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Huys, Quentin J. M., Misha B. Ahrens, and Liam Paninski.
Efficient estimation of detailed single-neuron models. J Neuro-
physiol 96: 872– 890, 2006. First published April 26, 2006;
doi:10.1152/jn.00079.2006. Biophysically accurate multicompart-
mental models of individual neurons have significantly advanced our
understanding of the input–output function of single cells. These
models depend on a large number of parameters that are difficult to
estimate. In practice, they are often hand-tuned to match measured
physiological behaviors, thus raising questions of identifiability and
interpretability. We propose a statistical approach to the automatic
estimation of various biologically relevant parameters, including 1)
the distribution of channel densities, 2) the spatiotemporal pattern of
synaptic input, and 3) axial resistances across extended dendrites.
Recent experimental advances, notably in voltage-sensitive imaging,
motivate us to assume access to: i) the spatiotemporal voltage signal
in the dendrite and ii) an approximate description of the channel
kinetics of interest. We show here that, given i and ii, parameters 1–3
can be inferred simultaneously by nonnegative linear regression; that
this optimization problem possesses a unique solution and is guaran-
teed to converge despite the large number of parameters and their
complex nonlinear interaction; and that standard optimization algo-
rithms efficiently reach this optimum with modest computational and
data requirements. We demonstrate that the method leads to accurate
estimations on a wide variety of challenging model data sets that
include up to about 104 parameters (roughly two orders of magnitude
more than previously feasible) and describe how the method gives
insights into the functional interaction of groups of channels.

I N T R O D U C T I O N

Recent electrophysiological investigations have yielded an
ever deeper insight into dendritic computation and dynamics,
shedding light on fundamental issues such as the interaction of
synaptic inputs in active dendrites (Roth and Häusser 2001),
the role of shunting inhibition (Borg-Graham et al. 1998),
backpropagating action potentials (Larkum et al. 1999; Roth
and Häusser 2001; Stuart and Sakmann 1994), and active
dendritic channels (Frick et al. 2001; Magee 1998; Magee and
Johnston 1995; Reyes 2001). These experimental results have
been supplemented by accurate, detailed biophysical models of
single neurons that have allowed us to probe the computational
purposes of such features and to address specific questions
about the neural input–output (IO) function (Fellous et al.
2003; Koch 1999; Koch and Segev 2000; London and Häusser
2005; Poirazi et al. 2003b; Wolfart et al. 2005). Here, we
attempt to capitalize on the advances in voltage-dye imaging
(Baker et al. 2005; Djurisic and Zecevic 2005) and propose a
simple statistical method for automatically building large,

detailed compartmental models of single neurons, circumvent-
ing some of the traditional complexities in building these
models “by hand.”

Our knowledge about the input to individual cells and about
the relevant part of the output of the cell is at present still
insufficient to allow direct inference of the neural IO function.
However, the knowledge that passive properties of neurons are
accurately described by the cable equation (Baldi et al. 1998;
Bell and Craciun 2003; Bhalla and Bower 1993; Dayan and
Abbott 2001; Jack et al. 1975) represents very rich information
that can significantly constrain our search for the true neural IO
function. Our approach to estimating neural properties from
data will therefore consist in postulating a model class (a large,
detailed compartmental model) that approximates the cable
equations to arbitrary precision and then seeking to constrain
the parameters in the model by data.

Typically, there is a major trade-off between realism and
tractability when constructing large compartmental models: the
more biophysically accurate and interpretable the model, the
harder the computational task of setting the model’s parameters
becomes, as the number of (nonlinearly interacting) parameters
increases [into the thousands in biophysically accurate com-
partmental models, although this number is dramatically re-
duced using experimentally supported heuristics (Poirazi et al.
2003a; Schaefer et al. 2003b)]. The challenging nature of this
high-dimensional, simultaneous parameter estimation problem
is well known (e.g., Prinz et al. 2003) and to a large extent
arises from highly nonlinear objective functions [e.g., the
percentage of correctly predicted spike times (Bhalla and
Bower 1993; Jolivet et al. 2004; Keren et al. 2005)] and the
abundance of nonglobal optima in the large parameter space
(Goldman et al. 2001; Vanier and Bower 1999).

Here we present a simple approach to estimating single
neuron properties that is both computationally tractable and
biophysically detailed. Our goal is to simultaneously infer, for
each compartment of a large multicompartmental model, 1) the
concentration of membrane channels; 2) intercompartmental
conductances; 3) the time-varying synaptic conductances; and
4) other parameters such as the channel reversal potential, the
membrane capacitance, and the noise level. To achieve this
demanding goal we must make several assumptions; in partic-
ular, we assume 1) observability of the spatiotemporal voltage
signal at several (many) positions on the dendritic tree [e.g., by
voltage-sensitive imaging methods (Antic et al. 1999; Baker et
al. 2005; Djurisic and Zecevic 2005)] and 2) a good under-
standing of the kinetics of the channels for which we seek to
determine the densities.* Q.J.M. Huys and M. B. Ahrens contributed equally to this work.

Address for reprint requests and other correspondence: Q.J.M. Huys,
Gatsby Computational Neuroscience Unit, University College London,
Alexandra House, 17 Queen Square, London WC1N 3AR, UK (E-mail:
qhuys@gatsby.ucl.ac.uk).

The costs of publication of this article were defrayed in part by the payment
of page charges. The article must therefore be hereby marked “advertisement”
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

J Neurophysiol 96: 872–890, 2006.
First published April 26, 2006; doi:10.1152/jn.00079.2006.

872 0022-3077/06 $8.00 Copyright © 2006 The American Physiological Society www.jn.org



The key insight of the proposed method is the linear rela-
tionship between dynamic functions of the observed voltage
(such as the channel open probabilities) and the transmembrane
currents, both of which are readily computed once the trans-
membrane voltage is known (see also Morse et al. 2001; Wood
et al. 2004). The estimation of the parameters of proportional-
ity between these can therefore be recast into a simple non-
negative linear regression problem. The linear relationship is of
great value. First, it implies a unique, global optimum. Second,
finding this optimum is an extremely well studied problem for
which powerful computational tools are readily available
(Boyd and Vanderberghe 2004; Press et al. 1992). In this paper
we will give examples of the method’s performance on an
extensive set of model data and plan to apply this method to in
vitro recordings in the future.

Several subtleties, both of a computational and physiological
nature, are worth noting. First, because of the large numbers of
parameters, the optimization problem, although convex, is
nevertheless very high dimensional (we will here infer about
104 parameters simultaneously, which is roughly two orders of
magnitude more than previously feasible); fortunately, certain
decomposition methods apply that allow us to break the prob-
lem into many smaller, tractable subproblems (Platt 1998). In
addition, it turns out that the problem of estimating the time-
varying synaptic input to a given compartment is undercon-
strained: because we will be inferring several temporal series
of conductance values (one for each type of synapse impinging
on any particular compartment), given a voltage trace of the
same length, the ratio of data to unknown variables will be �1.
Similar issues arise when attempting to determine the relative
densities of channels with very similar kinetics and reversal
potentials. We discuss regularization strategies that have
proven effective for controlling these problems (including
methods for providing confidence intervals around our esti-
mates). We will also show how the present method naturally
reveals information not only about individual, but also about
groups of channels and their joint effect on a neuron’s behav-
ior.

The aim of the present extended version is to 1) report the
methods in intuitive detail to allow efficient implementation; 2)

extend the scope and scale of both the methods and the
simulations; and 3) provide an in-depth analysis of their per-
formance. We previously reported the main ideas in abbrevi-
ated form (Ahrens et al. 2006).

M E T H O D S

Basic setup

Biophysically accurate models of individual neurons are typically
formulated as compartmental models—a set of first-order coupled
differential equations that form an arbitrarily accurate spatially dis-
crete approximation to the standard cable equations (Dayan and
Abbott 2001). Modeling the cell under investigation in this discretized
manner, the voltage Vx(t) in compartment x can be described by

Cx

dVx�t�

dt
� �� currentsx�� noisex � ��

i
ai,xJi,x�t��� Ix�t� � �xNx,t (1)

Here the products ai,xJi,x(t) represent the time-varying membrane and
axial currents, whereas Ix(t) is an externally injected (electrode)
current and Nx,t is current noise scaled by �x. Dropping the
subscript x for notational clarity when possible, the terms aiJi(t)
will come to represent three types of currents in each compartment
(see also Fig. 1)

● Axial currents arising from voltage mismatch in adjacent com-
partments

Iintercompartmental�t� � fx,y�Vy�t� � Vx�t��

● Currents arising from synaptic input (ligand-gated channels) at time t�

Isynaptic,t��t� � ws�t��gs�t, t���Es � V�t��

● Transmembrane currents arising from active (voltage-dependent) or pas-
sive channels

Ichannels�t� � g� cgc�t��Ec � V�t��

where Es and Ec are the synapse and channel reversal potentials,
respectively1; gs(t, t�) is the conductance time course that synapse s
would have contributed if it had been activated at time t�; and

1 For clarity, we will present the technique assuming the reversal potentials
E and the membrane capacitance C are known, but it is possible to relax these
assumptions and infer both E and, if current is injected intracellularly, C (see
APPENDIX A).

FIG. 1. Setup. The neuron is represented, as usual,
as a set of compartments (boxes), each of which has
its own voltage Vx and its own set of channel densities
contributing Ichannels. They are linked by intercompart-
mental conductances fx,y (contributing Iintercompartmen-

tal) and receive synaptic input (contributing Isynaptic).
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similarly gc(t) is the time course of channel c’s conductance. The main
insight in this paper is that the total transmembrane current C(dV/dt)
is linear in the “current shapes” Ji(t) and that the proportionality
constants ai can be inferred by linear regression if we have access to
the Ji(t). For each of the three current types mentioned above, the
proportionality constants represent biophysically highly relevant vari-
ables whose estimation has been the object of extensive research.
Among others, the parameters we will infer will include
● the intercompartmental conductances fx,y
● the overall strength of the presynaptic input at time t, ws(t)
● the channel densities g�c

The second key point in this paper is that knowledge of the voltage
trace [V(t)] and the channel kinetics [gs(t, t�) and gc(t)] together also
grant us access to both the current shapes Ji(t) and the total trans-
membrane currents C(dV/dt), and thus permit us to accurately estimate
the parameters we are interested in.

