on a much
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narrower definition of CMs as models which express concepts im-
portant to brain function, and the relationships between these
concepts, in mathematical form. That is, we will discuss whether
attempting to phrase psychiatric concepts explicitly in the lan-
guage of mathematics and statistics is likely to usefully advance
our understanding of psychiatric problems. The kinds of concepts
we have in mind are anhedonia, thought disorder, impulsivity,
paranoia, etc. We admit a certain predilection for reinforcement
learning models (Montague, Dayan, & Sejnowski, 1996; Sutton &
Barto, 1998) and will use several examples from our own work.
However, we do not intend our arguments to be specific to a par-
ticular form of model; rather, these models are highly diverse and
depend on the particular problem at hand. They include neurally
explicit (Ahmed, Graupner, & Gutkin, 2009) and abstract (McClel-
land, Rumelhart, & Hinton, 1986) connectionist models; informa-
tion theoretic (Srinivasan, Laughlin, & Dubs, 1982), more explicitly
statistical (Dayan, Hinton, Neal, & Zemel, 1995; Hinton, Dayan,
Frey, & Neal, 1995; Hopfield, 1982) and optimal inference (Fiser,
Berkes, Orbán, & Lengyel, 2010; Tenenbaum, Griffiths, & Kemp,
2006)models and game theoretic (Camerer, 2003; Fehr & Schmidt,
1999) models.

Wise old Dr. Strong (Dickens, 1850) will now put the case
against CMs from the point of view of a psychiatrist. Our optimistic
– or maybe unrealistic – friend Mr. Micawber will try to enthuse
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him about their cause. He is also a fan of reinforcement learning
models.

Dr. Strong: In brief, the problems with CMs are as follows. First,
CMs are fundamentally flawed in that they do not capture core
clinical concerns. Second and third, the state of psychiatry and
modelling are each too immature to be usefully applied to the
other. Fourth, there are serious difficulties in the way information
and ideas are transmitted between modellers and psychiatrists.

Mr. Micawber: These are important points, let us debate them
one by one.

2. Are CMs clinically relevant?

Dr. Strong: First and foremost, CMs have failed to influence
clinical practice.

Mr. Micawber: I would agree, Dr. Strong, that CMs have not
influenced clinical practice to date; but neither havemost advances
in neurosciences. In fact, we believe that CMs will be instrumental
in helping to bridge the gap between neurobiology and psychiatry
because CMs are able to link levels of descriptions and make well-
founded predictions at one level based on information at another
level.

Dr. Strong: I disagree. The question is: are they clinically
relevant, notwill they be at some point in the future. All themodels
omit the very centre of psychiatry: subjective experiences. No one
I have met believes that computers feel duty, personal bonds, or
sexual titillation.

Mr. Micawber: Although intuitive, the notion that computa-
tional models cannot ‘‘feel’’ is neither important nor indeed falsi-
fiable. To the extent that internal states correspond to linguistic or
other behaviours (e.g. a questionnaire measure of mood), they can
be investigated by CMs as well as by any other method. Further-
more, external aspects of internal percepts are of interest even if
they make no reference to internal states. Behaviours are strongly
affected by objective, external influences. People pay for psychi-
atric help partly because internal subjective experiences have ex-
ternal objective correlates: because they cannot work or look after
their children, not just because they feel sad (Wing et al., 1998).

Dr. Strong: I’m afraid, Mr. Micawber, that this does not quite
deal with the problem. What gets psychiatrists involved is pain,
suffering and conflict. Almost no computational models take this
into account. The rare exceptions that do have not translated into
clinical practice, or even clinical research.

