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Neuroimaging increasingly exploits machine learning techniques in an attempt to achieve clinically relevant
single-subject predictions. An alternative to machine learning, which tries to establish predictive links between
features of the observed data and clinical variables, is the deployment of computational models for inferring
on the (patho)physiological and cognitive mechanisms that generate behavioural and neuroimaging responses.
This paper discusses the rationale behind a computational approach to neuroimaging-based single-subject infer-
ence, focusing on its potential for characterising disease mechanisms in individual subjects and mapping these
characterisations to clinical predictions. Following an overview of twomain approaches – Bayesian model selec-
tion and generative embedding –which can link computationalmodels to individual predictions, we reviewhow
these methods accommodate heterogeneity in psychiatric and neurological spectrum disorders, help avoid erro-
neous interpretations of neuroimaging data, and establish a link between a mechanistic, model-based approach
and the statistical perspectives afforded by machine learning.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Despite its potential to provide a non-invasive assay of whole-brain
function, neuroimaging has experienced surprising difficulties in deliv-
ering diagnostic applications for clinical practice, particularly in psychi-
atry.While there are several reasons for this disappointing track record,
which is shared by other approaches like genetics (for discussions and
reviews, see Casey et al., 2013; Kapur et al., 2012; Krystal and State,
2014; Stephan et al., 2015), the perceived failure has triggered impor-
tant discussions about themost promising avenues for clinical neuroim-
aging. One particular hope is that the influx of methods from machine
learning will realise the translational potential of neuroimaging. For ex-
ample, in fMRI, multivariate classification and regression schemes have
recently yielded impressive successes in clinically relevant domains
such as pharmacological or pain research (e.g., Duff et al., 2015;
Wager et al., 2013).
. This is an open access article under

omputational neuroimaging
However, in direct application to clinical questions, neuroimaging-
directedmachine learning hasmainly been used to discriminate patient
groups from each other or from healthy controls. This has been variably
successful, as indicated by the diverse outcomes from fMRI-based clas-
sification competitions. In these competitions, the accuracies of
neuroimaging-based diagnoses have ranged from poor (e.g., attention
deficit hyperactivity disorder; Brown et al., 2012) to excellent
(e.g., schizophrenia; Silva et al., 2014). More importantly, however,
the attempt to replace or augment traditional clinical diagnostics by ap-
plying machine learning techniques to neuroimaging data is a strategy
of limited long-term clinical utility. This is because a multitude of phys-
iological, genetic and clinical studies over the past decades havemade it
clear that mental diseases as defined by contemporary classification
schemes – such as the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM) or the International Classification of Diseases (ICD) – are
highly heterogeneous. That is, disorders like schizophrenia, depression,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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autism etc. group patients with similar clusters of symptoms and signs
that are caused by diverse pathophysiological mechanisms (Cuthbert
and Insel, 2013; Kapur et al., 2012; Krystal and State, 2014; Owen,
2014; Stephan et al., 2016). This pathophysiological diversity explains
why psychiatric diagnoses based on DSM/ICD have little predictive va-
lidity; that is, with few exceptions (such as differentiating mono- and
bipolar affective disorders) they do not inform the clinician about indi-
vidual clinical trajectories or treatment responses. As a consequence,
even if highly accurate DSM/ICD diagnoses could be derived from ma-
chine learning classifiers applied to neuroimaging data, this would sim-
ply recapitulate a diagnostic scheme that does not directly inform
clinical management – and would do so using a considerably more ex-
pensive and less widely available technology compared to classical psy-
chiatric interviews.

This is one reasonwhy the application ofmachine learning to neuro-
imaging data has changed direction in recent years and is now being in-
creasingly applied to problems more directly related to clinical
management, such as predicting individual disease course or treatment
efficacy. This has shown some promising recent results, indicating that
it may become possible to predict individual trajectories of patients
with schizophrenia (Anticevic et al., 2015) or mood disorders (Lythe
et al., 2015; Schmaal et al., 2015) from neuroimaging data, or forecast
individual treatment responses to psychotherapy (Mansson et al.,
2015), antidepressants (DeBattista et al., 2011; McGrath et al., 2013;
Miller et al., 2013) and antipsychotics (Hadley et al., 2014; Nejad et al.,
2013).

These are remarkable successes and raise hopes that neuroimaging
may finally contribute to clinical decision-making in the not-too-
distant future. However, the straightforward application of machine
learning to neuroimaging data faces a number of non-trivial technical
and conceptual challenges that may impede their long-term clinical
utility (for discussions and reviews, see Brodersen et al., 2011; Klöppel
et al., 2012; Orru et al., 2012;Wolfers et al., 2015). One central challenge
is that neuroimaging data are noisy and very high-dimensional, pre-
senting with a myriad of data features that could inform prediction. Di-
mensionality reduction and optimal feature selection thus become
critical problems. One interesting development in this regard concerns
recent advances in feature extraction methods based on restricted
Boltzmann machines (Hjelm et al., 2014) and deep neural networks
(Plis et al., 2014), which offer novel representations of disease states
with potential diagnostic opportunities.

Second, hemodynamic and electrophysiological measurements rep-
resent distal and potentially complicated transforms of underlying neu-
ronal mechanisms. This means that conventional machine learning
methods, which operate directly on observed features of neuroimaging,
do not furnishmechanistic insights into pathophysiology. This can be il-
lustrated with three examples. First, in multivariate classification stud-
ies of fMRI, even though the spatial distribution of informative voxels
can be determined, this does not disclose a concrete biological process.
Similarly, unsupervised learning approaches that exploit multimodal
imaging measures can obtain compelling subgroup delineations
(Ingalhalikar et al., 2014) but remain descriptive and do not offer a
mechanistic link between the structural and functional components of
any identified predictor. Finally, while functional connectivity
(i.e., statistical dependencies between regional time series) has enabled
successful machine learning applications (Arbabshirani et al., 2013;
Craddock et al., 2009; Du et al., 2015; Richiardi et al., 2011; Rosa et al.,
2015), its characterisation of neuronal processes is restricted to statisti-
cal correlations that are agnostic about the physiological causes of net-
work dynamics. In general, machine learning applied to “raw”
neuroimaging data does not easily identify mechanisms from which
novel therapeutic approaches could be derived.

An alternative to machine learning is the use of theory-driven com-
putational models to infer pathophysiologicalmechanisms in individual
patients (Friston et al., 2014; Huys et al., 2016; Maia and Frank, 2011;
Montague et al., 2012; Stephan and Mathys, 2014). This strategy has a
Please cite this article as: Stephan, K.E., et al., Computational neuroimaging
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number of key features, whichwe discuss in detail below. In short, com-
putational approaches (i) allow one to invokemodel comparison proce-
dures for clarifying whether any neurophysiological differences among
patients signal real differences in pathophysiology, or simply reflect dif-
ferent cognitive strategies; (ii) provide theory-driven dimensionality
reduction; and (iii) can support powerful single-subject predictions
based on inferred mechanisms, as opposed to patterns of data features.

This paper provides an overview of computational neuroimaging
strategies for single-subject predictions, independently of – or in con-
junction with – machine learning techniques. We attempt to illustrate
central concepts of generative modelling, and the clinical utility they
may afford. To this end, we focus on the general form of model classes;
by contrast, we do not discuss mathematical properties of any single
model in detail, but refer the reader to the relevant literature. One
area which requires a slightly more detailed mathematical discussion
is the framework of Bayesian model comparison. Even here, however,
we restrict our treatment to interpreting the general form of key
equations.

This paper has the following structure. First, for readers without
much background in computational neuroimaging, we provide a brief
overview of existing approaches, clarify some nomenclature, and revisit
some of its previous successes. Second, we discuss the importance of
model comparison for dealing with heterogeneity across individuals
and introduce the principles of Bayesian model selection (BMS) and
Bayesianmodel averaging (BMA). Third, we outline how clinical predic-
tions can be derived from computational models, (i) illustrating the use
of BMS when theories of disease mechanisms exist and (ii) introduc-
ing generative embedding as a link between computational model-
ling and machine learning, when disease (process) theories are not
available. Moreover, we outline how BMS and generative embedding
can be deployed in an unsupervised or supervised fashion in order to
address problems related to nosology (i.e., detecting subgroups in
heterogeneous disorders), differential diagnosis, and outcome
prediction.

Computational neuroimaging – what, why and how?

The term “computational” originally derives from the theory of com-
putation, a subfield of mathematics that examines which particular
functions are computable. A function is computable if it represents a
mapping (from an input to an output set) that can be implemented by
an algorithm; i.e., a well-defined sequence of operations. In neurosci-
ence, the term “computational” has been used quite flexibly, ranging
from an emphasis on information processing (irrespective of its bio-
physical implementation), to very broad usage, encompassing any algo-
rithmic investigation of neuronal systems (cf. “computational
neuroscience”), in contrast to analytical mathematical treatments.