Clearly, any recording that gives us access to Vx(t) gives us direct
access to dVx /dt by a differentiation. Such scenarios include voltage-
dye recordings for large, electrotonically extensive cells and whole
cell patch-clamp recordings for electrotonically compact cells. In
electrotonically compact cells, voltage-clamp recordings grant us
direct access to the transmembrane current, relieving us from the need
to differentiate the data V(t). Let us now show that voltage recordings
also give us access to the Ji(t) (assuming knowledge of the kinetics)
and allow us to efficiently estimate the parameters ai.

Special case: single-compartment, passive neuron

We illustrate the procedure for a single compartment with only a
leak channel2, which is described by

C
dV

dt
� gL�EL � V�t�� � �N�t� (2)

Assuming also that we know V(t) (and momentarily also EL and C,
although this is readily relaxed; cf. APPENDIX A), we can evaluate both
the terms JL(t) � [EL � V(t)], which here is just the driving force, and
the total transmembrane current C(dV/dt). gL is now the unknown
scaling factor that relates JL(t) to the total transmembrane current. We
seek to set it such that the difference between the total transmembrane
current observed and the sum of the currents on the right-hand side
(RHS) of Eq. 2 match as closely as possible

ĝL � argmin
gL

�
t
�C

dV�t�

dt
� gL�EL � V�t���2

� argmin
gL

�V̇ � gLJL�2

where arg minz h(z) stands for the value of z that achieves the
minimum of some function h(z). In the present case, this is unique. We
note that this choice of ĝL corresponds to the maximum-likelihood
(ML) estimate under Gaussian white noise N(t). For notational clarity,
without loss of generality, we are neglecting the capacitance in
vectorized formulations (cf. APPENDIX A).

Definition of current shapes; vector parameterization

More generally, knowledge of kinetics gives us access to J(t) when
we condition on (i.e., assume knowledge of) the voltage trace. We will
illustrate this for active conductances, in which the kinetics are
voltage dependent, and for synapses, in which the kinetics are voltage
independent but where the parameterization is somewhat more com-
plex.

VOLTAGE-GATED CONDUCTANCES. For the active conductances,
knowledge of the membrane voltage and channel c’s kinetics gives
direct access to the current shape Jc(t) of that channel. The shape of
a channel’s current contribution, the “current shape,” is given by the

product of that channel’s open fraction gc(t) (which is a function of
past voltage and time only) and the driving force Ec � V(t)

Jc�t� � gc�t��Ec � V�t��

The open fraction gc(t) is computed straightforwardly once the voltage
and the kinetics are known. Assume for example a Hodgkin–Huxley
(HH) Na	 channel whose open fraction is gc(t) � m(t)3h(t) (Hodgkin
and Huxley 1952). Both m(t) and h(t) are given by equations of the
type

�m�V�
dm

dt
� m
�V� � m�t� (3)

where V(t) enters as a forcing term through m
(V), and through
�m (V), which together completely define the kinetics of the channel.
Given V(t) and knowledge of m
 and �m (the channel kinetics), we can
directly compute m(t) and h(t), and thus gc(t) and therefore the current
shape Jc(t) that channel may contribute. [Note that in typical modeling
studies V(t) and the channel variables m(t) and h(t) are evolved
together as a set of coupled differential equations, but that knowledge
of V(t) here decouples these equations.] The total discretized channel
current is given by summing over the Nc distinct channels present in
the membrane

�Ichannels�t � ��
c�1

Nc

Ic
channels�

t

� �
c�1

Nc

Jc�t�g� c � �Jg��t (4)

and we can again identify each column of the channel shape matrix Jc

with the current shape Jc(t) that a particular channel can contribute.
Each component of g� is the corresponding proportionality constant g�c,
the membrane density of channel c.

Figure 2 illustrates this setting. The top panel in gray shows the
voltage trace V(t), the only observed data here. From it we derive, in
a deterministic fashion, the current shapes on the left and the deriv-
ative of the voltage on the right (in gray boxes). dV/dt now has to be
matched by a weighted sum of the current shapes. The weights
correspond to the parameters being inferred (in dashed black box) and
are constrained to be positive. The case for synaptic inputs w(t) will
be elucidated shortly.

Figure 3, on the other hand, illustrates the case when a voltage is
imposed by voltage clamp. We then have experimental access to both
the voltage and the transmembrane current. The voltage is still used to
derive the current shapes deterministically. These are then weighted
and summed to reproduce the negative of the current injected through
the electrode, rather than the derivative of the voltage.

LIGAND-GATED CONDUCTANCES. For the synaptic conductances,
assuming e.g., �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA)–like synaptic kinetics, i.e., instantaneous rise and fast,
exponential decay, turns the time-varying synaptic conductance gs(t)
into a convolution of the synaptic input ws(t)

dgs

dt
� �

gs�t�

�s

� ws�t� or gs�t� �	t

dt�ws�t��e
��t�t��/�s (5)

More generally, for synapses with slower rise kinetics [e.g., N-methyl-
D-aspartate (NMDA)], we would convolve the input signal ws(t) with
an elementary conductance waveform possessing a correspondingly
slower rise time, such as an alpha function (cf. VOLTAGE-DEPENDENT

SYNAPTIC INPUT: NMDA).
By discretizing the time series, the convolution in Eq. 5 can be

rewritten as a multiplication with a convolution matrix

gs � Kws

which makes explicit the parameterization we use: every point in time
t� at which a synapse could be active is ascribed its own, independent
parameter ws(t�). The conductance time course (for all times t)

2 We will henceforth use the term “channels” to refer to “channel types,” not
to individual channels.
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corresponding to activating a synapse at time t� is in this case given by
gs(t, t�) � �(t � t�)e�(t�t�)/�s, where �(t � t�) is the Heaviside
function and zeroes out anything before time t�. The respective current
shape is then given by

J�t, t�� � ��t � t��e��t�t��/�s�Es � V�t��

Synaptic current shapes for inputs at various times are illustrated in
Fig. 2. The total current shape from one synapse is the weighted sum
of the current shapes arising from activations of the synapse at
different times t�

where diag � stands for a diagonal matrix with the vector Es � V on
the diagonal and implements an elementwise product of the vectors
(Es � V) and Kws. We can identify the ith column of synaptic shape
matrix Jsyn with the current shape Ji(t) as corresponding to the ith
component of the vector ws. A synaptic input at time t� and with
weight ws(t�) thus contributes a current of the shape of column t� of
Jsyn to the RHS of Eq. 1. To sum up, once again, we may write Isyn

as a weighted sum of known terms, with the weights ws(t) exactly the
parameters we seek to estimate. For each spike time, the current shape
is, as before, a function only of the data but not of the parameters we
seek to estimate.

At a discretization level that leads to a voltage vector of length T,
there are T parameters to estimate for each type of synaptic kinetics
included. Thus if there is one synapse per compartment, there are as
many parameters to infer as data points are available. For more
synapses per compartment, the data/parameter ratio is �1.

The gray box in Fig. 2 also illustrates how the total synaptic current
is made up of the individual current shapes in a single compartment.

In the bottom two plots, current shapes for an excitatory and an
inhibitory synapse are shown. Curves in shades of gray correspond to
different times t� of synaptic activity. Thus the first curve simply looks
like an exponential because the driving force at the times of nonzero
conductance right after such an early synaptic input is constant.
However, for an input spike right before the action potential, the
current shape bears the effect of the change in driving force during the
action potential. Although here we have considered only voltage-
independent synapses, a combination of the channel and synaptic
cases can be used for voltage-dependent (e.g., NMDA) synapses (see
also VOLTAGE-DEPENDENT SYNAPTIC INPUT: NMDA).

Inference

Given Eqs. 6 and 4 and a similar equation for the intercompart-
mental conductances, we can infer a � {g�c, ws, f } by linear regres-
sion. To see this, we concatenate all the shape matrices and the
parameter vectors and write

V̇ � Ja � �N (7)

where V̇ is a vector of length T with elements V̇t � [V(t 	 dt) �
V(t)]/dt, a is a vector containing all the parameters {g�c, ws, f } we want
to infer, and Nt � �dt �t, where �t is unit variance, independent
Gaussian noise. A solution to this linear equation can be written as a
constrained optimization

âML � argmin
a

�V̇ � Ja�2
2/� 2 � argmin

a
�V̇ � Ja�2

2

� argmin
a

aTHa � fTa s.t. ai � 0 	i (8)

where the inequality constraints stem from the nonnegative nature of
the parameters (note importantly that all the parameters we infer are
directly biophysically interpretable). The Hessian H � JTJ, whereas
f � �2JTV̇.