Mr. Micawber: I think, Dr. Strong, that if you look at modern
models of depression or psychosis you will see that they
increasingly investigate experiences central to pain and suffering.
Take for instance anhedonia, helplessness and paranoid anxiety.
Both anhedonia and helplessness have been highly instrumental
in the development of both therapies (Beck, Rush, Shaw, & Emery,
1979) and animal models (Maier & Watkins, 2005; Willner, 1997).
The concepts of anhedonia and helplessness, however, make
partially overlapping predictions: failure to reap rewards may be
due both to an indifference to them, or to an inability to see
that their attainment is under the individual’s control. These can
be disentangled using CMs. For instance, the same mathematical
formalism was able to account for animal data (Huys & Dayan,
2009) and human decision making (Huys, Vogelstein, & Dayan,
2009). This additionally allowed helplessness to be demonstrated
in humans in a pure reward situation. Paranoid anxiety is another
area where CM research has engaged directly with psychic
suffering. The expectation of highly aversive outcomes is central
to paranoia (Bentall et al., 2009) and very unpleasant for patients.
Several recent CMs of threat perception and avoidance have
elucidated the complex roles of highly aversive expectations
(Bentall et al., 2009) in paranoia (Moutoussis, Bentall, Williams,

& Dayan, 2008; Smith, Becker, & Kapur, 2005; though see also
Schmajuk & Zanutto, 1997).

Dr. Strong: This, Mr. Micawber, is still far from the richness
of human, clinical reality. You have described CMs that focus on
specific symptoms as being themselves pathological. However, the
range of experiences found in healthy people (especially children),
is vast. For example, on careful clinical examination 4% of 12-
year-olds have experienced auditory hallucinations in the past 6
months (Horwood et al., 2008). It is not the symptom itself that
is pathological, but its frequency, severity, or simply its negative
impact on life. Absence of this last feature, the impact on life,
dramatically reduces the relevance of CMs to clinical practice.

Mr. Micawber: Psychiatry at present does observe that this is
the case; but just like CMs, it is unable to provide any insight into
why this might be. Understanding the mechanisms that sustain
psychiatric symptoms is more likely a step towards understanding
their impact than the sole description of this fact.

Dr. Strong: A final point is that CMs need to address treatments,
both pharmacological and learning based, rather than just focus
on fundamental mechanisms. There is strong evidence for the
effectiveness of these treatments, and if CMs are to have clinical
utility, they need to contribute to our understanding of them.

Mr.Micawber: It is certainly true that CMshave, as yet, notmade
much inroad on talking therapies. We will, however, return to the
issue of pharmacological therapies below.

3. Is psychiatry advanced enough for CMs?

Dr. Strong: It is far too early to mathematise psychiatry. Psychi-
atry is not advanced enough for rigorous CMs in at least two ways:
current taxonomy is unsatisfactory and fundamental concepts are
in flux. Categories in psychiatry (including those in DSM (Ameri-
can Psychiatric Association, 1994) and ICD (World Health Organi-
zation, 1990)) are at best heterogeneous, overlapping groups. Most
modellers do not seem to be aware of the unfortunate state of aca-
demic psychiatry, which can currently be described as the inex-
orable, painfully slow, deconstruction of DSM categories.

Mr. Micawber: I think that you are going too far. Valid descrip-
tions of the brain and its pathologies exist atmultiple, independent
levels (Clark, 2001; Kendler & Parnas, 2008; Marr, 1982). Many
different mechanisms can produce the same function (as in con-
vergent evolution); conversely, the same mechanism can produce
many functions (as can computers, or brains). There is no necessary
one-to-one mapping from a low-level mechanism to a high-level
function, or vice versa. It would be a fundamental error to believe
that data-driven concepts derived from epidemiological analyses
are not valid just because there is no well-defined neurobiology
corresponding to them; it is just as mistaken to believe that be-
cause a descriptive concept is statistically valid, there must be a
corresponding neurobiology. The fact that DSMcategories have not
yet been convincingly matched to neurobiology is no more than a
reflection of this.

Dr. Strong: Modellers are still attracted to constructs that
clinician-researchers are becoming disenchanted with. Examples
of such constructs include autism (Happe, Ronald, & Plomin,
2006), ADHD (Williams, 2010), ‘‘the schizophrenias’’ (Murray et al.,
2005; Sanislow & Carson, 2001) and mood disorders (with DSM V
proposing a new, partially merged, version of the depression and
anxiety).