In neuroimaging, three main computational approaches are pres-
ently being pursued (for review, see Stephan et al., 2015). These include
biophysical network models (BNMs), generative models, and “model-
based fMRI”. BNMs are large-scale networkmodels whose nodes repre-
sent mean field (or neural mass) models of neuronal population activ-
ity. Augmented with a hemodynamic or electrophysiological forward
model, neuronal population activity is translated into a predicted fMRI
or EEG signal (for reviews, see Deco et al., 2013a; Deco and
Kringelbach, 2014;Wang and Krystal, 2014). By connecting the individ-
ual nodes in accordance with anatomical connectivity data – obtained
fromhuman diffusion-weighted imaging orMacaque tract tracing stud-
ies – the dynamics of large-scale networks and ensuing whole-brain
neuroimaging signals can be simulated. While the neuronal state equa-
tions of BNMs can be rich in biophysical detail, their complexity renders
parameter estimation very difficult, and current models allow only the
estimation of a single global scaling parameter of connectivity (Deco
et al., 2013b). For this reason, this paper focuses on the other two classes
of models, generative models and model-based fMRI. These rest on less
complex and fine-grained formulations, but allow for estimating model
strategies for single patient predictions, NeuroImage (2016), http://dx.
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Fig. 1. Summary of a generative model for neuroimaging data. This figure contains graphics that are reproduced, with permission, from Chen et al. (2009), Garrido et al. (2008), and
Stephan et al. (2003).
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parameters from measured data. In the following, we summarise the
principles of these models and clarify some of the technical terms and
concepts involved. The following conventions will be used for equa-
tions: functions, distributions and scalar variables are represented by
Fig. 2. Overview of DCM for fMRI. Reproduced, w
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lowercase italics; sets, functionals and quantities from probability the-
ory (such as information-theoretic surprise or free energy) by upper-
case italics, vectors by lowercase bold, and matrices by uppercase bold
letters.
ith permission, from Stephan et al. (2015).
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1 Simulations that provide an intuition of neuronal dynamics accounted for byDCMand
illustrate how different parameters impact on the resulting signals can be found in several
previous papers; for example, see Fig. 1 in Penny et al. (2004b) and Fig. 2 in Stephan et al.
(2008).

2 For simulations illustrating the nature of this hemodynamic model, see Figs. 3, 8, 9 in
Friston et al. (2000) and Fig. 5 in Stephan et al. (2007).
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Generative models of neuroimaging data
In statistics, a “generative model” is defined by the joint probability

over all random variables (e.g., observed data and model parameters)
that define a systemof interest. More intuitively, one can think of a gen-
erative model as describing how observed data were generated and
hence viewing it as a “recipe” for generating simulated data. A genera-
tive model is specified by defining two components: a likelihood func-
tion and a prior density. The likelihood function rests on a
probabilisticmapping fromhidden quantities (parameters θ) of the sys-
tem of interest to observable quantities (measurements) y:

y ¼ f θð Þ þ ε ð1Þ

This simply says that the data (feature) vector y originates from
some transformation f,which encodes a putative signal-generating pro-
cess, plus stochastic noise ε.We deliberatelywrite Eq. 1 in this form, as it
will provide a useful reference for the distinction between feature selec-
tion methods that do or do not exploit knowledge about the hidden
causes of measurements (see section on Generative Embedding below).

The function f encodes how systemparameters determine its output
(signal); this can range from extremely simple concepts (e.g. a constant
term describingmean signal) to complex functions; e.g., a biophysically
motivated dynamical system, as in the case of dynamic causalmodelling
(DCM, see below). Eq. 1 can now be used to specify the likelihood func-
tion as quantifying the probability p(y |θ) of observing a particular mea-
surement y, given a particular parameterisation of the system. For
example, assuming identically and independently distributed Gaussian
noise ε, the likelihood can be written as:

p yjθð Þ ¼ N y; f θð Þ;σ2I
� � ð2Þ

where I denotes the identity matrix and σ2 noise variance.
The prior density encodes the range of values the parameters are ex-

pected to take a priori, i.e., before any data are observed. Again, under
Gaussian assumptions we can express this as:

p θð Þ ¼ N θ;μθ;Σθð Þ ð3Þ

where μθ ,Σθ denote prior mean and prior covariance, respectively.
To generate data, one could simply sample from the prior density

and plug the ensuing parameter values into the likelihood function.
This approach to simulating data is very general, and traditional non-
probabilistic simulations in computational neuroscience (with fixed pa-
rameters) can be regarded as a special case of a generative model,
where the prior density reduces to a Dirac delta function (point mass)
over the chosen parameters.

Using the probabilistic mapping from hidden parameters of the sys-
tem to observed signals in the “forward” direction is very useful for sim-
ulating observable responses, under different parameter values and
exploring system behaviour. In neuroimaging, however, we wish to
proceed in the opposite direction; i.e., estimate the parameter values
from observed data. This reverse mapping is equivalently referred to
as “model inversion”, solving the “inverse problem”, or simply “infer-
ence”. Formally, this corresponds to computing the posterior probability
p(θ |y)=N(θ;μθ|y,Σθ|y) of the parameters, given the data (Fig. 1). This
follows directly from Bayes theorem:

p θjy;mð Þ ¼ p yjθ;mð Þp θjmð Þ
p yjmð Þ ð4Þ

Here, we havemade the dependency on a chosenmodel structurem
explicit by conditioning all terms onm. The practical difficulty is that de-
riving the term in the denominator requires computing an integral (see
Eq. 9) which is usually not analytically tractable, except for some very
simple cases. Unfortunately, even numerical integration is rarely feasi-
ble, since computation time increases exponentially with the number
of model parameters. In practice, one has to resort to approximate
Please cite this article as: Stephan, K.E., et al., Computational neuroimaging
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inference schemes. These comprise two main approaches: Markov
chain Monte Carlo (MCMC) sampling and variational Bayes (VB); for
in-depth discussions see MacKay (2003) and Bishop (2006). MCMC is
computationally expensive and can require very long run times but is
guaranteed to converge to the correct solution (in the limit of infinite
time). On the other hand, VB is computationally very efficient but is sus-
ceptible to local extrema and can be affected by violations of distribu-
tional assumptions (Daunizeau et al., 2011).

In this paper, we focus on the first and most widely used generative
modelling framework for neuroimaging data, dynamic causalmodelling
(DCM). This approach was introduced a decade ago for fMRI (Friston
et al., 2003). DCM for fMRI uses differential equations to describe thedy-
namics of neuronal population states x(t) that interact via synaptic con-
nections and are subject to experimentally controlled perturbations u
(t). These perturbations can either induce neuronal population activity
directly; e.g., in terms of sensory stimulation (“driving input”) or dy-
namically modulate the strengths of synaptic connections. The form of
these neuronal state equations is given by a low-order (Taylor) approx-
imation to any nonlinear system (Friston et al., 2003; Stephan et al.,
2008),where the strengths of synaptic connections andweights of driv-
ing andmodulatory inputs represent the parameters of interestwewish
to infer by model inversion (see Fig. 2).1

The activity of each neuronal population is coupled to a regional
blood oxygen level dependent (BOLD) signal by a cascade of differential
equations describing hemodynamic processes, such as changes in blood
flow and blood volume (Friston et al., 2000; Stephan et al., 2007).2 Tech-
nically, thismeans that DCMrepresents a hierarchical generativemodel,
where the likelihood function is partitioned into deterministic dynamic
state equations f of hidden neuronal and hemodynamic processes (with
neuronal and hemodynamic parameters θn ,θh) and a static observation
function g that implements discrete sampling and accounts for mea-
surement noise ε (for the detailed equations, see Fig. 2 and Friston
et al., 2003; Stephan et al., 2007):

Neuronal states :
dxn

dt
¼ f n xn;u; θnð Þ

Hemodynamic states :
dxh

dt
¼ f h xn;xh; θhð Þ

Measurements : y ¼ g xhð Þ þ ε
ð5Þ

Notably, in these equations, noise only enters at the observation
level whereas neuronal dynamics unfolds in a deterministic fashion,
given external perturbations and systemparameters (e.g., synaptic con-
nection strength). That is, in Eq. 5, the dynamic variables of interest
(neuronal and hemodynamic states xn ,xh) are deterministic functions
of designed and known inputs u and of time-invariant neuronal (θn)
and hemodynamic (θh) parameters. (For ease of reading, we have omit-
ted explicit references to time.) This means that we only need to infer
the parameters – the state trajectories follow automatically from any in-
ferred parameter values. Thiswould be different if stochastic differential
equations were chosen; in this case, the states are not fully determined
by the choice of parameters and would need to be inferred, in addition
to the parameters. This is known as stochastic DCM (Daunizeau et al.,
2009; Daunizeau et al., 2012; Li et al., 2011).

By specifying plausible prior densities over the neuronal and hemo-
dynamic parameters (see Friston et al., 2003 for details), the generative
model is completed. Inverting this generative model allows one to infer
the neuronal parameters of interest (e.g., coupling strengths and their
modulation by experimental conditions) from empirically measured
fMRI data. Notably, the separate representation of neuronal and
strategies for single patient predictions, NeuroImage (2016), http://dx.
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3 For a very instructive overviewwith both simulations and empirical results, please see
Figures 1 and 2 in Glascher and O'Doherty (2010).
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hemodynamic mechanisms is crucial for generative models of fMRI;
since variability in neurovascular coupling across regions and subjects
can otherwise confound inference on connectivity (David et al., 2008).

Following its introduction for fMRI, DCMhas been extended to other
neuroimaging modalities, including event-related potentials (ERPs;
David et al., 2006), induced responses (Chen et al., 2008), and spectral
responses (Moran et al., 2009), asmeasured by electroencephalography
(EEG) and magnetoencephalography (MEG). DCM has found wide-
spread use for analysis of effective connectivity between neuronal pop-
ulations and has furnished insights into circuit-level mechanisms that
eluded previous schemes. This includes, for example, physiological
characterisations of predictive coding in cortical hierarchies during per-
ceptual inference and learning, both in healthy subjects (e.g., denOuden
et al., 2009; Garrido et al., 2008; Summerfield et al., 2006) and in pa-
tients with schizophrenia (Dima et al., 2010; Dima et al., 2009;
Ranlund et al., 2015) or altered levels of consciousness due to brain
damage. Beyond long-range connectivity, DCM has also proven useful
for inferring detailed, low-level physiological (synaptic) mechanisms
within local neuronal circuits of the human brain, exploiting the rich
temporal information contained by EEG/MEG data. Examples include
the detection of conductance changes in AMPA and NMDA receptors
under dopaminergic modulation (Moran et al., 2011), changes in post-
synaptic gain of supragranular pyramidal cells in auditory cortex
under cholinergic stimulation (Moran et al., 2013), or the characterisa-
tion of changes in neuronal physiology in individualswith selectivemu-
tations of particular ion channels (Gilbert et al., 2016).