The optimization in Eq. 8 is jointly quadratic in all the parameters
except �, to which it is indifferent. There are no nonglobal optima (the
Hessian is positive semidefinite) and we can use well-analyzed qua-
dratic programming methods to find the optimum under the nonnega-
tivity constraints, which act as linear constraints on a here. Further-
more, performing the quadratic minimization in Eq. 8 is equivalent to
assuming that the noise N(t) is Gaussian and white and maximizing

Isyn � �
t��0

T

J�t, t��ws�t��

� �Es � V�t��

diag�Es � V�

�
t��0

T

��t � t��e��t�t��/�sws�t��

Kws

� diag �Es � V�Kws

� Jsynws (6)

FIG. 2. Illustration of the procedure when only access to the voltage is granted. On gray background: data. Deterministic functions of the data are in solid
gray boxes. Inferred parameters are in dashed box. Top voltage trace: only observed data. Gray boxes: current shapes J(t) for channels and synapses (in mV,
given that the proportionality constant is in mS/cm2) to be weighted and summed to match dV/dt. Each of the current shapes is a deterministic function of the
voltage V(t) and the (known) kinetics. Top 3 panels in the left gray box show the channel current shapes Jc(t) for Hodgkin–Huxley (HH) Na	, K	, and leak
channels. Bottom 2 panels: current shapes arising from input spikes at various times, each drawn in a different shade of gray. At discretization level T, there are
T such possible contributions for each synapse, one for each time at which a spike could have occurred. Here one excitatory (e.g., glutamatergic) and one
inhibitory (e.g., GABAergic) synapse is shown.
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the likelihood of the data given a setting of the parameters, i.e., âML

is the maximum likelihood estimate (MLE) of the parameters under a
Gaussian noise model.

Given {g�c, ws, f }, the usual MLE for � in turn is readily (and
analytically) computed: �̂ML is the root-mean-square error in the
predicted current, �̂ML

2 � (1/T) ¥t [V̇(t) � ¥i âiJi(t)]
2, where the

numerator gives the sum-squared error of our estimate of V̇(t) and the
denominator normalizes by the length T of the observed data trace.

Simulations

All simulations were carried out using MATLAB. Sample code for
some of the simulations is available at http://www.gatsby.ucl.ac.uk/
qhuys/code.html.

R E S U L T S : A P P L I C A T I O N S T O M O D E L D A T A

In the following we explore inference of several combina-
tions of these parameters to test the validity, efficiency, and
accuracy of the proposed method. Initially, we will infer
maximal channel conductances from a single compartment or
multiple compartments. Then, we will analyze inference of
synaptic inputs in a passive membrane and finally combine
inference of synaptic and channel conductances.

Channel densities g�c

For illustrative purposes, let us first analyze the inference of
channel densities in a single compartment when we know the
exact channel descriptions. We will then relax this assumption
to the case in which we do not know the identity of the
channels present. Finally, we will infer channel densities along
a multicompartmental structure.

EXACT KNOWLEDGE OF CHANNEL IDENTITIES AND KINETICS. Sup-
pose we are given the noiseless voltage trace V(t) from a single
compartment’s response to a current input I(t) and know both
the dynamics of all ion channels present in that compartment
and the input I(t) applied to it. We now seek to infer the
channel densities g�c of these different channels from the

voltage trace. The equation describing this case is

C
dV

dt
� �

c�1

�

g� cgc�V, t��Ec � V�t�� � I�t� (9)

where Ec is a channel’s (known) reversal potential and C � 1

F/cm2. Given V(t), we know the open fractions gc(V, t)
because these are only a function of t and the past voltage
history V(t�) @t� � t; e.g., gc(V, t) � m(V, t)h3(V, t) with both
gates m and h given by solutions to equations of the form of
Eq. 3. The only unknowns in Eq. 9 are the g�c and the
capacitance C. J is now a matrix that has entries Jt,c � gc(V,
t)[V(t) � Ec] and Jt,I � I(t) and gc is a vector with entries g�c/C
and 1/C. Dropping the subscript c, the regression is then
formulated as follows

ĝML � argmin
g

�V̇ � Jg�2 subject to gi � 0 	i (10)

In this noiseless case the regression provides highly accurate
estimates and correctly recovers the true channel concentrations in
the spiking model compartment (C � 1 
F/cm2, gNa � 120 mS/cm2,
gK � 36 mS/cm2, and gleak � 3 mS/cm2; data not shown).

UNCERTAINTY IN CHANNEL IDENTITIES AND KINETICS. We now
relax the requirement of exact knowledge of both channel
kinetics and identities because we will not usually have knowl-
edge of the exact kinetics of all channels present in each
compartment. Rather than using only the true kinetics of the
compartment’s channels as in the preceding section, we fit a
more powerful model containing many different channel ki-
netics (including the true) in the hope that only those channels
truly present in the membrane will be assigned nonzero con-
ductances and that the data will constrain even this more
powerful model. The true channel kinetics included were as
before of Hodgkin–Huxley type. To test the selectivity of the
estimation procedure, we fitted additional candidate channels
from Poirazi et al. (2003a), Mainen and Sejnowski (1996), and
Safronov et al. (2000) to the same data as used in the previous
section. Figure 4A shows the data and Fig. 4B the voltage
derivative to be matched by the summed, weighted current
shapes. The inferred densities are shown to match the true ones

FIG. 3. Illustration of the procedure applied to voltage-clamp scenarios, when access to both voltage and current is granted. On gray background: data.
Deterministic functions of the data are in solid gray box. Inferred parameters are in dashed box. Top: voltage trace. Gray box: current shapes (in mV, given that
the proportionality constant is in mS/cm2) to be weighted and summed to match the derivative of the voltage plus the injected current. Three panels in the gray
box (left) show, respectively, the HH Na	, K	, and leak current shapes.
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in Fig. 4C. The actual nonzero weights by which the current
shapes were multiplied were ainput current � 1/C � 1 cm2/
F;
aNa � gNa/C � 120 mS/
F; aK � gK/C � 36 mS/
F; and
aleak � gleak/C � 3 mS/
F, from which the densities are easily
derived. Zero or nonzero densities were inferred for the
channels not present during the generation of the voltage trace
(Fig. 4).

The solution to our problem formulation is given by the
weighted sum of current shapes that most closely reproduces
the observed current. Because we assume that channel densi-
ties are constant over time, we can expect to collect enough
data to constrain even the more powerful model: in the exam-
ple just mentioned, the same data that constrained the inference
with exact knowledge of the channels sufficed to constrain the
more powerful model with an extended channel library. How-
ever, this is only the case when the channel kinetics lead to
sufficiently different current shapes. Had the channels we were
trying to distinguish between been much more similar, we
would not have expected such a simple answer. In general, the
closer the kinetic schemes we try to distinguish, the more data
will be needed.

More data, however, will not distinguish between channels
whose linear combination jointly accounts well for the data. To
see this more clearly, consider an artificial case where we are
trying to simultaneously determine the densities of two chan-
nels g1 and g2, which happen to have identical kinetics.
Clearly, only the sum of the conductances assigned to these
two instances is of importance, whereas the difference 
 ḡ1 �
ḡ2 
 is irrelevant. Figure 5 illustrates this scenario. Whenever
there is such functional equivalence between kinetic schemes,
there is irreducible uncertainty with respect to different com-

binations of channels and the data cannot discriminate between
them. Looking back at the formulation of the problem in Eq. 8,
this type of uncertainty corresponds to zero (or more generally,
near-zero) eigenvalues of the Hessian H. If we have two very
similar channels, two columns of the matrix J will approxi-
mately be equal (or proportional) and H will be near singular.
The smallest eigenvalue of H will correspond to the longest
axis of the now very elongated quadratic bowl aTHa, i.e., to the
direction in parameter space along which the data least con-
strain the parameters.

FIG. 4. Inferring channel densities in a single compartment with uncertainty about channel identity. A: voltage trace V(t) (data). B: voltage derivative dV/dt in black
and weighted sum of currents ¥i aiJi(t) in gray. C: true and inferred channel densities (gray); Monte Carlo error bars (black; see APPENDIX B). D: current shapes. From
top to bottom: input current shape; HH Na	; HH K	; leak; pyramidal Na	 and K	 (Poirazi et al. 2003a); pyramidal Na	 and K	 (Safronov et al. 2000).

FIG. 5. Uncertainty resulting from equal or similar channel formulations. If
two equal channels with densities g�1 and g�2, respectively are fitted, only the
sum of the two densities g�1 	 g�2 is relevant, and there is irreducible uncertainty
along the line. More generally, the quadratic bowl aTHa will be elongated
along this direction. Largest eigenvalues of H thus correspond to the most well
constrained directions in the space of channel densities.
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Because the eigenspectrum of the Hessian H will be deter-
mined both by the similarity of the kinetic schemes and by the
appropriateness of the data in differentiating between them, it will
be a good indicator from which to derive error bars as measures
of certainty. Nota bene, however, that the eigenvalues will be
informative about certainty along eigenvectors of H, and that
these eigenvectors will not generally line up with the axes along
which only a single channel density changes. Eigenvalues will
measure how well combinations of channels are constrained by
the data, rather than individual channel densities. Figure 6 illus-
trates this point. Changes along certain relative channel densities
have a considerable effect on the behavior of the neuron and are
well constrained by the data. For example, in Fig. 6 we recover the
intuitive result that changing the balance of Na	 to K	 channels
has a substantial effect on the neuron’s behavior, whereas chang-
ing the relative concentrations of very similar channels has very
little impact on either the objective function aTHa or on the
behavior of the cell. Thus this method allows us to ascertain the
channel combinations that are most and least constrained by the
data, and therefore relevant or irrelevant to the measured neural
behavior, respectively.

Finally, we seek a measure of confidence in the estimates of
densities of individual channels. Assuming as we have so far,
that the noise is Gaussian and white, we can use Monte Carlo
methods such as importance sampling (Press et al. 1992) (or
for low-dimensional problems as in Fig. 4 even straightforward
rejection sampling) to obtain estimates of the error bars for
individual channels (see APPENDIX B for details).

INFERRING CHANNEL CONDUCTANCES IN A MULTICOMPARTMENTAL

MODEL. Next, we extend the method to a multicompartmental
model, described by

C
dVx

dt
� �

c
g� c,xgc,x�t��Vx�t� � Ec� � �

y
fx,y�Vx�t� � Vy�t�� � Ix�t� � �N�t�

(11)

which is the same as before, but now including current flow
between connected compartments. The intercompartmental
conductances are fx,y and we minimize a similar vectorized

equation as above (see Eq. 8). Based on biophysical con-
straints, we require fx,y � fy,x because the resistance to current
flowing in one direction should be equal to the resistance to the
current flowing in the opposite direction if the compartments
are of equal size. Instead of constraining the optimization
(which would entail an additional set of linear constraints on
a), we define a new set of parameters, consisting only of the
nonzero fx,y for which x � y, and optimize over them instead.