Mr. Micawber: You may be arguing against yourself, Dr. Strong.
CMs that capture the entirety of these controversial syndromes are
very far and few between. Which CM of depression, for instance,
includes anhedonia and also problems with sleep and appetite?
CMs are, by their very nature, focussed on key functions and
their consequences, i.e., key dysfunctions. It may be tempting to
treat a key dysfunction as representing the essence of a diagnostic
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category. The status of diagnostic categories, however, is highly
problematic; less so than the status of key dysfunctions (Bentall,
2003). As such, far from the mismatch with diagnostic categories
being indicator that the state of psychiatry precludes insights
from modelling, it means that CMs have a greater relevance to
mental health problems. CM researchers must take seriously the
proposition that their (dys)function based approach is not a poor
relation to the diagnostic one but may in fact help advance the
latter!

Dr. Strong: I agree that this approach is attractive, but I’m
convinced that it only applies to a tiny subset of biological
processes in psychiatry. Though there may be a few exceptions for
long-evolved organising principles (such asmonoamines or simple
drives; (Gray, 1991; Kapur, 2003; Panksepp, 1998; Williams,
2006; Wise, Berger, & Stein, 1972)), most problems in psychiatry
are of a level of complexity that far exceeds that of simple
behaviours and precludes any useful application of simple CMs.
Let us not forget that we (and CMs) are still unable to describe
all but the simplest aspects even of extremely well described,
straightforward, behaviours such as operant conditioning.

Mr.Micawber: Fortunately, every single one of these statements
is overly simplistic to the point of being incorrect. Long-evolved
organising principles of the brain are of profound importance for
psychiatry; and emphasizing monoamine function is the rule, not
the exception, in biological psychiatry. Furthermore, let us not
forget that the majority of treatments depend on monoamines.
Arguing that understanding these issues is peripheral to psychiatry
strikes me as frivolous. Let me just mention three examples:

Selective serotonin reuptake inhibitors (SSRIs) are widely used as
antidepressants and anxiolytics, but reconciling their psychiatric
effects with basic psychopharmacology has been problematic.
Unlike their positive effects onmood in humans, SSRIs can enhance
the aversive effects of punishments in animal models (Cools,
Roberts, & Robbins, 2008; Dayan & Huys, 2009; Soubrié, 1986). We
found that a simple CM was able to reconcile these two findings
by linking aversive predictions to behavioural inhibition in an
adaptive manner that had overall positive consequences (Dayan &
Huys, 2008).

Paranoia and antipsychotic drugs: Next consider dopamine (DA),
whose involvement in psychosis is very well established (Kegeles
et al., 2008; Laruelle, 2008). Dopamine-sensitive animal models,
such as the ‘conditioned avoidance response’ (Courvoisier, 1956),
have long been used to assess ‘antipsychotic’ action. This, however,
was donewithout any knowledge of howDAblockingdrugs altered
information processing in the brain. The advent of CMs based
on Prediction-Error learning theory (Schultz, Dayan, & Montague,
1997; Sutton & Barto, 1998) first helped link DA blockers to brain
information processing (Smith, Li, Becker, & Kapur, 2007). CMs
then helped understand that DA may signal prediction errors
about actions leading to both worse-than-expected and better-
than-expected outcomes. This holds even if DA, a modulator
hitherto related to rewards, has little role in signallingworse-than-
expected situations (states). Modelling related the psychological
mode of action of dopamine blocking drugs to dampening (1)
the vigour of the avoidance response and (2) the prediction-error
signals that drive action learning (Moutoussis et al., 2008).

Impulsivity: Dopamine function is also related to impulsivity,
which in turn is central to many psychiatric conditions from
attention-deficit hyperactivity disorder (ADHD) to borderline
personality and substance abuse disorders. A modelling analysis
of the behaviour of the spontaneously hypertensive rat (the most
prominent animal model of ADHD) clarified how stimulants,
by impacting on phasic dopamine, can impact on ‘‘impulsive’’
measures (Williams & Dayan, 2005). Further work has since
clarified the role of tonic dopamine signals to motivation and
aspects of impulsivity (Niv, Daw, Joel, & Dayan, 2007). All thewhile

Fig. 1. The renaissance view of projectile motion was conceptually complex.
It divided the trajectory into several parts (two straight and one curved!) and
included an account of the interaction of the projectile with the atmosphere.
Though intuitively satisfactory, it was computationally intractable and ultimately
misleading. Image downloaded from http://tinyurl.com/34p9up6.

these CMs have emphasised quite how many different aspects
of learning can influence impulsivity (Williams & Dayan, 2005).
The concept of dopamine appetite, which emerged from this CM
account of previous findings in humans (Williams & Taylor, 2004),
has since received experimental verification in rats (Williams,
Sagvolden, Taylor, & Sagvolden, 2009).