Model-based fMRI
Generative models also play a central role in the second computa-

tional approach considered in this paper, “model-based fMRI”. How-
ever, in contrast to the purely physiological DCMs described above,
this approach asks whether a (particular component of
a) computational process is reflected in BOLD signals (Gläscher and
O'Doherty, 2010; O'Doherty et al., 2003). In other words, it tries to ex-
plain voxel-wise BOLD signals as a linearmixture of computational pro-
cesses, which are assumed to be directly encoded by the underlying
neuronal activity. The same approach can be applied, of course, to M/
EEG responses; for example, in order explain trial-by-trial amplitudes
or waveforms of event related potentials (Lieder et al., 2013; Ostwald
et al., 2012). However, given its dominance in the present computa-
tional neuroimaging literature, we here focus entirely on model-based
fMRI.

Model-based fMRI rests on a two-step procedure (see Fig. 2A). First,
a generativemodel of behavioural responses, with computational states
xc (e.g., trial-wise prediction errors (PEs) or uncertainty) and parame-
ters θc, are estimated using the measured behaviour yb of an individual:

yb ¼ g xc; θcð Þ þ εb ð6Þ

By inverting this model, the computational states xc can be inferred
(dotted linemarkedwith 1 in Fig. 2A). The subsequent convolutionwith
a standard hemodynamic response function (HRF) then provides ex-
planatory variables or regressors for a standard mass-univariate GLM
analysis of voxel-wise fMRI data:

yfMRI ¼ xc⊗HRFð Þβþ εfMRI ð7Þ

The parameters of this GLM, β, can now be estimated in a second in-
ference step (dotted line marked with 2 in Fig. 2A), either under flat
priors (i.e., maximum likelihood estimation) or using empirical Bayes-
ian procedures (Friston and Penny, 2003). Overall, this two-step proce-
dure enables one to search, across the whole brain, for the neuronal
correlates of computational variables of interest which had been in-
ferred from the simultaneously measured behaviour.3

The model-based fMRI approach was pioneered by O'Doherty and
colleagues (O'Doherty et al., 2003) who used a temporal difference
Please cite this article as: Stephan, K.E., et al., Computational neuroimaging
doi.org/10.1016/j.neuroimage.2016.06.038
(TD) learning model to show that phasic activation of the ventral stria-
tum, a major recipient of dopaminergic projections from the midbrain,
correlated with the magnitude of trial-wise reward PEs during an in-
strumental conditioning task. This was motivated by the seminal work
of Schultz, Dayan, and Montague who found that reward PEs correlated
with phasic activity of dopaminergic midbrain neurons (Schultz et al.,
1997) and that changes in this phasic activity during learning could be
predicted under the formalism of a TD learning model (see also
(Montague et al., 2004) for review).

Model-based fMRI has subsequently been applied to numerous do-
mains of cognition, accommodating a diversity ofmodelling approaches
and computational themes, such as reinforcement learning (RL)models
of behaviour and Bayesian models of cognition (e.g., (D'Ardenne et al.,
2013; Daw et al., 2006; Iglesias et al., 2013; Klein-Flügge et al., 2011;
Schwartenbeck et al., 2015; Seymour et al., 2004; Vossel et al., 2015).
A recent application of model-based fMRI has been the investigation
of interactions between learning and decision-making processes
which do or do not derive from an explicit model of the environment
or task structure. This distinction is commonly referred to as “model-
based” vs. “model-free” computations (e.g., Daw et al., 2011; Deserno
et al., 2015; Gläscher et al., 2010; Huys et al., 2012); where the latter
term induces a terminological twist in the context of model-based fMRI.

Model-based fMRI in humans has produced results of high relevance
for pathophysiological theories, corroborating, for example,
hypothesised links between trial-by-trial activity in neuromodulatory
nuclei and the trajectories of specific computational quantities sug-
gested by theoretical accounts and/or animal experiments. Prominent
examples include the encoding of reward PEs and precision (inverse un-
certainty) by phasic and tonic changes in activity levels of the dopami-
nergic midbrain (e.g., D'Ardenne et al., 2013; Klein-Flügge et al., 2011;
Schwartenbeck et al., 2015), or the reflection of expected and unex-
pected uncertainty (Yu and Dayan, 2005) by activity in the cholinergic
basal forebrain (Iglesias et al., 2013) and noradrenergic locus coeruleus
(Payzan-LeNestour et al., 2013). Model-based fMRI has also been ap-
plied to patients, for example, in depression (Dombrovski et al., 2013;
Gradin et al., 2011) and addiction (Harle et al., 2015; Tanabe et al.,
2013). Perhaps most notably, model-based fMRI studies of patients
with schizophrenia (Gradin et al., 2011; Murray et al., 2008;
Romaniuk et al., 2010) have contributed empirical evidence for the
long-standing hypothesis that disturbances in PE signalling by dopami-
nergic neurons in themidbrainmight assign “aberrant salience” to envi-
ronmental events (Heinz, 2002; Kapur, 2003).

Hybrid and unified models
The relation between the behavioural and neuroimaging domains of

model-based fMRI is summarised schematically in Fig. 3A. This high-
lights the fact (expressed by equations 6 and 7 above) that model-
based fMRI essentially represents a correlational approach between
two types of measurements, each of which has its own generative pro-
cess. In the long run, unifiedmodelsmay bedeveloped that explain both
neuroimaging signals and behaviour of a given individual from the same
underlying state equation (i.e., neuronal process). For example, this
could be a state equation describing the biophysical implementation
of relevant computations in a circuit of interest; this would require
both a mapping from (hidden) neuronal states to behavioural observa-
tions that considers the biophysical implementation of relevant compu-
tations (e.g., predictive coding), and a mapping from circuit state to
neuroimaging data describing how neuronal activity translates into
measurable signals (Fig. 3B). This would allow one to infer circuit pa-
rameters of interest, simultaneously from both measured behaviour
and neuroimaging data and provide a mechanistic (and quantitative)
characterisation of neuronal processing that was grounded both in
terms of physiology and computational function. Moreover, unified
strategies for single patient predictions, NeuroImage (2016), http://dx.
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Fig. 3. A. Summary of the two-step procedure in “model-based” fMRI. Grey plates denote random variables; light blue ellipses represent observed variables (measurements); darker blue
diamonds represent states (which followdeterministically, given theparameters and inputs). Solid arrows represent dependencies among variables; dashed arrows represent inference. B.
Summary of a unified model in which both behavioural and neuroimaging data are predicted from the same underlying state equation. In this model, the unknown parameters can be
inferred in one step, based on both behavioural and neuroimaging data. See main text for details and definition of variables.
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models of this sort can help identifying which parts of a circuit are par-
ticularly critical for maladaptive actions. This might be particularly use-
ful when addressing the problem of multiple potential causes or
strategies underlying an observed behaviour; cf. (Schlagenhauf et al.,
2014).

A significant step towards such a unified model has been made re-
cently (Rigoux and Daunizeau, 2015). They proposed a mapping from
a single state equation of circuit dynamics (based on the formalism of
DCM for fMRI) to simultaneously acquired behaviour and fMRI signals
Fig. 4. Illustration thatmodel selection can provide a formal basis for differential diagnosis. Here,
how the observed data could have been generated, is evaluated in terms of the posterior mode
model evidence (see main text for details).
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(see their Figs. 3–5 for simulations that demonstrate the principles of
this model). While this relatively coarse state equation only allows for
relatively simplistic relations between circuit dynamics and behaviour,
the conceptual advance of thismodel is considerable since it helps iden-
tifyingwhich parts of the network (nodes or connections) are crucial for
funnelling inputs (stimuli or task instructions) into behavioural outputs.

Prior work towards integrating generative models of neurophysiol-
ogy and computation (information processing) have mainly examined
the notion of PEs as “teaching signals” that regulate the amount of
the relative plausibility of a set of competingmodels, representing alternativemechanisms
l probability. In the typical case of a flat prior on model space, the latter is identical to the
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Fig. 5. An illustration of the trade-off between model fit and model complexity, and an
example of overfitting. Here, models of increasing complexity are fitted to data that
were generated from an exponential function, plus added observation noise. It can be
seen that a highly complex model fits the data perfectly but, because it is trying to
explain the noise as well, makes predictions (such as the pronounced bumps in the
middle of the data series) which will not generalise across future instantiations of the
data from the same underlying process (“overfitting”). Reproduced, with permission,
from Pitt and Myung (2002).

4 While this paper focuses on the conceptual and mathematical foundations of BMS,
previous papers have provided toy examples (simulations) and step-by-step BMS analy-
ses of single subject data which may be useful for the interested reader. For example, for
simulations, please see Figures 4–6 and Tables 2–5 in Penny et al. (2004a) and Figure 2
in Stephan et al. (2009b); for detailed single subject BMS analyses, please see Figures 7–
9 and Tables 6–13 in Penny et al. (2004a) and Figures 3–4 and Table 1 in Stephan et al.
(2005).
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synaptic plasticity needed to update neural circuits during learning.
Specifically den Ouden et al. (2009, 2010) demonstrated that short-
term plasticity during sensory learning could be measured by inferring
how effective connection strengths were modulated by trial-by-trial
prediction errors obtained from RL and hierarchical Bayesian models,
respectively. A similar demonstration was provided in the context of
learning under aversive outcomes (Roy et al., 2014). Most recently,
Vossel et al. (2015) showed how attentional shifts were accompanied
by changes in cortical-subcortical network connectivity that evolved ac-
cording to trial-wise estimates of certainty (precision) of target predic-
tions, where the latter were inferred from saccadic eye movement data
using a hierarchical Gaussian filter (Mathys et al., 2011).