Because of the small mutual influence between compart-
ments that are spatially well separated, the inference is ame-
nable to a computational decomposition speed-up method
described in APPENDIX C, and is thus quite easily extensible to
even larger spatial structures, including thousands of compart-
ments.3 Thus this method could potentially permit efficient
inference of channel distributions across dendritic trees.

To illustrate the performance of the method, we randomly
generated cells of 50 or 1,000 compartments, as shown in Fig.
7. A known squared sinusoidal current [I(t) � sin2 (�t)] was
injected in the soma and the voltage from all compartments
was recorded. When the true transmembrane current is known,
as would be the case if each compartment’s voltage had been
observed at an arbitrarily high sampling rate, all parameters are
accurately recovered with only 10 ms of data, even in a
nonspiking model (Fig. 8 shows this for the 1,000-compart-
ment neuron in Fig. 7). Figure 8E shows the entire trace from
100 compartments.

SENSITIVITY TO CURRENT NOISE. Figure 8 lays out the perfor-
mance of the inference in the presence of negligible noise.
However, here we are mainly interested in experimental situ-
ations in which only the noisy voltage is recorded, and the
transmembrane current has to be recovered from the voltage
trace. Taking the derivative of a noisy quantity increases the
noise and may hurt the performance of the inference. Figures 9
and 10 show aggregate statistics for the effect of noise and

3 If the connectivity between the compartments is known (which is the case
for a voltage-dye experiment and is assumed here), the number of intercom-
partmental parameters to infer grows slightly faster than linearly. If the
connectivity is unknown, this number grows quadratically.

FIG. 6. Eigenvectors of the matrix H for a single compartment with 23 different channels. A: most-constrained (amax). B: least-constrained (amin) direction
in parameter space. From left to right these relate to the densities of different Na	 and K	 channels. Rightmost bar relates to the leak channel (L). Whereas the
eigenvector in A broadly exchanges Na	 channels for K	 channels, the eigenvector in B exchanges some K	 channels for (similar) other K	 channels. Voltage
trace of the model neuron after perturbation by amax (C) and that by amin (D). Solid line: perturbed model; dotted line: original model. For the perturbed models,
the parameters were set to a 	 �amax or a 	 �amin, respectively, with equal �. Sum of all absolute conductance changes was small (roughly 3%). This analysis
recovers the intuitive result that perturbing the balance of Na	/K	 channels affects the neuron more strongly than does changing the relative densities of 2 highly
similar Na	 or K	 channels; more specifically, the least-constrained eigenvector measures the balance of very similar K	 or Na	 channels, whereas the
most-constrained eigenvector measures the balance between Na	 and K	 channels in the compartment.
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temporal discretization, respectively. The data are drawn from
11 � 200 simulations of randomly generated 50-compartment,
electrotonically extensive neurons (L � 16 
m) with 2,000
time points each (including spikes) for each compartment (e.g.,
100 ms at 20 kHz). The current was inferred from the voltage
in the simplest possible manner by taking the finite difference
between adjacent data points Îtotal(t 	 0.5�) � [V(t 	 �) �
V(t)]/� [more sophisticated methods, such as derivative Gauss-
ian processes (Solak et al. 2003) or intermittent Kalman filters
(Doucet et al. 2001; Voss et al. 2004; Huys and Paninski,
unpublished observations) are available; also see DISCUSSION].

Figure 9 shows that the inference of channel densities is less
sensitive to noise than is inference of the intercompartmental
conductances. Indeed, for very extended cells ( fxy � 5 mS/cm2

or L � 150 
m; data not shown), two sets of parameters
emerge as the noise variance �2 is increased. For one cluster,
inference deteriorates. These are compartments in which there
was no adequate voltage deflection to inform parameter choice
at that particular level of noise. The currents in those compart-
ments are well accounted for by noise and there is thus a
trade-off between the noise �2 and the required electrotonical
compactness of the neuron.4

When decreasing the temporal resolution of the recording, a
negative bias is mostly observed in the active conductances.
This was to be expected because inferring the current by a
finite difference results in a systematic underestimation of the
peak current during the action potential, this underestimate
being directly dependent on �t and vanishing as �t 3 0.

SPATIAL SAMPLING—THE LINEAR DENDRITE. A likely current ex-
perimental situation is a recording from a contiguous subsec-
tion of the entire dendrite, for example along just one branch.
Although in that situation we cannot estimate the parameters in
the outermost compartments (because current from their unob-
served neighbor compartments cannot be accounted for), esti-
mation for the parameters of all the other compartments is
unchanged if we treat these compartments as current sources.

A linear piece of dendrite also provides a good test of the
robustness of our method to spatial subsampling: In the previ-
ous section we generated data from a multicompartmental
model and used the same compartmentalization to infer the
parameters. In general, however, the compartmentalization will
be given by the spatial sampling locations without any knowl-
edge of an accurate underlying compartmental model. Once
there is subsampling, there is no longer a “true” set of param-
eters to which we can compare inference. A compartmental
model with compartments at each sampling location will be
just a spatial approximation to the true cell, and the parameters
inferred are the best parameters for the particular compartmen-
tal model assumed by the discretization.

To demonstrate the robustness properties of our method to
spatial subsampling, we generated a linear dendrite of 200
compartments and subsampled by factors k � {2, 3, 4, 5}, i.e.,
generated the data from the full dendrite but during parameter
inference assumed access only to every kth compartment. The
results are displayed in Fig. 11. The distribution of channel
densities (Fig. 11, A–C) is centered around the true value in the
subsampled case. The variance of the distribution shrinks
rapidly as the cells become more electrotonically compact. For
realistic initial compartmental lengths of L � 7 
m (corre-
sponding to fxy � 2,000 mS/cm2) the error bars nearly vanish.
The procedure is thus seen to be very robust to subsampling.
Note that the inferred intercompartmental conductance de-
creases with increasing subsampling (Fig. 11D); this effect is
expected, and exactly predicted by linear cable theory for
which fxy � a/(2rLL2), where rL is the axial resistivity (in k� �
mm2) and a is the dendrite’s radius (in 
m) (Dayan and Abbott
2001). The solid line shows a fit of this relationship to the data.

Synaptic inputs ws(t) to a passive membrane

Finally, we approach inference of synaptic conductance, i.e.,
presynaptic input. For clarity, let us first analyze a passive
membrane patch that receives voltage-independent synaptic
inputs (e.g., AMPA and GABAA)

C
dV

dt
� �

s�1

�

gs�t��Es � V�t�� � �N�t� (12)

dgs�t�

dt
� �

1

�n

gs�t� � ws�t� (13)

where s indexes the � synapse types impinging on this mem-
brane patch, gs(t) is the synaptic conductance time course, ws(t)
is the strength of the synaptic input at time t, and �s is the
synaptic time constant. The response of a passive membrane to
one such synaptic input is shown in Fig. 12. Assuming knowl-
edge of the synaptic time constants, our aim is to infer the ws(t),
the temporal pattern of presynaptic input. [Note that the syn-
aptic input strength ws(t) is constrained to be positive only, not
to be binary.] We represent all the time series [V(t), dV/dt] as
vectors V, V̇, and so forth and write the maximum likelihood
(ML) w as

ŵML � arg min
w

1

� 2 �V̇ � Jsynw�2 with wt � 0 	t (14)

where all variables indexed by s have been concatenated, i.e.,
w is a concatenation of all discretized ws(t) and for a recording
of length T hast length T�. If K is the convolution matrix

4 It is reasonable to reduce the model by setting fxy � fyx � rAxy, where Axy

is the observed cross-sectional area of the dendrite between compartments x
and y and r is the unknown resistivity parameter, which is assumed to be
constant throughout the cell. Then the parameter r may be inferred by quadratic
programming methods similar to those described here. This has the obvious
advantage of reducing the dimensionality of the model to be estimated;
however, optical measurements of the cross-sectional diameter might be
unreliable or susceptible to noise arising from the small spatial scale, in which
case it may be more robust to fit the multicompartmental model (Eq. 11)
directly.

FIG. 7. Examples of the randomly generated cell morphologies used in this
subsection and in the next 2 subsections. Large cell on the left has 1,000
compartments; the small cells on the right each have 50. In all cases,
compartment n was attached to compartment n � 1 with probability 1/2, and
with probability 1/2 to a random (uniformly chosen) other compartment.
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corresponding to Eq. 13, i.e., g � Kw, then Jsyn � diag (Es �
V)K as in Eq. 6. As before, the positive nature of the synaptic
entries turns this minimization into a standard nonnegative
quadratic minimization problem. However, the complexity of
solving quadratic programs typically scales as �(N3), where N
is the number of parameters, which in the synaptic case is T �
�. Except for small problems it is not feasible to solve this
directly, but because the minimization is jointly convex in all
the parameters, a number of decomposition techniques apply,
e.g., we can simply iteratively optimize over a subset of
parameters. APPENDIX C (SYNAPTIC INPUTS ONLY) details the
procedure, which is quite efficient for this simple passive
membrane. Figure 12D shows that this simple approach gives
rather good results, but points to one issue that arises directly
from the large number of free parameters: the inferred presyn-
aptic activity ws(t) is not sparse. That is, our synapse is kept
active all the time (albeit at a low level) to explain the small
random perturbations caused by the noise term in Eq. 12—a
classical example of overfitting. Overfitting was to be expected
as we have, for a single synapse on one compartment, as many
parameters as data points (T� synapse types).