Dr. Strong: Returning to the overall point: psychiatry at present
is still dominated by definitions, data collection and epidemiology
rather than testable, risky, hypotheses. An example of what should
happen more often are the predictions by Sonuga-Barke that
children with ADHD would respond in a particular way during a
matching familiar figures task. The predictions were sufficiently
explicit at a mechanistic level that they could be tested by
implementing them in a CM. In this case, the predictions were
disproved (according to one view; Williams & Taylor, 2004) to the
great credit of the original proponent who was brave enough not
to make yet another risk-free ‘‘so what’’ hypothesis.

Mr. Micawber: Psychiatry is indeed a complicated, fragmented
field teeming with partial explanations. It is precisely because of
this that powerful principles are needed to unify the fragments
of theory and increase explanatory power. At present psychiatric
theories resemble the overly complicated, qualitative Aristotelian
theories of projectile motion of the late renaissance (Fig. 1). The
history of the study of gravity is informative. The breakthroughs
of Galileo’s generation did not just come through accumulation
of knowledge. In modern terms, they came through the iterative
development of a mathematical core theory and of experiments
based on this core theory to arrive at important principles. Specifi-
cally, they (i) considered limiting cases where key approximations
could be used; (ii) focussed experiments at these mathematically
tractable cases; and (iii) rigorously related the mathematical de-
scriptions to putative general principles. This led to the discovery of
powerful general principles e.g. that free-fallmotion is the same for
all objects. Today, these principles are so obvious to us that it takes
a lot of effort to persuade oneself that the Aristotelians weren’t ei-
ther electively blind or stupid. Deep insights about key principles
make profoundly puzzling andhighly complex findings (as they are
prevalent in psychiatry today) look expected and commonsensical.

In mental health, our best guess is that the key principles
involve information processing such as probabilistic inference and
optimal decision making. The brain’s raison d’être is to process
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information in an uncertain world; and psychiatric phenomena
do have an essential core of deviant information processing
and inappropriate certainties: perceptions ‘‘without a stimulus’’,
propositions ‘‘contrary to evidence’’, cognitive inferences that
are ‘‘biased’’, etc. Information processing is a computational
concept. Itsmany facets can be captured accurately and thoroughly
by a variety of powerful, specific CMs (see Dayan & Abbott,
2001, for an overview); and these can be applied directly to
psychiatric problems (e.g. Chater & Oaksford, 2008; Huys, 2007;
Maia & Frank, 2011; Williams & Dayan, 2005). Crucially, these
approaches link psychopathology to normal psychology and
to basic neuroscience, for instance investigating how changes
in GABA or NMDA signalling, supported by work in genetics
and animal models, may explain the perceptual features of
schizophrenia (Loh, Rolls, & Deco, 2007; Migliore, Blasi, Tegolo,
& Migliore, 2011). Computational models, more than any other
approach, allow us to relate findings to general principles that
tap the core of the brain’s raison d’être, which is to compute and
process information, rather than say produce a stream of internal
experiences.

Prediction-Error (PE) theory is a specific example of such an ap-
proach, which gave rise to several of the key insights regarding the
monoamines mentioned above. It originated from the recognition
that phasic activity of monkey mesolimbic DA neurons appears to
report a signal much like one previously described in formal mod-
els of reinforcement learning (Rescorla & Wagner, 1972; Schultz,
Apicella, & Ljungberg, 1993; Schultz et al., 1997; Sutton & Barto,
1998). This has since been replicated in electrophysiological and
imaging studies in humans (D’Ardenne, McClure, Nystrom, & Co-
hen, 2008; O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Za-
ghloul et al., 2009) following unexpected reinforcements. Phasic
DA activations conform in important details with the theoretical
PE account (Waelti, Dickinson, & Schultz, 2001), being proportional
to the difference between what was expected and what was found
(Bayer & Glimcher, 2005)—hence the term PE. Precisely such sig-
nals can be used to learn expectations from experience (Montague
et al., 1996), and also to learn new behaviours (Montague et al.,
2004). Moreover in recent years the concept of PE has achieved a
muchwider significance as it has been realised that some brain sig-
nals are likely to be dopamine independent (e.g. Boureau & Dayan,
2011).