Bayesian model selection

As outlined in the Introduction,many conventionally defined neuro-
logical and probably all psychiatric diseases are highly heterogeneous:
patients with similar symptoms and behaviour may differ considerably
in terms of (patho)physiological mechanisms and/or cognitive pro-
cesses. A central goal for neuroimaging approaches with the ambition
of clinical utility is thus to identify, in any given individual patient, the
most likely mechanism that underlies a particular observation (brain
activity pattern). This is simply the challenge of differential diagnosis,
which is ubiquitous throughout medicine. Differential diagnosis maps
directly onto hypothesis testing which, in parametric statistics, corre-
sponds to the formal comparison of different models of how observed
data could have been generated (Fig. 4). In other words, an elegant ap-
proach to establishingdifferential diagnoses in psychiatry based on neu-
roimaging would be to formalise competing pathophysiological
theories in terms of alternative generative models. The relative plausi-
bility of these models (hypotheses) would then be evaluated by formal
model comparison procedures, given empirical measurements of neu-
roimaging and/or behaviour.

As a concrete example, many pathophysiological concepts of schizo-
phrenia converge on the notion of dysregulation of dopaminergic mid-
brain neurons in patients with schizophrenia (Heinz, 2002; Kapur,
2003; King et al., 1984; Winton-Brown et al., 2014). This dysregulation
could be caused by at least three different mechanisms (for details, see
Please cite this article as: Stephan, K.E., et al., Computational neuroimaging
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(Adams et al., 2013; Stephan et al., 2009a): (i) altered prefrontal inputs
that target midbrain neurons via NMDA receptors; (ii) enhanced inputs
from cholinergic brainstemnuclei (PPT/LDT), or (iii) altered autoregula-
tion of dopaminergic midbrain neurons (by paracrine release of dopa-
mine and activation of dopaminergic autoreceptors). Disambiguating
between these possibilities, by comparing models that embody the
above mechanisms (given measurements from the midbrain and the
areas it communicates with), would have tremendous relevance for de-
lineating schizophrenia into pathophysiological subgroups – and for
guiding individual treatment decisions.

In what follows, we unpack the statistical basis of differential diag-
nosis by model selection. We hope to familiarise the reader with Bayes-
ian techniques for comparing and selecting models that are used
frequently in the current literature and provide a powerful way to
deal with individual variability in physiology and/or computation.
These techniques are equivalently referred to as Bayesian model com-
parison (BMC) or Bayesian model selection (BMS); while the former is
the more general term, the latter describes the common situation of
selecting a single (most plausible) model from a set of alternatives.4

Model evidence
Generally, the first step of anymodel-driven (hypothesis-led) inves-

tigation is to decidewhich class of explanation accounts for the observa-
tions. This is what all scientists implicitly do when testing hypotheses –
although this step might not always represent an explicit choice. Tech-
nically, hypothesis testing ormodel comparison corresponds to defining
a hypothesis set or model space M of competing explanations that are
deemed plausible a priori. This is equivalent to specifying a prior over
models; where, typically, all models within M are considered equally
likely and all other possible models have zero prior probability:

p mð Þ ¼ 1= Mj j if m∈M
0 if m∉M

�
ð8Þ

(Here, |M |refers to the cardinality of the hypothesis set.) The chal-
lenge then is to find themodelmwithinM that provides the best expla-
nation of the observed data. Importantly, selecting a model that “best
explains” the data is not simply a statement about model fit. Indeed, it
is trivial to find, for any data set, models with excellent or even perfect
fit; for example, for any observation consisting of t data points, a polyno-
mial function of order t−1will fit the data perfectly. These overly accu-
rate models simply explain noise or random fluctuations that are
specific to the particular measurement and do not generalise to other
(e.g., future) measurements of the same process. This tendency of an
overly flexible model to recognise spurious patterns in noise is referred
to as “overfitting” (see Fig. 5 of this paper and Fig. 1.4 of Bishop (2006)
for examples). On the other hand, the simplest model possible, which
would consist of a constant term only and explains no signal variance
(i.e., R2 = 0), can indeed be the best explanation of a time series –
when the time series contains no signal and only noise. In summary,
measures of fit alone are inadequate to judge model goodness (Pitt
andMyung, 2002). Instead, the challenge is to selectmodels that gener-
alise best; these are the models that provide an optimal balance be-
tween fit (accuracy) and complexity.

This balance is implicit in the Bayesian model evidence used during
Bayesian model selection (BMS). The model evidence is the probability
of observing the data y given the model m. This probability is also re-
ferred to as the marginal or integrated likelihood and corresponds to
the denominator from Bayes theorem (see Eq. 4). It can be computed
strategies for single patient predictions, NeuroImage (2016), http://dx.
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by integrating out (or marginalising) the parameters from the joint
probability:

p yjmð Þ ¼
Z

p yjθ;mð Þp θjmð Þdθ ð9Þ

This is why the Bayesian model evidence is also referred to as the
marginal likelihood. As a simplifying intuition, the evidence can be un-
derstood as providing ananswer to thequestion: “If I randomly sampled
frommy prior and plugged the resulting value into the likelihood func-
tion, how close would the predicted data be – on average – to my ob-
served data?”

In practice, model comparison does not utilise the model evidence
directly but typically employs its logarithm (log evidence). Given the
monotonic nature of the logarithmic function, ranking models based
on either model evidence or log evidence yields identical results. How-
ever, the log evidence is numerically easier to deal with (the logarithm
of a small number between zero and one is a large negative number)
and results in more intuitive equations, some of which we encounter
below. It also offers an additional nice intuition derived from informa-
tion theory. Specifically, given that (Shannon) surprise S is defined as
negative log probability, for an agent operating under a given model
m, the log evidence corresponds to the negative surprise about observ-
ing the data y:

log p yjmð Þ ¼ −S yjmð Þ ð10Þ

Put simply, log evidence – and hence model goodness – increases
when we are less surprised about the data encountered.

While the statistical procedure of model comparison typically rests
on the log evidence, the result of comparing two models is understood
more intuitively when reported as a Bayes factor (BF); this is simply
the ratio of two model evidences. As with p-values in frequentist statis-
tics, conventions exist about which thresholds are meaningful for Bayes
factors (Kass and Raftery, 1995). For example, a Bayes factor larger than
20 (equivalent to a log evidence difference larger than 3) would be con-
sidered as “strong” evidence in favour of one model relative to another.

An alternative option, when reporting the results of model compar-
isons in an intuitively accessible form, is to compute, for each modelmi,
its posterior probability. In the typical case where the prior onmodels is
uninformative or flat (cf. Eq. 8), this simplifies to normalising the evi-
dence for each model by the sum of all model evidences:

p mijyð Þ ¼ p yjmið Þp mið Þ
XMj j

j¼1

p yjmj
� �

p mj
� � ¼

p yjmið Þ
XMj j

j¼1

p yjmj
� � ð11Þ

This makes it easy to see that across all models, the posterior model
probability sums to unity.

Approximations to the log evidence
Onemajor barrier to computing the model evidence is that the inte-

gral in Eq. 9 can rarely be evaluated analytically; furthermore, numerical
integration is typically prohibitively expensive. Therefore, one usually
resorts to approximations of the log evidence, such as the Akaike infor-
mation criterion (AIC; Akaike, 1974), Bayesian information criterion
(BIC; Schwarz, 1978), or negative free energy (Friston et al., 2007;
Neal and Hinton, 1998; Penny et al., 2004a). These approximations de-
compose model goodness into a balance of two terms – accuracy and
complexity. All of them agree in the definition of accuracy as log likeli-
hood. By contrast, they differ considerably in their approximation of
complexity.

AIC and BIC have a seemingly straightforward approximation of
complexity. In AIC complexity simply corresponds to the number of
free parameters; in BIC, this is additionally scaled by the log number
Please cite this article as: Stephan, K.E., et al., Computational neuroimaging
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of data points:

AIC ¼ log p yjθ;mð Þ−k

BIC ¼ log p yjθ;mð Þ−k
log n
2

ð12Þ

The additional scaling factor in BIC means that, once that more than
n N 8 data points are available, BIC entails a stronger complexity penalty
than AIC. The simplicity of their complexity approximationsmakes AIC/
BIC easy to compute, but has two significant disadvantages: AIC/BIC ig-
nore interdependencies among model parameters (which are ubiqui-
tous in biological systems; Gutenkunst et al., 2007) nor can they
capture differences in prior variance across parameters.

These issues are resolved by a third approximation to the log evi-
dence, the negative free energy F. Its name derives from close connec-
tions between free energy concepts in statistical physics and
variational approaches to probability theory (see Friston et al., 2007;
Neal and Hinton, 1998). Variational free energy represents a lower
bound approximation to the log evidence, where the tightness of the
bound depends on how well the true (but unknown) posterior can be
matched by an approximate posterior q (of known form):

log p yjmð Þ ¼ F þ KL q θð Þ∥p θjy;mð Þ½ � ð13Þ

Here, KL refers to Kullback-Leibler divergence or relative entropy, an
information theoretic measure of the dissimilarity between two proba-
bility densities. The KL divergence is zero when the densities are identi-
cal and becomes increasingly positive the more the two densities differ
(Kullback and Leibler, 1951). Importantly, since we do not know the
true posterior, the KL term cannot be evaluated directly. However, by
maximising F one implicitly minimises the KL term, thus tightening
the lower bound approximation to the log evidence (see Fig. 6). This is
achieved by optimising the approximate posterior q (e.g., when q is
Gaussian, finding the mean and variance of q that maximises F accord-
ing to Eq. 13 above). In otherwords, bymaximising Fwe can bothobtain
an approximation to the log evidence and the posterior densities of the
parameters.