REGULARIZATION. Figure 13A shows the performance of the
ML estimator when there are three synapses, two excitatory
(glutamatergic) and one inhibitory (GABAergic). We see that
the inferred presynaptic activity is even less sparse than in the
case with a single synapse: constant small synaptic inputs are
used to explain the noise. Two factors explain why this case is
worse than the case with one synapse: First, we now use each
data (time) point to infer several (three) parameters. Second,
because we have both excitatory and inhibitory synapses, an
overshoot resulting from overactivity in a synapse can be
explained away with too much activity in a synapse of the
opposite sign with similar dynamics, which would not be
possible if all synapses were of the same sign.

Because the data do not provide enough information to
constrain the parameters, we have to use regularization tech-
niques. We take a Bayesian approach: given that we chose to
infer ws(t)—a real nonnegative number—we can readily im-
pose a prior distribution on ws(t). Because we expect that for a
single synapse, ws(t) is really a sparse set of discrete events in
time, an appropriate prior is one that 1) does not enforce
smoothness across time and 2) penalizes nonzero values of

ws(t) and thereby enforces sparseness. A simple shrinkage prior
that factorizes over time and penalizes large values of ws(t)
satisfies both these requirements. In vectorized form, we write
the maximum a posteriori (MAP) estimate for ws(t) as

ŵMAP � arg min
w
� 1

2� 2 � V̇�Jsynw� 2	w�n� with wt�0 @t (15)

where n is a vector of ones and  determines the relative
importance we give to matching the data (the first term in the
equation above) and to sparsification (the second term). The
larger the value of , the sparser the value of the estimated
ŵs(t). In probabilistic terms,  parameterizes an independent
exponential prior distribution over ws(t), that is

p�w� � �
t

e�w�t�

Figures 12E and 13B show the effect of including the prior.
Most of the small, constant synaptic activity is effectively
suppressed without greatly affecting the larger spikes. The
effect is pronounced in both the single- and three-synapse
cases, but of more importance in the latter, for the reasons
discussed above.

The value of  also needs to be inferred. Its ML value is the
a priori unknown presynaptic firing rate. There are several
ways to proceed: The one adopted here is based on an empir-
ical prior, choosing  that maximizes the posterior probability,
which corresponds to maximizing the posterior with respect to
 after discretization. Alternatively, ̂ can be chosen to maxi-
mize the marginal likelihood

̂ � arg max


p�V 
, �� � arg max

	 p�V 
�1, ws�dp�ws
� (16)

an integral that can be evaluated by Markov chain Monte Carlo
methods (MacKay 2003).

During relatively input-free times regularization as intro-
duced here will suppress the inferred synaptic activity used
(mistakenly) to explain the voltage evolution noise. However,
during periods of high-input firing rates, this regularization
might also suppress legitimate spikes. Two more flexible
schemes could be applied if we possessed information about
some variable that explained much of the fluctuations in the
input to our cell. First, it is reasonable on morphological

FIG. 8. Inference of varying channel densities (all in mS/cm2) in the large, electrotonically extended neuron model of Fig. 7 with 1,000 compartments (each
of length L � 16 
m, corresponding to intercompartmental conductances fxy � 200 mS/cm2) when access to both voltage and current are given. A (known)
squared sinusoidal driving current was injected in the first compartment (soma, thick trace in E) only, and negligible current noise (� � 100 
A/cm2) was injected
into each compartment independently. All parameters are recovered with high accuracy. Each compartment contained Na	, K	, and leak channels at different
densities. A–C: Na	, K	, and leak channel densities, respectively, each dot representing one compartment. D: intercompartmental conductances. E: voltage traces
from 100 randomly selected compartments. Note that only 10 ms of data are used here, that spikes were observed in only a minority (16%) of compartments,
and that many compartments show very little voltage modulation.
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grounds to allow the regularization parameter to vary as a
function of location on the dendritic tree; for example, close to
the soma of a pyramidal cell, we might decrease the regular-
ization parameter inh corresponding to inhibitory synapses,
but increase the regularization parameter corresponding to
excitatory synapses, thus reflecting our prior knowledge of the
distribution of synaptic input as a function of distance from the
soma. Second, it may be sensible to let  vary as a function of
time (t), where (t) may be modeled as some function of the
stimulus condition at time t. A simplified version of this idea is
explored further in STIMULUS-DEPENDENT SYNAPTIC INPUT TO AN

ACTIVE MEMBRANE. To estimate the error bars on the synaptic
input parameters, it will be necessary to adopt methods from
the sequential sampling literature (Doucet et al. 2001; Huys
and Paninski, unpublished observations) because the inference
space here is too large for the simple importance sampler in
APPENDIX B.

TIME-VARYING SYNAPTIC STRENGTH. Synaptic strength changes
over time, at both fast (because of synaptic dynamics such as
facilitation and depression) and slow (synaptic plasticity such
as long-term potentiation and depression) timescales. Treating
the weight of every spike by any individual synapse as an
independent variable has the strong advantage that it not only
allows inference of precise input spike times, but also naturally
allows inferring the time-varying strength of the synaptic input.
As an example, consider Fig. 14. Here three potentiating
synapses5 impinged on one passive compartment, two of which
were excitatory (Fig. 14A) and one inhibitory (Fig. 14C).
Figure 14D plots the true synaptic strength for each spike
versus the inferred strength. Because there were both excita-
tory and inhibitory synapses, regularization was necessary, but
it introduced a minor negative bias only in the estimates of
synaptic strengths.

VOLTAGE-DEPENDENT SYNAPTIC INPUT: NMDA. The synapses
discussed so far had simple, voltage-independent kinetics.

NMDA synapses have a more complex voltage-dependent
form, contributing a conductance gN

gN�t� � g�o�t�b�V�t�� (17)

where b(V) is some suitable (known) sigmoidal function of the
voltage, representing magnesium block, whereas o(t) is the
time-dependent component similar to the AMPA synapse gs.
As in the discussion of active channels, given the voltage V(t),
we can compute both o(t) and b[V(t)] and thus again infer the
channel density g� . The variation of the synaptic strength with
time should present no problems as we infer the full time
course ws(t). Thus this fits directly into the present framework.

Synaptic inputs to an active membrane

As mentioned above, there is a jointly global optimum for
both channel densities and presynaptic input (the optimization
is jointly convex in both). To illustrate this, we infer channel
density and presynaptic input simultaneously in a single-com-
partment cell, writing

C
dV

dt
� �

c�1

�

g� cgc�t��Ec � V�t�� � �
s�1

�

gs(t)�Es � V�t�� � �N�t� (18)

where gc(t) is the conductance state of a channel c and g�c is that
channel’s maximal conductance. We fit the same channel
kinetics gc(t) as in the multicompartmental case and infer the �
parameters g�c plus the T � � parameters ws(t).

Proceeding as before, we discretize Eq. 18 and rewrite it in
vector form

V̇ � Jjg where Jj � �Jch, Jsyn� and g � �g� c

ws
� (19)

Jch stems from the channel conductances (Eq. 9) and Jsyn from
the vectorized synaptic input (Eq. 12). Jj is thus T by � 	 T�,
which as in the previous section is typically very large. In the
N-compartment case this becomes T by N� 	 NT� 	 N (the
last addition being for the intercompartmental conductances). g
is the concatenation of all the parameters we try to estimate (gc
and ws) and we obtain our estimate by ĝ� arg ming � V̇ �

5 As potentiation dynamics we used ws(t) � �k �(t � tk) �dt� exp[�(t �
t�/�p)]ws(t�), where {tk} represents all the spikes (indexed by k) that a synapse
emits (Gerstner and Kistler 2002).

FIG. 9. Effect of current noise variance �2 (� is in mA/cm2) on parameter inference in multicompartment models. 6 � 200 60-compartmental neurons were
generated randomly. Squared sinusoidal current was injected into the soma of each neuron, and noise current was injected into each compartment.
Transmembrane current was inferred by taking the numerical derivative of the (noisy) voltage trace; 10 ms of data were used at a sampling frequency of 20 kHz.
Each plot shows true vs. inferred parameters. Top row: Na	 (light gray dots), K	 (medium gray dots), and leak (black dots) channel concentrations. Bottom row:
intercompartmental conductance fxy (in mS/cm2). To show the effect of physiological electrotonic distances, intercompartmental conductances around 200
mS/cm2 were chosen, corresponding to individual compartments of moderate length (L � 16 
m). Noise has a more pronounced effect on the intercompartmental
conductances than on the active conductances. Plot on the right shows a voltage trace with � � 160 mA/cm2.
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Jjg �2/�2 	 nTg, where n contains the regularization terms (we
regularize only the synaptic terms).

As in the previous section, the problem has to be decom-
posed because of its size. However, we now have two types of
parameters: channel parameters, which are assumed stationary
throughout the recording, and synaptic parameters. Two issues
deserve mentioning: First, the stationary nature of the channel
parameters means that the entire recording is informative about
any one channel density parameter. On the other hand, infor-
mation about any one synaptic parameter is strictly local. This
permits sparse storage techniques to save memory (see APPEN-
DIX D). Second, this very powerful model is prone to overfitting
in both manners discussed above: there are (possibly) too many
channels and there are both excitatory and inhibitory synaptic
conductances. Of course, these degrees of freedom can addi-
tionally interact; synaptic input, for example, could explain
away part of the currents arising from the channels if proper
regularization techniques are not used.