This account, although far from perfect, is an explicit and
testablemodel of learning that bridges levels of description, linking
high-level choice behaviour to detailed underlying neurobiological
mechanisms. Its simplicity belies its computational depth and
it has led to an explosion of research ideas linking psychiatry
to normal neuroscience and a refinement of functional imaging
methods. Finally, it has already generated specific predictions that
have been experimentally tested (Redish, 2004, Panlilio et al.,
2007; see also Maia & Frank, 2011).

4. Are CMs mature enough to face the complexities of psychia-
try?

Dr. Strong: The fact remains that there still are no overarching
computational theories that provide a convincing framework in
which to approach human experience or behaviour. Existing
computational theories are piecemeal, unrelated and do not come
together in a global view.

I previously criticised psychiatrists for not making sufficiently
explicit and risky predictions; a very similar criticism applies to
CMs. The essence of science is to make surprising predictions, i.e.,
that are not expected based on prior knowledge. CMs fall down in
both aspects of these requirements. First they are not surprising,
second they do not make real predictions. An example of lack of
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Fig. 2. Model complexity and evidence. See text for details.

prediction is that many CMs ‘‘predict’’ results that were already
published.

Mr. Micawber: Risky predictions are not the sine qua non of
research: medicine at large has greatly benefited from testing
common assumptions. In a key paper, Echt et al. (1991) tested
the commonly held belief that ventricular extrasystoles after
myocardial infarction should be controlled, finding instead that
treatment increased mortality. In terms of psychiatry, it has long
been known that patients with schizophrenia are impaired on
reversal learning tasks (Elliott, McKenna, Robbins, & Sahakian,
1995; Waltz & Gold, 2007). Original accounts emphasised the
importance of the negative feedback at the reversal stage.
Surprisingly and counter-intuitively, detailed modelling showed
that subjects are mainly guided by rewards and that, in fact, it is
learning from rewards that differentiates schizophrenia patients
from controls (unpublished data, F. Schlagenhauf, Q. Huys and A.
Heinz).

The traditional approach may in fact mislead researchers
into making claims that are too risky by focussing only on one
aspect of the data. For instance, Elliott, Sahakian, Herrod, Robbins,
and Paykel (1997) elegantly showed that depressed subjects
made many errors on trials following negative feedback. They
interpreted this as a non-specific impairment of response to
negative feedback. However, any such impairment would have
a number of global effects both on other aspects of the task,
and on other tasks. Building models can enforce consideration of
the global consequences of any hypothesis, thereby facilitating
comprehensive testing of hypotheses.

Dr. Strong: Most CMs produce no surprises because they
are overly powerful: almost any result can be accounted for
by ‘‘learning’’ mechanisms (Tripp & Wickens, 2008; Williams,
2008). In models that specify links between environment and
psychopathology, the links are largely under-constrained andoften
so flexible that they can trivially account for any desired finding.
The other side of this coin is that modellers also lighten their
plight by neglecting aspects of data: rather than accounting for the
entire distribution, they have a tendency to create a computational
‘‘type specimen’’ and then tomatch this to published groupmeans,
neglecting any population spread.