The negative free energy (and hence model evidence) can be
decomposed into the following balance between model fit and model
complexity (for details, see Penny et al., 2004a; Stephan et al., 2007):

F ¼ log p yjθ;mð Þh iq−KL q θð Þ∥p θjmð Þ½ � ð14Þ

In this expression, the first term represents accuracy: the expected
log likelihood, under a chosen approximate posterior q. The second
term represents complexity and is given by another KL divergence;
this time between the approximate posterior and the prior. When the
form of the approximate posterior is the same as the true posterior,
the complexity is exactly the difference between the posterior and
prior and inference becomes exact. Put simply, this means that a
model has high complexity if it is sufficiently flexible to allow for a sub-
stantial belief update, i.e., a pronounced divergence of the posterior
from the prior belief. Another heuristic is that the complexity reflects
both the effective number of parameters that need to be displaced
from their prior values to provide an accurate explanation for data and
the degree of their displacement.

This heuristic can be turned into amore formal perspective by exam-
ining the analytical expression of the complexity term under an as-
sumed distributional form for the approximate posterior (see
discussions in Stephan et al. (2009b) and Penny (2012)). For example,
under Gaussian assumptions:

KL q θð Þ∥p θjmð Þ½ � ¼
1
2
log det Cθð Þð Þ−1

2
log det Cθjy

� �� �þ μθjy−μθ

� �T
C−1
θ μθjy−μθ

� � ð15Þ
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Fig. 6. A graphical illustration of the negative free energy approximation to the log model evidence, and its evolution during model inversion in the context of variational Bayes. Here, by
adjusting the parameters of the approximate posterior such that the negative free energy F is maximised, one implicitly minimises the KL divergence between the approximate and true
posterior and tightens the bound on the log evidence. See main text for details.
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Here,Cθ andCθ|y denote prior and posterior covariancematrices, and
det refers to the determinant, a matrix property that can be interpreted
as ameasure of “volume” (the space spanned by the eigenvectors of the
matrix). This volume increases with the number of dimensions (the
rank of the covariance matrix), and with the length and orthogonality
of the basis vectors. With this in mind, the first term in Eq. 15 means
that complexity increases with the number of free parameters, the
more flexible these parameters are (the higher their prior variance),
and the more orthogonal they are. The second term means that com-
plexity decreases with increasing orthogonality of the posterior param-
eter estimates (a desirable property of an interpretablemodel) andwith
increasing posterior variances (highly precise posterior estimates result
in brittle model predictions which are unlikely to generalise). Finally,
the third term captures our heuristic above and expresses that complex-
ity grows the more the posterior mean diverges from the prior mean.

While all of the above approximations have proven useful in prac-
tice, they come with different pros and cons.5 AIC and BIC are easy to
compute since the log likelihood is always available and estimating
complexity boils down to simply counting the number of free parame-
ters. On the downside, AIC and BIC are agnostic to several important as-
pects of complexity, such as the prior variance of and interdependence
amongparameters. By contrast, the free energy approximation provides
a more informed measure of complexity that is generally more appro-
priate for real-world biological systems which are imbued with param-
eter interdependencies (Gutenkunst et al., 2007). However,
distributional assumptions may have greater impact than for BIC and
AIC (since they concern not only the accuracy, but also the complexity
term), and evaluating the tightness of its bound approximation requires
computationally expensive sampling schemes (Aponte et al., 2016). On
the other hand, the negative free energy approximation was shown to
exhibit better model comparison performance than AIC/BIC in the con-
text of regression models and DCM (Penny, 2012) and also proved
5 Several simulation studies have examined the validity of these approximations in the
context of the models discussed in this paper; for example, see Figure 4 in Penny et al.
(2004a), Figures 3–5 in Stephan et al. (2008), and Figures 6–8 in Penny (2012).

Please cite this article as: Stephan, K.E., et al., Computational neuroimaging
doi.org/10.1016/j.neuroimage.2016.06.038
superior to BIC for model comparison of directed acyclic graphical
models (Beal and Ghahramani, 2003).

An alternative to the above approximations are sampling-based ap-
proaches, typically based on MCMC. One (highly simplified) way to
think of MCMC – in this particular context – is of reconstructing an inte-
gral by an approximation (essentially like a histogram) that is “experi-
enced” by a random walk. Here, each step only depends on the
previous one (Markov chain) and tends to move in a direction that is
likely to provide a meaningful contribution to the integral. Depending
on how much computation time one is willing to invest, different op-
tions exist. A computationally less expensive approach is to use a single
chain for obtaining samples from a particular distribution and using
these samples to evaluate Eq. 9, in order to obtain an approximation
to the model evidence. For example, using the chain to sample from
the prior leads to the prior arithmetic mean (PAM) approximation
(which tends to underestimate themodel evidence), whereas sampling
from the posterior distribution leads to the posterior harmonic mean
(PHM) approximation (which tends to overestimate the model
evidence).

Amore robust alternative ismulti-chain sampling. The key idea here
is to build a sequence (path) of probability distributions that connect
the prior to the posterior distribution by using a temperature parameter
on the likelihood part of the model (Lartillot and Philippe, 2006). Inde-
pendent single chains can be used to obtain samples from each distribu-
tion from this sequence; joining the samples frommultiple chains yields
an asymptotically exact estimate of the log evidence. An additional im-
provement is to use populationMCMC (Calderhead andGirolami, 2009)
which imposes a dependency between neighbouring distributions
(chains) in the sequence and improves the samples obtained from
each single chain.

While sampling-based approaches to the log evidence are a promis-
ing directing for future developments of BMS, they have usually been
prohibitively expensive (in terms of compute time) so far. However, re-
cent advances in exploiting the power of graphics processing units
(GPUs) are now beginning to turn sampling approaches, including
multi-chain and population MCMC methods, into a viable alternative
for computing accurate log evidence estimates (Aponte et al., 2016).
strategies for single patient predictions, NeuroImage (2016), http://dx.
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Inferring model structure in individual subjects vs. groups
Computational modelling studies of neuroimaging and behavioural

data have largely applied model comparison at the group level. By con-
trast, this paper focuses on the need for disambiguating and quantifying
pathophysiological or psychopathological processes in individual pa-
tients. For this reason, we will only briefly touch on group-level model
comparisonmethods and refer the interested readers to previous publi-
cations and reviews (Friston et al., 2016; Huys et al., 2011; Penny et al.,
2010; Rigoux et al., 2014; Stephan et al., 2009b; Stephan et al., 2010).

Group-level model comparison faces the same general challenge as
any other statistical inference procedure at the group level, namely
does the quantity of interest constitute a fixed or a random effect in
the population? Under a fixed-effects perspective, one assumes that
the variable of interest is constant across subjects, and any variability
in the measured data arises from observation noise. In the context of
model comparison, thismeans that themodel is assumed to be identical
across subjects. This allows for a straightforward statistical procedure:
because the data obtained from different subjects are independent,
one can simply pool the evidence across the sample and multiply indi-
vidual Bayes factors, resulting in a group Bayes factor (Stephan et al.,
2007).

Fixed-effects model comparison is simple to perform and has great
sensitivity. However, the underlying assumption is usually incompati-
ble with the heterogeneity of patient groups and it therefore rarely
has a place in clinical studies. Even in the healthy population, however,
variability in cognitive and physiological mechanisms can be substan-
tial, and a fixed-effects approach is typically reserved for situations
where it can be assumed that the mechanism of interest is the same
across subjects, e.g., basic anatomical or physiological phenomena,
such as the relation between structural and effective connection
strengths (Stephan et al., 2009c). In all other applications, a random ef-
fects perspective is usually more appropriate.

However, this statement has to be qualified by askingwhere random
(between-subject) effects arise. This can be at the level of parameters or
models. In other words, one could assume that different subjects have
the same basic architecture but each subject has unique and unknown
(random) model parameters. In other words, group data could be gen-
erated by sampling from subject-specific distributions over all model
parameters but under the samemodel.6 Alternatively, one could assume
that the parameters of a model are sampled from different models,
where some models preclude various parameters.7 The first approach
(random parametric effects) calls for hierarchical or empirical Bayesian
models of group data; while the second (random model effects) ap-
proach can be implemented using just the model evidences over differ-
ent models for each subject. A simple frequentist approach to random
parametric effects is to use parameter estimates from each subject, ob-
tained under the same model, as subject-wise summary statistics that
enter a second-level (parametric or non-parametric) test which probes
the null hypothesis of no parametric effects.

More sophisticated, fully hierarchical approaches extend this sum-
mary statistic approach to provide so-called “empirical Bayesian”
models of group data (Friston et al., 2016; Huys et al., 2011). They are
“empirical” because their hierarchical structure allows for estimating
subject-level priors from the group data (Huys et al., 2011). The advan-
tage of this is that subject-wise estimates are less noisy; however, the
parameter estimates are no longer independent across subjects. To re-
peat, in this setting, all subjects are assumed to be drawn from the
same model, i.e., this is a random effects approach in parameters but
not models (random parametric effects). A simple parametric manner
to relax this is to fit a mixture of models to each subject and infer indi-
vidual and group weighting parameters. This assumes a within-
subject multiplicity of generative processes.
6 For simulations of this case, see Figure 3 in Friston et al. (2016).
7 Example simulations of this scenario can be found in Figure2 of Stephan et al. (2009b).

Please cite this article as: Stephan, K.E., et al., Computational neuroimaging
doi.org/10.1016/j.neuroimage.2016.06.038
The equivalent hierarchical treatment of randommodel effects uses
just the log evidences for each model (as opposed to the parameter es-
timates). A hierarchical model of the log evidences across the popula-
tion was introduced by Stephan et al. (2009b). This model
accommodates model heterogeneity in the studied sample and com-
putes, for each model m considered, the expected model frequency
(i.e., the prevalence of model m in the population from which the
group of subjects is sampled) as well as its exceedance probability
(i.e., the posterior probability that its frequency is higher than the fre-
quency of any other model considered). This approach has recently
been finessed by Rigoux et al. (2014) who introduced “protected ex-
ceedance probabilities” that account for the possibility that observed
differences between model evidences may have arisen by chance.