Indeed, this interaction between channel and synaptic pa-
rameters slows convergence of the decomposition method

discussed so far [see Synaptic inputs ws(t) to a passive mem-
brane and APPENDIX C, SYNAPTIC INPUTS ONLY, slightly modified
such as to always optimize over the channel parameters but
iterating through the synaptic parameters] and this effect is
more dominant for short than for long segments. We found that
a combination of multiplicative updates and coordinate ascent
yielded fastest results on the data with both channels and
synapses (see SYNAPTIC AND CHANNEL CURRENTS in APPENDIX C for
details). Figure 15 shows results on the joint inference of
synaptic input and channel densities for a recording over 2 s at
0.1-ms resolution. There were thus 4 � 104 	 7 � 40,007
parameters to estimate—a large inference problem. Using the
decomposition detailed in SYNAPTIC AND CHANNEL CURRENTS in
APPENDIX C, the inference took 22 min on a 64-bit 1.6-GHz
AMD processor. In the enlargement in Fig. 15C, no excitatory
spikes are missed and the prior effectively suppresses noisy
activity between the true input spikes. Excitatory spikes are
usually missed only during action potentials. Inhibitory spikes
on the other hand are more easily missed as the voltage
frequently approaches the reversal potential and inhibitory

FIG. 10. Effect of sampling interval �t (in ms) on parameter inference in multicompartment models. 5 � 200 60-compartmental neurons were generated
randomly. Squared sinusoidal current was injected into the soma of each neuron, and small noise current was injected into each compartment (� � 100 
A/cm2).
Transmembrane current was inferred by taking the numerical derivative of the (noisy) voltage trace; 2,000 data points were used (e.g., 10 ms at 20 kHz). Each
plot shows true vs. inferred parameters. Top row: Na	 (light gray dots), K	 (medium gray dots), and leak (black dots) channel concentrations. Bottom row:
intercompartmental conductance fxy (in mS/cm2). Intercompartmental conductances around 200 mS/cm2 were chosen, corresponding to large individual
compartments of length of L � 16 
m. As the sampling interval increases, the parameter inference becomes noisier for all parameters, but a significant bias
appears mostly in the estimates for the active conductances because the peak currents during the action potentials are underestimated.

FIG. 11. Parameter estimation is robust to subsampling. Ten different 200-compartmental electrotonically extended linear dendrites (compartment length L �
31.2 
m) with constant channel concentrations were subsampled by a factor k � {2, 3, 4, 5}, i.e., access only to each kth compartment assumed. For clarity,
all compartments in a particular (original, i.e., not subsampled) dendrite had the same channel densities. To illustrate purely the effect of subsampling, current
noise was small (� � 1 mA/cm2). For Na	, K	, and leak channels respectively. A–C: gray bars: true [and correctly recovered (see Fig. 8)] channel densities.
Lines with error bars: inferred densities for the subsampled dendrites (mean � 1 SD of estimated channel density distribution across the linear subsampled
dendrite), darker lines for larger subsampling factors. D: in each dendrite, the estimated intercompartmental conductances fxy (in mS/cm2) vary with the increasing
compartmental length resulting from the sparser sampling. Line is a fit of the predicted relationship �[ fxy] � �/L2 (Dayan and Abbott 2001). Averages are taken
over all the dendrites. All error bars become negligible for electrotonically compact cells with compartment lengths of L � 5 
m.
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input is then undetectable because it does not contribute any
current.

STIMULUS-DEPENDENT SYNAPTIC INPUT TO AN ACTIVE MEM-

BRANE. In experiments one often records from a sensory cell
while driving the cell with a relevant stimulus and there is a
huge body of work on the relationship between such evoked
activity and the stimulus. The present framework can also be
extended to this setting. Let us assume we record intracellu-
larly from, say, an electrotonically compact midbrain auditory
neuron while presenting an auditory stimulus. Here it makes
sense to represent the overall synaptic input to the cell in a
more global manner as a function of the stimulus. In the spirit
of many successful stimulus encoding models (Simoncelli et
al. 2004), we write the entire input to any compartment as a
linearly filtered version of the (d-dimensional) stimulus s(t)

C
dVx

dt
� �

c�1

�

g� cgc�V, t��Vc � V�t�� � �s�t�, k� � �N�t� (20)

and infer the (unconstrained) filter k at the same time as we
infer the channel densities. Equation 20 is of the same form as

Eq. 7, with g now containing both the channel densities g�c and
the filter k and the matrix J containing the current shapes for
the channels and each of the stimulus dimensions. Figure 16
shows that this works well for a 10-d white noise stimulus
driving a cell with HH channels. As previously, we fitted more
channels than were present.

D I S C U S S I O N

We have developed a probabilistic regression framework for
estimation of biophysical single neuron properties and synaptic
input. It leads directly to algorithms for determining these
parameters that are both efficient and are guaranteed to con-
verge to the unique optimum. Previous applications of auto-
matic parameter searches (Bhalla and Bower 1993; Prinz et al.
2003; Vanier and Bower 1999) possessed no such guarantee
because they either followed a local gradient that may lead to
local optima or used sampling techniques that may miss narrow
peaks in the cost functions. The globally convex properties
imply that only part of the state space has to be searched,
permitting fits of models with free parameters on the order of

FIG. 12. Inferring presynaptic input. A: synaptic input time course ws(t) (a set of simulated presynaptic spikes with a given (fixed) weight). B: convolution
of ws(t) with an exponential kernel to produce the time-varying input conductance gs(t). C: response of a passive membrane to the synaptic conductance (Es �
0 mV). D and E: gray circles are true inputs ws(t) and the black lines show the inferred inputs ŵs(t). D: maximum likelihood (ML) inference. E: maximum a
posteriori (MAP) inference with a sparse prior. Note that the noisy, roughly constant activity in D is effectively suppressed by the sparsening prior.

FIG. 13. Passive membrane with 3 synapses. Effect of shrinkage prior. There were 2 excitatory synapses of different strengths (6 and 12 mS/cm2) and one
inhibitory synapse (12 mS/cm2). A: ML inference. B: MAP inference (with sparse prior). Top traces are the excitatory inputs; the middle shows the voltage trace,
and at the bottom we plot the inhibitory inputs. C � 1 
F/cm2. True synaptic inputs are plotted as gray symbols (circles and x symbols), the inferred synaptic
time course as black lines. Note the overfitting when doing maximum likelihood and the high accuracy of the estimated synaptic inputs when maximizing the posterior.
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104. The framework leads to well-founded methods for ana-
lyzing the uncertainty of the estimates, which may be used to
guide experiments aimed at better constraining particular pa-
rameters (Paninski 2005).

The method is very data efficient: throughout this paper, tens
to hundreds of milliseconds of data sufficed to ascertain the
parameters that are extensive in the data (channel and morpho-
logical parameters), dispensing with the need to average over
cells (Golowasch et al. 2002). We believe this is a key first step
toward applying these techniques in detailed, quantitative stud-
ies of dendritic input and processing in vitro and in vivo. For
example, the present method could potentially allow mapping
complex channel densities along dendritic trees [and thus the
identification of dendritic “hot spots” of activity (Frick et al.
2001)], tracking synaptic channel distributions through devel-
opment, mapping synaptic strength along the dendrite (London
and Segev 2001; Magee and Cook 2000, 2001), and inferring
synaptic input from many cells during sensory stimulation and

their changing synaptic weights over time. The method natu-
rally exposes the joint functioning of channels—not readily
available previously—and may reveal insights into functional
properties of channel combinations (cf. e.g., Slee et al. 2005).
However, a number of important caveats relating to the data
assumptions—and directions for necessary future work—
should be emphasized.

Assumptions about the data

We have assumed concurrent submillisecond resolution
monitoring of the dendritic voltage throughout a subsection of
the dendritic tree. Current voltage-dye recording methods still
suffer from relatively low spatiotemporal sampling rates and
allow only concurrent monitoring of the voltage trace at sub-
millisecond resolution at a few tens of locations in the dendritic
tree [albeit arbitrarily chosen ones (Bullen et al. 1997; Djurisic
and Zecevic 2005; Iyer et al. 2006), even terminal dendrites

FIG. 14. Simultaneously inferring the time-
varying strength of 3 potentiating synapses in a
passive compartment. A: 2 potentiating excitatory
synapses with different resting weights. B: volt-
age trace data. C: one inhibitory potentiating
synapse. True strengths are shown by gray mark-
ers, a different one for each synapse (*, 	, and �,
respectively). Inferred synaptic strength in black.
D: plot of the inferred vs. true synaptic strengths
for all synapses at input spike times. Note that the
method tracks the changing synaptic weight quite
well, despite the mild negative bias resulting from
regularization.
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FIG. 15. Joint inference of synaptic input and channel densities. True parameters are in blue, the inferred parameters in red. A, top: excitatory synaptic input;
middle: voltage trace (the only observed data); bottom: inhibitory synaptic input. B: true and inferred channel densities; channels are the same as in INFERRING

CHANNEL CONDUCTANCES IN A MULTICOMPARTMENT MODEL. C: same data as A but magnified. Note that the channel densities are inferred well and that all excitatory
spikes are correctly inferred, but a few inhibitory spikes are missed when the voltage is too close to the reversal potential of the inhibitory synapse.
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(Baker et al. 2005; Djurisic et al. 2004) and individual spines
(Nuriya et al. 2006)], and Fisher et al. (2005) recently began to
combine voltage-dye with two-photon imaging techniques,
which may further increase spatial resolution. Millisecond
resolution is important to ensure accurate estimates of the total
transmembrane currents. Given the extremely rapid advances
of imaging methods in the past decade, we expect significant
improvement in the near future. Until then, techniques from the
intermittent Kalman filter literature could be applied for large
cells (Doucet et al. 2000; Huys and Paninski, unpublished
observations) and the method proposed here is already fully
applicable to intracellular recordings from electrotonically
compact cells.

We have assumed noiseless observation of the voltage time
course V(t). This is reasonable for electrophysiological record-
ings, but does not yet apply to imaging data. Djurisic and
Zecevic (2005) reported a 1–6% fluorescence change relative
to background, but point out that this is ascribed to technical
issues rather than physical limits set, e.g., by photon shot noise,
and that there is still ample room for improvement. Voltage
noise enters the main equation partially through its derivative
dV/dt, the significance of which was indicated in INFERRING

CHANNEL CONDUCTANCES IN A MULTICOMPARTMENTAL MODEL. It
will be important to relax the noiseless-observation assumption
by adapting standard techniques, for example, from the Kal-
man filter signal processing literature (Doucet et al. 2000).