Mr. Micawber: In brief, Dr. Strong, you are talking about
parsimony. It is indeed important to balance the power of a model
against the complexity required of it by the data. Formal methods
of model comparison (Kass & Raftery, 1995) can efficiently
handle this, are already standard procedure in imaging (Stephan,
Penny, Daunizeau, Moran, & Friston, 2009) and being applied
to behavioural studies (Daw, 2011; Huys et al., in press, 2009).
Consider the dataset displayed as stars (*) in Fig. 2. The question
wewould like to answer iswhich of the threemodels best accounts
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for this data. The three distributions show what type of data each
model can generate. Model 1 makes quite specific predictions. It is
thus a good, easily falsifiablemodel. The point indicated by a dotted
line for instance is very unlikely underModel 1. On the other hand,
Model 3 stands for a more complex model with more parameters.
The increase in complexity makes it more powerful in that it can
generate a broad variety of data. Here, it seems to account verywell
for all the data, in that all the points that are observed have equal
and high probability under that model. Unfortunately, though,
Model 3 also makes many predictions which are not observed;
as a direct consequence of spreading its predictions too widely,
it assigns less likelihood to the dense concentration of data in the
centre than the other twomodels. Model 2 presents the best trade-
off. Quantities which normatively compare models by trading off
their complexity against the complexity needed to account for the
data can be computed explicitly for CMs, allowing for a thorough
evaluation. For a more thorough, yet concise, exposition of model
comparisons, see MacKay (2003, Chapter 28). Furthermore, such
an approach clearly take a model’s ability to account for the
distribution of observed data very seriously.

Dr. Strong: Taking a broader view, we can ask what CMs could
possibly aim to achieve. When simple counter-examples suffice,
CMs are tools that are useful to disprove categorical statements (as
in the Sonuga-Barke example above). However, innumerable small
assumptions flow into the building of any CM; some explicitly
stated, others not. Subtle aspects of the models are invariably
carefully tailored to the task in a manner, which is hard to test
or assess objectively. For instance, it is well known that the
performance of reinforcement learning models depends critically
on the formulation of the state-space; an issue seldom if evermade
explicit.

Mr. Micawber: On the contrary, it is non-mathematical theories
that best hide their – often complex – assumptions! Building
models allow for thorough assessment of parsimony. It is difficult
to implement a computational model without making explicit
many assumptions that traditional psychiatric research overlooks.
When these are taken into account, important, unexpected
predictions often emerge. Consider the following examples:

First, in probabilistic reinforcement tasks, sometimes feedback
will be correct (i.e., informative of the true correct response),
and at other times not. Arguing that there is a difference in the
response to ‘‘erroneous’’ and ‘‘informative’’ feedback (e.g. Cools,
Clark, Owen, & Robbins, 2002) in reversal learning implies that
subjects know which is which. This in turn implies a much more
complex inferential model (a hidden state model), which makes
many additional predictions that may or may not be supported.

Second, it has long been known that deluded patients utilise
only a small amount of sequentially presented information to
reach a decision, a phenomenon labelled ‘‘jumping to conclusions’’
(Fine, Gardner, Craigie, & Gold, 2007). A predominant explanation
is that paranoid patients somehow associate greater costs with
sampling more information (Bentall, 2003). Using a CM, however,
it was found that the detailed pattern of patient’s responses is not
consistent with this explanation. Cognitive noise, known about but
overlooked in traditional research, is higher in deluded patients
and actually accounts for the data (Moutoussis, Bentall, El-Deredy,
& Dayan, in press). This study also carefully took into account
within-population variability and included it in model testing (see
Fig. 2).

In both these examples, detailed implementation of the as-
sumed inference processes revealed that the commonsense ac-
count was incorrect; and it revealed novel processes that do
account for the data better.

5. Modellers do not communicate well to psychiatrists

Dr. Strong: Papers on computational models are difficult to read
and even more difficult to replicate (even though this should in
principle be a simple matter of running a program). Possibly be-
cause of this, CMs tend to remain isolated from prior findings,
and even from prior CMs. Rather than converging towards more
holistic models of human psychology, the field fragments into ever
more elaborate CMs of smaller topics. This is compounded by a
further key problem: that mathematics allows for more complex-
ity, and thereby produces models that are as hard to understand
as the original problem. In fact, some models are so complicated
that hardly anyone understands them, for instance Grossberg’s im-
pressively detailed model of neurobiological dysfunction underly-
ing autism (Grossberg & Seidman, 2006).

Mr. Micawber: Reverse engineering is one possible use of mod-
els where the aim is to replicate the original system as far as pos-
sible. It is true that such models may ultimately be very complex
and difficult to understand. However, such models represent the
synthesis of many smaller, reductionist models you criticised ear-
lier. By allowing for complex, multifaceted, explanations, CM tech-
niques expand traditional models of explanation in psychiatry and
as such should be a welcome addition to the toolbox.