Applications of BMS to questions of diagnosis and pathophysiology
BMS represents a principled approach to deciding which of several

hypotheses (models) best explains the observed data of an individual
subject. As described above, in principle, it provides an attractive foun-
dation for establishing computational assays to address diagnostic ques-
tions. That is, provided one has well-founded theories about alternative
pathophysiological or pathocomputational mechanisms underlying a
given symptom, and these theories can be cast as competing models,
model comparison could provide a direct and formal basis for differen-
tial diagnosis in individual patients (Stephan and Mathys, 2014; Fig. 4).

So far, however, subject-by-subject BMS has rarely been applied in
clinical studies. A major reason for this gap may be that, at least in psy-
chiatry, we do not always have precise hypotheses about alternative
disease mechanisms. Alternatively, when such theories do exist, it
may not be straightforward to represent them in concrete models that
can be implemented under existing computational frameworks – or
which can explain the measurements that can be acquired from the
neuronal circuit of interest.

Some notable exceptions exist. These include studies that carefully
disambiguated alternative cognitive strategies across patients, as in
the study by Schlagenhauf et al. (2014) described below, or studies ex-
amining rare patients with neurological conditions. For example,
Cooray et al. (2015) used BMS to compare alternative explanations of
seizure activity in two patientswith anti-NMDAR encephalitis. Applying
a DCM to artefact-free EEG data acquired during the occurrence of sei-
zures, the authors compared different theoretical formulations of how
alterations of excitatory and/or inhibitory connectivity by NMDAR pa-
thology could lead to seizure activity. In both patients, this model com-
parison provided a non-trivial explanation of seizure initiation,
highlighting a characteristic increase in inhibitory connectivity at sei-
zure onset and a subsequent increase in excitatory connectivity.

While the application of BMS to individual patients is the exception
so far, many computational neuroimaging studies conducted in recent
years, particularly those using DCM, have adopted random effects
model comparison. These studies address a wide range of
syndromatically defined disorders; for example, schizophrenia
(Dauvermann et al., 2013; Deserno et al., 2012; Schlagenhauf et al.,
2014; Schmidt et al., 2013), bipolar disorder (Breakspear et al., 2015),
or Parkinson's disease (Rowe et al., 2010). Although most of them do
not directly address a diagnostic problem (but see Boly et al., 2011),
these studies provide important insights into pathophysiological mech-
anisms, while respecting heterogeneity across patients.

The remainder of this section discusses three examples from recent
work by different groups. These examples illustrate a spectrum of hy-
pothesis testing strategies afforded by BMS, concerning pathophysiologi-
cal differentiation of patient groups, detection of patient subgroups, and
identifying potential mechanisms (and targets) of therapeutic interven-
tions, respectively.

The first example illustrates how model selection can help distin-
guish between pathophysiological explanations and support diagnostic
differentiation of patient groups. (Boly et al., 2011) sought to identify
potential mechanisms for diminished consciousness levels in two
strategies for single patient predictions, NeuroImage (2016), http://dx.
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groups of brain-damaged patients (N= 21) with “minimally conscious
state” (MCS) and “vegetative state” (VS), respectively. The differential
diagnosis of these two disorders of consciousness by clinical means is
difficult, and neurophysiological biomarkers for disambiguating these
two states would be highly desirable. Comparing these two groups
and a healthy control group with EEG, Boly and colleagues found a dif-
ferential reduction in long-latency components of the mismatch nega-
tivity (MMN), an event-related response to surprising (auditory)
stimuli. Using DCM and BMS, they asked whether pathological changes
in a five-area network (primary and secondary auditory cortex bilater-
ally, right IFG) – known to generate the MMN in healthy volunteers –
could explain this neurophysiological difference across groups. Specifi-
cally, they testedwhether the hierarchically higher areas, secondary au-
ditory cortex and IFG, might have become disconnected from primary
auditory cortex. This was not the case: BMS indicated that the same
five-area network most plausibly generated the measured responses
in both patient groups and healthy controls. Subsequent statistical anal-
ysis of posterior connectivity estimates (under the most plausible
model) indicated that the selective impairment of a single connection
– from IFG to secondary auditory cortex in the right hemisphere –
accounted for the scalp-wide ERP abnormalities in VS, but not MCS, pa-
tients. This result suggests that MCS and VS may be differentiated by a
reduction of top-down influences from frontal to temporal cortex, and
more generally, that a disturbance of recurrent message passing in sen-
sory processing hierarchies might offer a hallmark for diminished
consciousness.

A second case study shows how BMS can enable characterisation of
subgroups within a heterogeneous sample (van Leeuwen et al., 2011).
Strictly speaking, this example does not concern a clinical disorder,
but a relatively rare cognitive anomaly: colour-grapheme synaesthesia.
Individuals with this type of synaesthesia experience a sensation of col-
our when reading letters. As shown in previous fMRI studies (Hubbard
et al. 2005;Weiss et al. 2009), this experience is paralleled by an activa-
tion of the “colour area” V4; a phenomenon for which two competing
explanations have been offered. One idea is that V4 might be activated
in a bottom-up fashion through input from a grapheme-processing
area in the fusiform gyrus. An alternative proposal is that V4 might be
activated top-down, via parietal areas that “bind” information on col-
ours and letters. van Leeuwen et al. (2011) cast these two opposing the-
ories into distinct DCMs (see Fig. 7), which they applied to fMRI data
from 19 individuals with synaesthesia. Random effects BMS applied to
the whole population failed to find a clear difference between the two
models. Strikingly, however, when considering individual differences
in the phenomenology of the experience, two neurophysiologically dis-
tinct subgroups emerged: in individuals who experienced colour as
being externally co-localised with letters (“projectors”) the DCM
implementing the bottom-up hypothesis had considerably higher evi-
dence. By contrast, in subjects experiencing an internal association be-
tween colour and letters (“associators”), the DCM representing the
top-down hypothesis was clearly superior. While this perfect dichot-
omy was established by means of a random-effects group BMS proce-
dure, eyeballing the graphical representation of the individual log
evidence differences (Fig. 2 in van Leuwen et al., 2011) allows for an ap-
proximate estimate of the diagnostic properties of this computational
assay. For example, using a “positive evidence” threshold (Kass and
Raftery, 1995), the BMS procedure appears to have a sensitivity of 80%
and a specificity of 100% for detecting “associators”.

The final and third example demonstrates how potential mecha-
nisms of pharmacological interventions can be identified using model
comparison. This is an important issue for pharmacological fMRI studies
that contendwith individual variability in receptor expression, receptor
sensitivity, and/or transmitter metabolism. This variability can intro-
duce considerable heterogeneity in fMRI responses and connectivity es-
timates under pharmacological manipulation – even when dosage is
carefully controlled for – and confounds the detection of any significant
effects at the group level (for example, see van Schouwenburg et al.,
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2013). A recently introduced BMS strategy offered an innovative ap-
proach to circumvent these issues (Piray et al., 2015). This study related
previousfindings frompharmacological studies in rodents to humans in
order to clarify how the putative dopamine-dependency of connections
intrinsic to the human basal ganglia relates to individual trait impulsiv-
ity. The authors acquired task-free fMRI data in healthy volunteers,
using a within-subject, cross-over factorial design combining D2 ago-
nists (bromocriptine) and antagonists (sulpiride) with placebo. By
modelling the pharmacological intervention as an unsigned session-
wise modulatory effect in a DCM of the basal ganglia, Piray et al. were
able to identify those connections that were sensitive to dopaminergic
manipulations; regardless of heterogeneity of dopamine physiology
across subjects and the ensuing variability in signed connectivity esti-
mates. Using this strategy, they were able to show that stimulation
and blockade of D2 receptors exerted opposing effects on a specific set
of connections – and demonstrate that trait impulsivity was related to
the dopaminergic sensitivity of the connection from ventral striatum
to the dorsal caudate nucleus.

Disentangling pathophysiology from differences in cognitive strategy
The considerable heterogeneity of patients in psychiatric and neuro-

logical spectrum diseases not only poses a challenge for differential di-
agnosis, but also introduces an important caveat for the investigation
of pathophysiology with neuroimaging. Specifically, if the investigator
is unaware that patients engage in different cognitive processes, apply
diverging strategies or operate under fundamentally different beliefs
in solving a given task, the ensuing differences in brain activity can be
falsely interpreted as pathophysiological differences. We illustrate this
important point with an empirical example from a recent model-
based fMRI study:

Schlagenhauf et al. (2014) compared patients with schizophrenia
and healthy controls during a probabilistic reversal learning task. In
this study, subjects were required to decide between two choices, prob-
abilistically rewarded in 80% and 20% of trials, respectively. Importantly,
the preferable choice changed from time to time (reversal), following a
probabilistic rule that the participants did not know. In solving this task,
different structural aspects of the task could potentially guide an indi-
vidual's behaviour: (i) sensitivity to reward and punishment, (ii) mirror
symmetry in outcome probabilities, and (iii) probabilistic timing of re-
versals. For each subject, a set of computational models capturing
these aspects to various degrees were compared, in order to determine
the driving factors behind an individual's choices. The models consid-
ered included variants of the Rescorla-Wagner (RW) model, a classical
reinforcement learningmodel in which stimulus-response links are up-
dated through PEs (Rescorla andWagner, 1972), and variants of Hidden
Markov models (HMM) which represent subjective belief trajectories
(here, which response option is presently more likely to be rewarded
and how likely it is to switch). Unlike the RW model variants, the
HMM can also capture the statistical structure of sudden reversals.