In the presence of significant noise, observation of signifi-
cant voltage deflections provides the crucial evidence to con-
strain, e.g., the Na	 channel densities. In distant dendrites, the
backpropagating action potential may be insufficient to cause a
large enough voltage deflection and provide weak constraints
on active parameters (Fig. 9). For a parameter to be well
constrained, some cellular behavior in which the parameter is
of relevance has to be observed, whether it be in response to a
backpropagating action potential or to synaptic input. If behav-
ior affected by a particular parameter is never observed, that

parameter may be of small relevance (smaller than the noise) to
the cell’s overall behavior.

Recordings with low spatial resolution correspond to a small
compartmental model. Although very small compartmental
models (e.g., Mainen and Sejnowski 1996; Vetter et al. 2001)
can reproduce qualitatively complex behavior of neurons, the
exact identity of each compartment becomes crucial, and
omission of a particular compartment may lead to a fundamen-
tal alteration of the model cell’s behavior. Although it may thus
be that too small a compartmental model will be unable to
reproduce the observed cellular behavior, conservation of cer-
tain dendritic statistics (Mainen and Sejnowski 1996; Vetter et
al. 2001) should help ensure that even very low compartmental
reconstructions provide satisfactory models of the cell under
investigation. Furthermore, the parameters inferred for a small
compartmental model will still identify the best possible model
of the data at that level of simplicity. Until large cells can be
sampled at high spatial frequency, the present method is
directly applicable to any contiguous subpart of a dendrite.

The method does not require any morphological data, but if
they are available, it is possible not only to reduce the number
of intercompartmental conductances (see SENSITIVITY TO CUR-
RENT NOISE), but also to include extracellular data (Gold et al.
2006), which is readily available in vitro. Because extracellu-
larly recorded potentials are linear sums of transmembrane
currents contributed by the entire dendritic tree, each extracel-
lular recording provides one additional constraint on the rela-
tive contribution of longitudinal versus transmembrane cur-
rents. This may further improve accuracy when intercompart-
mental conductances are weakly constrained.

Discrepancies between model and data are penalized by a
squared error, giving rise to a well-defined probabilistic inter-
pretation unlike noise-free, deterministic formulations that as-
sign hard zero probability to models that do not fit the data
exactly (Baldi et al. 1998). Because the cost function measures
performance on the entire voltage trace, the model is forced to
account for all the cellular behavior evident in the data. Rather

FIG. 16. Representing cellular input as linearly filtered stimulus. A: first dimension of a 10-d white noise stimulus. B: voltage trace. C: dV/dt in black and
¥i aiJi(t) in gray. D: true and inferred channel densities. E: true and inferred filter k. Note the accuracy given only the small amount of data.
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than relying on a few hand-selected behaviors (Bhalla and
Bower 1993; Jolivet et al. 2004; Keren et al. 2005), this
approach thus benefits from data that explore as vast a range of
behaviors as possible. Although the main evolution Eq. 1
includes only Gaussian additive (current) noise and multipli-
cative (conductance) noise is not explicitly present in the
formulation, letting synaptic input vary on a continuous scale
makes allowance for conductance noise [which may be rele-
vant to replicating true in vivo states (Fellous et al. 2003;
Rudolph and Destexhe 2003)] and dependency of the noise
scale � on V(t) is easily incorporated in our analysis. Even
though the assumption of Gaussian noise does remain to be
tested, our observations on a variety of cost functions corre-
sponding to different noise assumptions (data not shown) have
always led to very similar results, indicating robustness with
respect to the noise model.

Channels may be modulated by variables other than voltage
(e.g., Ca2	- or K	-dependent channels). In its present form,
the method applies to data in which these currents are absent or
have been blocked pharmacologically. It extends directly to
cases where these variables are observed; more generally, a
semirealistic model of calcium dynamics, for example, can be
developed. Calcium can then be treated as a hidden variable
over which to average. A related issue is the stationarity
assumption, which experimentally is satisfied for times that,
although short, are long enough given the method’s data
efficiency. Repeated inference at different times may thus be
used to monitor nonstationarities.

Assumptions about voltage-gated channels

Several techniques have been applied to the mapping of
channel distributions across the dendritic tree. Histological
techniques, such as immunogold imaging, although being
highly quantitative, allow the determination of only relative
channel densities and preclude any analysis of the channel
kinetics themselves (Häusser 2003). Neurophysiological ap-
proaches include excised or cell-attached patch-clamp record-
ing techniques and dendrosomes (Bekkers 2000; Hoffman et
al. 1997; Magee and Johnston 1995), which are known to have
low reliability arising from small currents, variability in patch
area, number of included channels, and the nonisopotential
nature of extended dendritic structures (Häusser 2003). Re-
cently, techniques have been used to transform some of the
weaknesses of neurophysiological techniques into strengths.
Thus it is possible to use the large fluctuations arising from
small channel numbers to extract channel densities in spines
(Sabatini and Svoboda 2000). Schaefer et al. (2003a) used
detailed models of the passive structure of neurons and an
insightful assumption about channels with zero densities at rest
to correct for the lack of space clamp and infer channel kinetics
and densities at each patch-clamp position (in fact, they use the
local nature of the voltage clamp to estimate these quantities at
the different locations in the dendrite). Despite its elegance and
accuracy, this approach still requires pharmacological manip-
ulations, multiple patchings, and stimulations of each neuron
(at each site of interest), followed by a detailed morphological
reconstruction and it cannot be used to simultaneously infer the
density distributions of many (regenerative) channels. The
method presented in this paper also relies on many local
measurements, but these are exactly of the kind promised by

voltage-dye imaging methods: we do not require voltage-clamp
measurements (dispensing with the need for multiple patch-
ings) and demand no such pharmacology or indeed anatomical
reconstruction more detailed than that available from voltage-
dye recordings (remember that the number of recording sites
directly determines the morphological approximation).

An issue that does deserve further exploration is whether the
present method allows automatic inference of channel kinetics
in addition to assigning the channels densities. One approach
was illustrated earlier in UNCERTAINTY IN CHANNEL IDENTITIES AND

KINETICS and INFERRING CHANNEL CONDUCTANCES IN A MULTICOM-
PARTMENTAL MODEL: include a large number of kinetics schemes
(e.g., systematic parametric variations of a particular channel
type) in the channel library and choose those that are assigned
nonzero densities. This amounts to an automatic model selec-
tion scheme. However, UNCERTAINTY IN CHANNEL IDENTITIES AND

KINETICS also shows that it applies only to selecting among
sufficiently differing channel combinations and will yield sat-
isfactory results only if kinetic schemes close enough (and this
is hard to quantify) to the true ones are included in the channel
library. It may be possible to concatenate the present approach
with previous approaches, selecting among significantly differ-
ing channel kinetics in a first coarse step using the present
method and then refining the selected channel kinetics by doing
a local gradient descent on those kinetic parameters. It may
also be possible to use methods developed for single channels
(Colquhoun and Hawkes 1977) to infer continuous-time
Markov chain descriptions of single channels at the same time
as their densities.

Assumptions about synaptic input

We have assumed known synaptic kinetics. Four issues need
to be addressed. First, although evidence suggests that the
changes in the postsynaptic potentials of a particular synaptic
type observed along the dendritic tree and in learning are
mostly attributable to changes in channel density, rather than to
changes in synaptic receptor kinetics or kinetic changes arising
from alterations of spine morphology (Andrásfalvy and Magee
2001; Eder et al. 2003; Koch and Zador 1993; Magee and Cook
2000; Nuriya et al. 2006; Spruston et al. 1995; Williams and
Stuart 2003), the synaptic kinetics may vary across the den-
dritic tree. Second, even if the kinetics do not vary across a
tree, selection of one kinetic scheme among many is hard
because of the paucity of data. Classically, inferring synaptic
conductance shapes is nontrivial but possible (Cox 2004;
Häusser and Roth 1997; MJE Richardson and G Silberberg,
unpublished results), and it may be necessary to rely on further
progress in in vitro technology, which will prove helpful in
inferring conductance time courses of synapses, even distant
from the soma (Boucsein et al. 2005; Häusser and Roth 1997).
Third, in in vivo–like high conductance states, massive synap-
tic bombardment (Fellous et al. 2003) reduces the effect of
individual synaptic inputs on the postsynaptic membrane
(Destexhe et al. 2003). The current noise, however, will be
reduced equally, and thus the performance of our method in
high-conductance states should not deteriorate, although this
has not been assessed. Fourth, even with known synaptic
kinetics, the performance on model data indicates that a reduc-
tion of the dimensionality of the synaptic inference problem
may be desirable for applications to full-scale neurons. This
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will be of particular importance if many synapses of varying
type impinge on any one individual compartment, as the ratio
of data points to parameters rapidly becomes too small.

Previous approaches to estimating synaptic input have con-
centrated on amalgamated statistics of the synaptic input,
rather than on the exact time course of the presynaptic spike
train, partially because of limitations emanating directly from
the data considered (Rall 1967). One possibility, used both in
vitro and in vivo, is to measure the voltage excursions in
response to injection of short current pulses (Pei et al. 1991).
However, the frequent pulse injections necessary to obtain a
conductance time course disturb the voltage trajectory. A
popular approach that avoids this problem is to clamp a cell’s
voltage at various holding potentials and infer an I–V curve, the
slope of which gives the overall synaptic conductance at any
one point in time (Borg-Graham et al. 1998). Although this
approach does recover a time course of synaptic conductance,
it recovers only the summed, total input as seen at the soma,
not the full spatiotemporal input signal as attempted by our
method. Also, Borg-Graham et al. (1998) worked in regimes
where the contribution by active channels is negligible,
whereas the present method explicitly works with both simul-
taneously. Other work has concentrated on estimating statisti-
cal descriptions of the overall synaptic input. Fellous et al.
(2003) inferred the mean and variance of an Ornstein–Uhlen-
beck process, which is a valid statistical description of the
summed input from thousands of presynaptic cells, but which
again does not attempt to recover the precise presynaptic spike
times. The stringent data requirements of our method are a
direct result of the more ambitious goal.