Dr. Strong: Many CMs rely on intuitions germane to mathe-
maticians, but do so at the expense of being intuitive to psychia-
trists. The notion of ‘‘Bayesian’’ is an example. Although the basic
theorem is simple and elegant, the deeper issues involving the
computational complexities of performing say Bayesian model
comparison make it at best an extremely cumbersome tool.

Mr. Micawber: You can’t expect CMs to be free of maths or
mathematical concepts. That would be like asking a paper on
schizophrenia to be free of patients. If psychiatrists were familiar
with mathematics, CMs would indeed play a more important role
in psychiatric research. On the other hand this is far from being a
precondition for CMs to flourish in psychiatry. In important areas
(such as imaging in psychiatry research; Knutson, Bhanji, Cooney,
Atlas, & Gotlib, 2008;Menon et al., 2007) CMs are already routinely
used; they have become Kuhnian ‘‘normal science’’ (Notturno,
1984). Psychiatrists participate in such research and enjoy its fruits
just as in the case of many other other tools from CPUs to MRI
scanners.

Dr. Strong: Well, but in terms of the kinds of CMs we agreed
to talk about (i.e., CMs that use maths to model key concepts),
not even computational labs work with one another’s models.
How could non-computational labs or clinicians? Some of these
communication difficulties may of course be overcome by clear
writing and with the help of collaborators from other disciplines.
But at present, psychiatric readers cannot be sure whether the
obscurity of CM results is due to the complexity of the ideas, to an
alternative but reasonable view of humans, or just down to error
or irrelevance.

Mr. Micawber: For once I agree with you. We can conclude our
debate on this note: that communication and collaboration in CM
research needs to be thought about more.

6. Discussion

Computationalmodels are powerful tools. Their affinity for fun-
damental issues in brain function makes them particularly strong
candidates for research on neurobiological and psychological bases
of psychiatric disorders. This link should be useful for integrat-
ing psychiatry with neuroscience, and for giving psychiatry more
of an overarching framework. Their mathematical and statistical
form lends them to hypothesis testing at an exacting level. This al-
lows for thorough comparisons in both qualitative andquantitative
terms, the former by producing qualitative predictions through
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simulations, the latter by using advanced methods to compare
the ability of one theory to explain the data better than alterna-
tive theories (Daw, 2011; Huys et al., in press; Williams & Tay-
lor, 2004). This mathematical and statistical nature of CMs makes
it quite practicable to assess their predictive strength (MacKay,
2003). However, computational models are not a panacea for psy-
chiatry’s many ills and they share the limitations of many other
methodologies. First, CMs will not find a mapping between levels
of (biopsychosocial) organisation if such a mapping does not exist.
CMs can only help us discover the neurobiology of a DSM category
if it exists. Second, although CMs can be used to extract more from
data, limitations ofmeasurements will persist. If ourmeasurement
of a variable is poor, this will hinder CMs just as much as it hin-
ders any other research method. Third, computational models can
at times be brought to bridge levels of description and bring many
constraints to bear on a problem; but this does not remotely ap-
proach the kind of multifaceted view that a psychiatrist takes of a
patient.

In addition, computational models do suffer from limitations
specific to them. Many concepts can be hard to put in mathemat-
ically precise terms. At times, this may point to an immaturity of
the concept, but at times it is also indicative of a limitation of the
mathematical tools available. For example, although idiosyncrasies
in language can be described with highly complex language mod-
els frommachine learning (e.g. (Blei & Lafferty, 2009)), we are still
very far from being able to integrate such powerful, yet only de-
scriptive, models with CMs in neuroscience, let alone psychiatry.
Next, although performing information processing better than any
computer, brains are made of neurons. CMs relevant to psychiatry
need to incorporate neurobiological constraints. As such, they suf-
fer from the limitations arising from the state of neuroscience, and
indeed by the state of (neuro)biological psychiatry.

Finally, many problems which appear natural to us are com-
putationally very complex. The fact that computers only recently
beat humans at chess emphasises the immature state of our un-
derstanding of computational problems. It may be that we have
to await further advances in purely computational research be-
fore mental health practitioners can hope to see any consequences
in their clinic. Of course, all these issues compound each other:
for instance, the computational problems faced in testing and im-
plementing a model of addiction would be rendered even less
tractable by adding constraints from research into the dozens of
metabolic pathways involved (Volkow & Li, 2004).