Importantly, this study used a formal model comparison procedure
(Huys et al., 2011) to evaluate the plausibility of each model in each
group; additionally, it tested for each model whether it provided an
above-chance explanation of the behaviour of each individual subject.
The results indicated that, overall, healthy subjects' behaviour was
best described by a HMMwith differential reward and punishment sen-
sitivities. By contrast, among patients, two distinct subgroups of pa-
tients were revealed by model comparison (Fig. 7). In one
schizophrenia subgroup, the HMM was similarly convincing as in con-
trols, indicating that those patients used a similar strategy to solve the
task. However, the second group displayed behaviour poorly explained
by the HMM. These patients were characterized by higher positive
symptoms, showed lower performance and respondedmore randomly,
and their behaviour was best (although still poorly) explained by a sim-
pler RW model which did not incorporate a representation of reversal
probability. Notably, the different behaviour of this group was not sim-
ply explained by lower premorbid IQ or attentional deficits.
strategies for single patient predictions, NeuroImage (2016), http://dx.
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Fig. 7. Bayesian model selection for distinguishing between two subtypes of colour-grapheme synaesthesia. See main text for details. Reproduced, with permission, from (van Leeuwen
et al., 2011).
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In a subsequent model-based fMRI analysis, using the trajectories
from the HMM, both patient groups demonstrated a failure to activate
the ventral striatum during informative negative feedback, compared
to healthy controls. Thus, the ventral striatal hypoactivation appeared
to characterize schizophrenia patients independently of the task de-
mands, suggesting that it was a core characteristic of the disease. How-
ever, a more careful interpretation was mandated. As there was no
evidence that these subjects engaged in the same computations as con-
trols, the absence of a BOLD signal related to this computation should
not, by itself, be interpreted as a biological dysfunction, but more likely
simply reflected the fact that an entirely different cognitive process took
place. Hence, the fact that the hypoactivation was present in the sub-
jects with good HMM fit was seen as strong evidence for a deficit spe-
cific to schizophrenia. The prefrontal cortex, by contrast, was
differentially engaged between the patient groups, with a deficit pres-
ent only in those subjects who did not show behavioural evidence of
employing the complex HMM strategy.

This empirical example demonstrates that acknowledging individ-
ual cognitive differences can be crucial for interpreting neuroimaging
results from heterogeneous patient groups. As illustrated above,
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between-group differences in brain activity may either be a conse-
quence of underlying neurobiological differences when performing
the same cognitive operation or due to differences in task solving strat-
egies (Wilkinson and Halligan, 2004). This issue has often been ad-
dressed by matching groups on measures of average task
performance. However, indistinguishable average task performance
can be found under different individual strategies/models (Price and
Friston, 2002). Statistical comparison of alternative computational
models of trial-wise decisions is a superior alternative, since the trial-
by-trial dynamics of observed responses contains additional informa-
tion about the underlying computations which is lost by averaging.

It is worthmentioning that “resting state” fMRI studies are not unaf-
fected by the problem of cognitive process heterogeneity. While the
name implies an invariant and context-independent state of brain func-
tion, the “resting state” simply corresponds to unconstrained cognition
in the absence of external sensory stimulation. While this has been
recognised since early PET studies in the 1990s (Andreasen et al.,
1995) and led to the labelling of “REST” as “random episodic silent
thought” (Andreasen, 2011), it is only relatively recently that variability
in cognitive processes during the resting state has gained scientific
strategies for single patient predictions, NeuroImage (2016), http://dx.
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Fig. 8. The figure, reproduced from (Schlagenhauf et al., 2014) with permission, shows an example of the utility of model comparison in determining themost likely cognitive strategy of
individuals. This example concerns a reversal learning study of unmedicated schizophrenia patients and healthy controls. A: Model comparison using the Bayesian Information Criterion
(ΔBICint; compared to the best model). The best model has the lowest score (ΔBICint = 0). SA: stimulus-action standard Rescorla-Wagner model, where the Q-value of only the chosen
optionwas updated by a prediction error. DSA: Double-updatemodel, where the Q values for both actionswere updated on every trial. HMM:HiddenMarkovModels, which assume that
participants choose their action based on their belief about the underlying state of the task. R/P: reward/punishment version of the respective model, in which rewards and punishments
had differential effects on learning. B: Model fit for each individual participant using the predictive probability of the HMM (black dots). Red crosses: participants whose data were not
fitted better than chance. Red dashed lines: group means for participants with data fitted better than chance. This graph shows that behaviour from a substantial subgroup of
schizophrenia patients was not explained above chance by the HMM and hence do not rely on the computations assumed by this model to solve the task. C: Average learning curves
after reversals for participants with data fitted worse than chance (red), and for controls (blue) and patients with data fitted better than chance (green) by the HMM. D: Model
comparison for participants whose behaviour was explained better than chance by the HMM. E: ΔBICint scores for patients with data fit poorly by the HMM (worse than chance).
Asterisks indicate the best fitting model. F: Differences in clinical symptoms (Positive and Negative Syndrome Scale, PANSS) across patients whose behaviour was best explained by
the HMM (as healthy controls), compared to patients with behaviour poorly explained by the HMM. Pos: positive symptom score; Neg: negative symptom score; GP: general
psychopathology score; Total: PANSS total score.

Fig. 9. Graphical summary of the idea behind generative embedding, illustrated for the supervised case (classification). Adapted, with permission, from (Brodersen et al., 2011).
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Fig. 10. Illustration of the diagnostic potential ofmodel-based pathophysiological characterisation. This plot shows estimated conductances of two ionotropic receptors (AMPA andNMDA
receptors) and of potassium channels in a patient (red ellipsoid) suffering from a knownmutation of gene KCNJ2 which encodes a potassium inward-rectifying channel. These estimates
are contrasted against those from 94 healthy controls, showing that the patient is located at the edge of the multivariate population distribution defined by the three conductance
estimates. Ellipsoids represent 95% Bayesian confidence regions. Adapted, with permission, from (Gilbert et al., 2016).
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traction, e.g., individual differences in mental imagery and mind wan-
dering (Kucyi et al., 2013). In contrast to task-based paradigms, how-
ever, the absence of behavioural readouts makes it more difficult to
establish differences in cognitive processes during “rest” and account
for them in the interpretation of neurophysiological activity.
8 An illustrative application to empirical data can be found in Figures 4–8 of Penny et al.
(2010).
From model structure to parameter estimates: generative embedding and
Bayesian model averaging

The prospect of usingmodel selection for diagnostic or prognostic
decisions about individual patients – as illustrated in Fig. 4 – repre-
sents an elegant strategy as it directly maps onto the decision-
making process of the clinician who evaluates the differential diag-
nosis (plausibility of competing hypotheses). There are at least two
scenaria, however, in which it is more straightforward to address di-
agnostic questions at the level of model parameters. First, as already
mentioned above, inmany psychiatric conditions, we do not yet have
sufficiently precise pathophysiological theories that we can articu-
late competing models with sufficient precision. An alternative is to
formulate a general model and search for subsets of informative pa-
rameters (e.g., finding diagnostically relevant connections within a
fully connected network model). Second, even when a set of alterna-
tive models can be formulated, diagnostic inference may depend on
the actual value of a parameter that is common to all models. In
other words, instead of the binary absence or presence of a parame-
ter (connection or computational quantity), it may be the degree to
which it is expressed that is diagnostically informative. For example,
as in the example by Boly et al. (2011), a particular connection may
always be active during a particular cognitive operation, regardless
of disease state; however, its strength may differ between healthy
and pathological conditions.

In both cases, we need to shift the focus from model structure to
parameter values. The first case motivates a generative embedding
approach, where the posterior densities of model parameters de-
fine a feature space for subsequent (un)supervised learning; an ap-
proach we discuss in detail below. The second case suggests
averaging parameter values across models. This can be achieved
by Bayesian model averaging (BMA), which we turn to in the next
section.
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Bayesian model averaging (BMA)
When clinical questions are not straightforwardly addressed by

model comparison alone but require examining the quantitative value
of parameters encoding specificmechanisms, one could simply perform
model selection first, identify the optimal model and then interrogate
the posterior densities of the parameters of interest. While this is per-
fectly possible, a fully Bayesian perspective would account for uncer-
tainty about the model itself. This is referred to as Bayesian model
averaging (BMA) (Hoeting and Madigan, 1999; Penny et al., 2010).
BMA computes an average posterior across all models considered,
weighting the contribution from eachmodel by its posterior probability
(see Eq. 11):

p θjyð Þ ¼
XjMj

j¼1

p θjy;mj
� �

p mjjy
� � ð16Þ

Here,M denotes the space of all models considered (cf. Eq. 8). Eq. 16
produces a single posterior density of the parameters which properly
combines all sources of uncertainty – about the parameter values and
about the models themselves.8

BMA can be applied to each subject separately (as in Eq. 16); alterna-
tively, it can proceed on the basis of a random effects BMS procedure in
order to exploit knowledge aboutmodel heterogeneity in the group as a
whole (Penny et al., 2010). Notably, as long as the model space is iden-
tical, BMA makes it possible to test for differences in specific mecha-
nisms (as represented by particular parameters), even when the
optimal model differs across subjects or groups.

So far, BMA has mainly found applications in group-level studies of
patients and controls in whom the optimal model differed
(e.g., Dauvermann et al., 2013; Schmidt et al., 2013; Sladky et al.,
2015). For example, Schmidt et al. (2013) applied DCM to fMRI data
from 4 groups – healthy controls, at risk mental state (ARMS) subjects,
medicated and non-medicated first episode psychosis (FEP) patients –
performing an N-back working memory task. Importantly, the fMRI
data from these groups were optimally explained by different fronto-
parietal network models, prohibiting a straightforward comparison of
strategies for single patient predictions, NeuroImage (2016), http://dx.
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effective connectivity estimates across groups and requiring BMA to av-
erage parameter estimates across models. The comparison of averaged
posterior estimates across groups indicated that right fronto-parietal
coupling in controls was significantly higher than in non-medicated
FEP patients; with ARMS individuals taking intermediate values. Al-
though the cross-sectional nature of this study does not allow for causal
conclusions, it is interesting to note that coupling strength inmedicated
FEP patients did not differ significantly fromhealthy controls. The impli-
cation that antipsychotic medication may be restoring frontal-parietal
coupling would need to be tested in future studies with a prospective
design.