A P P E N D I X

A: Inferring reversal potentials and capacitance

It is also possible to estimate the reversal potentials of the channels
and synapses. The effect of a channel on the membrane current
dV/dt � �g�g(t)[V(t) � E] can be rewritten as

dV

dt
� �g�g�t�V�t� � g�t�� (A1)

where � � g�E. We can treat these two terms as two pseudocurrents
instead of one, and estimate both g� and � in the way described above
and finally deduce the reversal potential from the relation E � �/g� .
This works well on the model data used in this paper, but in general
g� may be zero when � is nonzero, and there may be need to regularize
particularly when g� is small. This regularization may be performed, as
above, by introducing an exponential or Gaussian prior on E. It is also
possible to write

dV

dt
� �g�g�t��V�t� � E� � bg�t�

where E is now a guessed reversal potential and b is the deviation
from it, multiplied by g� . Regularizing b will punish large deviations
from the guessed reversal potentials.

The capacitance is the proportionality constant between recorded
and injected currents

dV

dt
�

1

C
I�t� � � ai

C
Ji�t�

and thus 1/C and ai/C may be inferred using a straightforward
modification of the techniques developed here, and an estimate for C
may be obtained by inverting this estimate of 1/C.

B: Monte Carlo error bars by importance sampling

Because of the nonnegativity constraints that are often enforced, ĝ
will be far from the mean of the unconstrained posterior. Thus the
variance around the unconstrained posterior mean is not a good
indicator for certainty. The second moment around ĝ arguably coin-
cides most closely with classical measures of confidence. However, its
evaluation poses further challenges. Although the posterior distribu-
tion is over all parameters jointly, the error bars for individual
parameters are related to the width of the marginal distribution, i.e.,
we have to integrate out all parameters but the one of interest—an
integral over potentially many dimensions. Because this is hard to
evaluate analytically, we opted for a Monte Carlo approach.

The second moment around the estimated values ĝML or ĝMAP is
given by

���g � ĝ�2
V� �	 dgp�g
V��g � ĝ�2 �
1

N
�
i�1

N

�gp
i � ĝ�2

where the right side of the equation is a sum over samples gp
i

generated from p(g 
 V). As long as g is not too high dimensional, it
is possible to sample from an approximate distribution q(g) and
reweigh the samples instead of sampling directly from p(g 
 V). To see
this, write the average of interest

	 dgp�g
V��g � ĝ�2 �	 dgq�g�
p�g
V�

q�g�
�g � ĝ�2 �	 dgq�g�w�g��g � ĝ�2

The first equality holds by simple expansion if q(g) is nonzero
wherever p(g 
 V) is nonzero. The second expresses the central idea of
importance sampling (MacKay 2003). The average is now written as
an average over q(g), not over p(g 
 V). That is, we can now generate
N samples {gq

i }i�1
N from the approximate distribution q(g) and re-

weigh each of the samples by a factor w(g), which corrects for the fact
that we sampled from the approximate distribution q(g), although we
should have sampled from p(g 
 V)

	 dgp�g
V��g � ĝ�2 �
1

N
�
i�1

N

wi�gq
i � ĝ�2

In the present case, samples from the approximate distribution are
generated by adding independent, truncated Gaussian noise to ĝML or
ĝMAP. Finally, evaluating p(g 
 V) is not straightforward either because
it involves another complex high-dimensional integral. Instead of
using p(g 
 V) in the computation of w(g), it is possible to use
p*(g 
 V), where Z is the (unknown) normalization constant and
incorporate a further correction in w(g)

���g � ĝ�2
V� �
1

Z
�
i�1

N p*�gi
V�

q�gi�
�gi � ĝ�2 where Z � �

i�1

N

p*�gi
V�

More general methods, such as Metropolis–Hastings (MacKay 2003),
may also be used.

C: Quadratic programming

We explored a variety of approaches to quadratic programming.
The simplest instances of the inference problems addressed here—the
pure channel and the channel 	 linear filter problems in a single
compartment—are amenable to direct inference with standard qua-
dratic programming tools (e.g., quadprog.m in Matlab). However, the
larger-scale multicompartmental and/or temporal synaptic input prob-
lems lead to very high-dimensional optimization problems, which
must be decomposed in various ways before we may solve them
efficiently. For multicompartmental problems without synapses and
pure synaptic problems (with no active channels), we found that
simply breaking up the problem into smaller problems—each of
which would be solved by a standard quadratic programming tool—
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was most efficient. On the other hand, for the joint inference of
channel and synapses, we found a combination of multiplicative
updates followed by a sequential minimal optimization (SMO)–like
(Platt 1998) coordinate ascent to be fastest.

SYNAPTIC INPUTS ONLY. Equation 15 is in a form that can be solved
by standard quadratic programming (QP) tools, but the dimensionality
is too big and leads to prohibitively long computation time. Rather
than solving for the entire w (dropping the subscript s) at once, we
note that we can iteratively solve for small chunks wk of w. This is
explained by the fact that the surface on which we move is quadratic
and has no nonglobal minima, and therefore we can descend the
jointly quadratic surface by taking steps changing only parts of the
vector w, keeping the other parts fixed. When solving the large
problem at once, we take steps straight toward the maximum. Opti-
mizing iteratively over the smaller subspaces corresponds to taking
steps within subspaces (black lines in Fig. C1 if the subspaces are
individual parameters). Overall the path to the maximum is longer (cf.
Fig. C1, black vs. red lines), but because QP problems typically are of
�(n3) computational complexity, we expect this method to be faster
for longer recordings. We first multiply out and rewrite Eq. 15 as a
nonnegative quadratic minimization problem

ŵ � arg min
w

wTHw � fTw � const. (C1)

where H � Jsyn
T Jsyn/�2, f � n � 2Jsyn

T V̇/�2, and wt � 0 @t, we can
now write smaller subproblems, optimizing only over wk

ŵk4 arg min
wk

wk
THkkwk � f� k

Twk � const. (C2)

f�k � fk � 2Hkk� wk�

where c is independent of w and k indexes the parameters updated at
that iteration, whereas k� indexes the parameters not updated at that
iteration. We have found that this converges very rapidly (approxi-
mately two iterations over all parameters) because the overall problem
really does more or less decompose into small independent problems
resulting from the locality of the synaptic conductances in time (or, in
the spatial case, resulting from the locality of the channels in separate
compartments). Adding a line search along the overall direction (this
is just a one-dimensional quadratic program; see Fig. C1) did not
significantly speed up convergence in this case.

SYNAPTIC AND CHANNEL CURRENTS. In practice, the approach in
the previous section proved rather slow for the joint inference of
channels and synapses, resulting from the coupling between tempo-
rally distant synaptic weights ws(t) induced by the dependency of the
optimal estimate for the channel parameters on the fully inferred
synaptic time course. Multiplicative updates (Sha et al. 2003) were
more efficient at approaching the region containing the solution in this
case. Both multiplicative updates and the chunking (Platt 1998)

approach to QP presented in the previous section were slower than a
very fast and efficient formulation of coordinate ascent at actually
reaching the minimum. Although it is known that multiplicative
updates slow down inappropriately around the minimum, the slowness
of the chunked QP is likely attributable to overhead from function
calls.

Multiplicative updates. Letting

Aij
	 � � Aij if Aij � 0

0 otherwise
Aij

� � � Aij if Aij � 0
0 otherwise

the multiplicative updates take a very simple form (Sha et al. 2003)

gi4 gi�� fi � f i
2 � 4�H	g�i�H � g�i

2�H	g�i
�

Coordinate ascent6. Minimizing Eq. C1 with respect to only one
parameter allows derivation of a closed-form analytic solution and
circumvents the need for calling a QP function

ĝi � arg min
gi

gT Hg � f Tg � const.

fgi � �
�j�i 2Aijgj	fi

Aii

if gi � 0 else gi � 0 (C3)

Equation C3 can be written in a very efficient update form such that
¥j�i 2Aijgj does not have to be reevaluated every time. Let g be the
vector of parameters from the previous iteration and g*i the new value.
Then

g*i � �
�j�i Aijgj � giAii � giAii � 1/2fi

Aii

� gi �
�Hg�i � 1/2fi

Aii

� gi �
mi � 1/2fi

Aii

(C4)

and we update both gi and the vector m* � m 	 (g*i � gi)Hi (where
Hi represents the ith column of H) iff gi � g*i. Conditioning on a
change in gi has a similar effect to the heuristics used in SMO (Platt
1998), whereby that Lagrangian is updated that most violates the
Kahrush–Kuhn–Tucker conditions. Here all the gi values that violate
the conditions are updated. Searching for those that contribute the
largest violations is computationally less efficient than iterating
through in this simple manner.

D: Memory requirements

For large problems, the memory requirements of constructing the
matrices J and H become prohibitive. However, the size of J mostly
arises from the synaptic contributions, which are only locally nonzero
(a synaptic input has a relatively short impact on the voltage trace).
The sparse.m function in MATLAB allows highly efficient use of this
property. In all the larger problems presented in this paper, all
elements in both J and H of absolute size smaller than some � were
set to zero. This did not affect performance but significantly improved
speed and allowed large problems to be solved. We found � � 0.001
to be useful.
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FIG. C1. Descending the quadratic surface in steps. Optimizing over
chunks of parameters at each step corresponds to taking steps within subspaces
of the entire parameter space. Coordinate ascent optimizes one parameter at a
time. In the former case the axes represent subspaces; in the latter they
represent individual parameters.
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