6.1. Future directions

Several important issues, both obstacles and opportunities,
need to be addressed for computational psychiatry to flourish.

The key obstacle that has to be overcome is the difficulty in
communication between theoreticians and empirical researchers.
In psychiatry, empirical researchers naturally prefer to work on
their own theories and, not heeding the advice of Freeman (1992),
only rarely see the relevance of modellers. Theoretician modellers
cannot expect psychiatrists to study formulae; they need to dis-
til the qualitative significance of their work and to communicate
it powerfully. They need to claim a place in the actual design of
experiments, in the applications for research grants to carry out
these experiments, and the CM based analysis of data. Computa-
tional psychiatristsmust address questions of consequence to clin-
ical and experimental practice, as computational cardiologists are
doing (Rudy et al., 2008).

Second, in parallel to new data being gathered, old data can
be exploited. A huge amount of data exists already. Many neu-
ropsychological tasks, for instance, are straightforward to model.
The tasks may indeed have neurobiological correlates, and mod-
els can help us to sharpen any inferences (Moutoussis, Orrell, &

Morris, 2004). This is particularly true because models can be built
that span several tasks. Making extant data more easily accessible
would attract talentedmodellers to the task and improve the qual-
ity and usefulness of models very rapidly.

Models will further help integrate the levels of psychiatric
description. It will be critically important to acknowledge the
partial independence of the levels of description: few differences
between bicycles are captured by whether they are made of
steel or titanium. There likely is no one-to-one mapping between
neurobiological mechanisms and most DSM categories—and we
do not need to reify the latter. Indeed, focussing on specific
functions that are computationally tractable but also important for
psychiatry, helps integrating the insights of different disciplines.
This transdiagnostic approach is fully in tune with experimental
psychology and genetics (Bentall, 2003; Craddock, O’Donovan, &
Owen, 2006).

The interaction between functional brain systemswill be crucial
to any understanding of psychiatric problems. A first stage is to
demonstrate how multiple functional systems could interact. In
mood disorders, we have suggested that the complexity of decision
making is central (Huys, 2007). Because high-level decisionmaking
systems must rely on low-level building blocks, any disruption
at a low level will have profound repercussions for the higher-
level systems. Interactions between different systems (and indeed
between systems contributing to different endophenotypes)
arising from a sharing of such basic building blocks are likely to
go some way towards explaining both symptom and treatment
overlap between syndromes. The interaction between the decision
systems is a complex computational problem constrained by
nature’s possibly haphazard choices. As such, it is a prime object
for theoreticians and experimentalists to collaborate on.

Social interactions are very important in psychiatry, as they are
in economics. Behavioural economists have elucidated many is-
sues of great psychiatric interest, such as cooperation, fairness, al-
truism and selfishness (deQuervain et al., 2004; Fehr & Schmidt,
1999). As many of the social probes, or ‘‘games’’, used by be-
havioural economists have been subject to rigorous mathemati-
cal analysis (Camerer, 2003; Yoshida, Dolan, & Friston, 2008), this
approach can be naturally extended to illuminate the basis of so-
cial dysfunction in psychiatric disorders (King-Casas et al., 2008;
Meyer-Lindenberg, Mervis, & Berman, 2006). In the case of per-
sonality disorder the computational framework is still being de-
veloped (Ray, King-Casas, Montague, & Dayan, 2009), but the ap-
proachhas alreadyhelped to quantify the dysfunction in other peo-
ple’s mind-reading that autistic adults display (Koshelev, Lohrenz,
Vannucci, & Montague, 2010; Yoshida et al., 2010).

6.2. Conclusion

Strictly speaking, all models are wrong; but some are still very
useful (Box & Draper, 1986). At their worst, computational models
incomprehensibly regurgitate known facts. Sometimes they are
a useful statistical tool that allows complex hypotheses to be
rigorously tested. At their best, they allow apparently discordant
facts to come together in a harmonious novel framework, inspiring
clinicians and scientists alike.
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