An approach not unrelated to BMAhas been pursued by recent stud-
ies examining the interplay between distinct decision-making mecha-
nisms that operate with or without reference to an explicit model of
the environment or task structure (Daw et al., 2011). Here, both mech-
anisms are represented as components of a larger model, where trial-
wise decisions are modelled as a linear mixture of predictions from
both sub-models.
Generative embedding
Asmentioned above, inmany psychiatric and someneurological dis-

eases, we lack precise ideas how prominent symptoms and signs are
generated from underlying (hidden)mechanisms. This void of concrete
pathophysiological hypotheses can render the formulation of concrete
models encoding alternative disease mechanisms difficult and thus ag-
gravate differential diagnosis based on model selection or model aver-
aging. In this case, generative embedding constitutes a powerful
alternative.

Generative embedding was introduced to neuroimaging by
Brodersen et al. (2011) and rests on a simple but powerful idea: the em-
bedding of (un)supervised learning, such as classification or clustering,
into the parameter space of a generative model (for a summary, see Fig.
9). This effectively uses a generativemodel as a theory-led feature selec-
tion device which creates a low-dimensional and mechanistically inter-
pretable set of features to which machine learning techniques can be
applied. This addresses the two key challenges for applications of con-
ventional machine learning approaches to neuroimaging data, which
we briefly alluded to in the Introduction. The first challenge is a mis-
match between the small number of subjects and the very high dimen-
sionality of the data. For example, an fMRI dataset typically offers on the
order of 108 data features (several 100,000 voxels, each with a time se-
ries of 103 signal samples). This renders feature selection a key problem:
there is a huge number of alternatives how one could, for example, con-
struct a classifier based on specific aspects of themeasured data in order
to predict an independent variable (e.g., clinical outcome) in individual
subjects. An exhaustive search for the most informative features be-
comes prohibitively expensive in this scenario. As a consequence, ma-
chine learning analyses of neuroimaging data often resort to ad hoc
feature selection, such as using timeseries fromanatomically predefined
regions of interest. Alternatively, they frequently adopt a piecemeal
strategy by analysing a subset of the data at a time, such as widely
used “searchlight” procedures (Kriegeskorte et al., 2006).

The second challenge is that machine learning approaches often op-
erate directly on features of the observed data. This has two disadvan-
tages. One problem is that “raw” data do not only reflect (neuronal)
processes of interest, butmay contain confounding (e.g., vascular) influ-
ences that can vary across the brain and individuals. Similarly, machine
learning techniques essentially represent “black box” procedures that
establish a purely statistical relationship between a set of predictors
(features of measured data) and a target variable of interest
(e.g., diagnostic label or clinical outcome). By contrast, they do not clar-
ify which particular neurobiological processes underlying the observed
data could be driving the predictive relationship. This may limit the
long-term utility of a purely ML-based strategy. For example, a success-
ful prediction of clinical outcome cannot be understood in terms of the
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biological processes that determine this outcome and would therefore
represent potential targets for treatment development.

Generative embedding proposes that, instead of extracting aspects
of the measured data as features for (un)supervised learning, it is the
posterior parameter densities obtained by inversion of a computational
model that should inform classification or clustering. This simple idea
addresses the two challenges outlined above. First, a generative model
represents a low-dimensional description of the mechanisms by
which measured data are generated; these mechanisms are enshrined
into the structural form of the likelihood function and represented by
the values of its parameters. By inverting the generative model, the
data are decomposed into a predicted component, which can be
summarised by a few numbers (parameter estimates) plus noise (cf.
Eq. 1). A model can thus be seen as a theory-led dimensionality reduc-
tion device that projects high-dimensional and noisy data onto a sub-
space of much lower dimensionality, maintaining only those aspects
of the data which are deemed informative (from the perspective of
the model).

Second, as its dimensions are provided by the model parameters,
this subspace has a mechanistic interpretation. That is, the position of
each of the data points (subjects) in parameter space can be interpreted
with regard to the neurophysiological or computational mechanisms
that are specified by the model. This property is visualised by Fig. 10,
using the results by Gilbert et al. (2016) as an example.

At this point, one might argue that model-based feature selection
has been used in machine learning for a long time; that is, the use of
voxel-wise regression weights, from a conventional GLM, as inputs for
multivariate classification (Pereira et al., 2009). This is not entirely in-
correct; however, the GLM-based approach does not address the
above problems in the same way as a generative embedding strategy.
For example, it can only account for hemodynamic confounds to a lim-
ited degree; it does not rest on a generative model and hence only pro-
vides point estimates of parameters, not their uncertainty, and, most
importantly, it does not convey a truly mechanistic understanding, in
terms of a biological process, but only provides a spatial mosaic of
point-wise correlates of an experimental condition.

The advantages of amodel-based approach to (un)supervised learn-
ing and single-subject predictions have been highlighted by several re-
cent papers (Doyle et al., 2013; Huys et al., 2016;Wiecki et al., 2015)). In
the following, we summarise a few examples of how it has found appli-
cation in recent neuroimaging studies of patients.

The initial article on generative embedding by Brodersen et al.
(2011) used data from stroke patients with aphasia resulting from a le-
sion in left inferior frontal and/or temporal cortex. This proof of concept
study focused on modelling activity in parts of the auditory cortex that
were unaffected by the lesion during passive listening to speech, asking
whether the model parameter estimates would predict the absence or
presence of the “hidden” lesion (i.e., out of the field of view). The ratio-
nale behind this approach is that auditory cortex activity is in receipt of
backward projections from more anterior temporal and prefrontal re-
gions, and lesions of the latter induce a functional reorganisation of
lower auditory areas (Schofield et al., 2012). Brodersen et al. (2011)
constructed a six-region DCM of the auditory system (comprising the
auditory thalamus, Heschl's gyrus, and planum temporale), which
allowed for reducing the high-dimensional fMRI data to 20 connectivity
parameters. The posteriormean parameter estimateswere then used as
features for a discriminant classifier, a support vectormachine (SVM), in
order to predict, subject by subject, the presence or absence of a lesion
in IFG. Using this approach, patients could be differentiated from
matched controls with much higher accuracy (98%, leave-one-out
cross-validation) than with conventional classification approaches op-
erating either on regional activity measures or estimates of functional
connectivity (e.g., correlation or PCA). The latter achieved cross-
validated accuracy levels that ranged from chance performance to ap-
proximately 80% accuracy and thus stayed significantly below the per-
formance of the DCM-based classification. Notably, the deliberate
strategies for single patient predictions, NeuroImage (2016), http://dx.
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removal of neurobiologically plausible connections also drastically di-
minished the predictive power of the model-based classification, dem-
onstrating that informed theories are crucial for the success of a
model-based approach.

Equally, if not more importantly than the increase in performance,
this study provided an example of how generative embedding can con-
vey an understanding of the biological mechanismswhich allow for dif-
ferentiation or prediction. Specifically, Brodersen et al. (2011) found
that connection strengths from the right to the left auditory areas dur-
ing passive speech perception were particularly informative for
predicting absence or presence of a lesion in left IFG. This highlighted
that the removal of top-down influences due to the remote lesion in-
duced plasticity in early auditory areas leading to characteristic (and
possibly compensatory) alterations of interhemispheric transfer of
speech inputs, from the non-dominant right hemisphere to the
language-dominant left hemisphere.

Two further examples demonstrate that the supervised application
of generative embedding can markedly enhance classification accuracy.
Brodersen et al. (2014) used a three-region DCM of fMRI data from a
working memory task (Deserno et al., 2012) for classification (SVM)
of patients with schizophrenia and healthy controls. They found that
connectivity estimates provided by DCM enabled a significantly higher
accuracy (78%) than classification based on either functional connectiv-
ity (62%) or regional activity levels (55%).Wiecki et al. (2015) applied a
drift-diffusion model (DDM) to behavioural data from patients with
Parkinson's disease with a deep brain stimulator targeting the subtha-
lamic nucleus. They were able to predict the state of the stimulator
(on/off) from the model parameter estimates with significantly higher
accuracy (81%) than from the data alone (67%).

Applications of generative embedding to clinical questions
The studies discussed so far do not address real clinical problems but

only served to evaluate the potential utility of a model-based classifica-
tion approach. By contrast, recent work by Gilbert et al. (2016) illus-
trates how model-based classification might contribute diagnostic
relevant information. This study concerned genetically determined al-
terations of ion channel conductance (channelopathies) that play a pos-
sible role in numerous neuropsychiatric disorders, ranging from
epilepsy to schizophrenia (Klassen et al., 2011). Gilbert et al. (2016)
used a DCM representing a cortical microcircuit consisting of 3 different
types of neurons (pyramidal cells, excitatory and inhibitory interneu-
rons) equipped with 3 different ionotropic receptors (AMPA, NMDA
and GABAA) and associated sodium, potassium and calcium channels.
Applying this generative model to MEG data from a large group of con-
trols (N = 94), the authors established a reference distribution against
which patients could be compared. Specifically, they examined two pa-
tients with known monogenic channelopathies concerning specific po-
tassium and calcium channels, respectively, and showed that the
ensuing parameter estimates of the respective ion channel conduc-
tances placed the patients at the edges of the multivariate population
distribution (compare Fig. 10). The implication that identification of
functionally relevant channelopathies might be feasible from non-
invasively recorded M/EEG data, is of clinical relevance because the ge-
netic characterisation of channelopathies is not sufficient to predict
their neurophysiological consequences. For example, individual clinical
risk depends on the genetic and functional status of other ion channels;
this is reflected by the conclusion of a recent genetic study that “in silico
modelling of channel variation in realistic cell and network models will
be crucial to future strategies assessing mutation profile pathogenicity
and drug response in individuals with a broad spectrum of excitability
disorders” (Klassen et al., 2011).

Moving from neurology to psychiatry, the clinically perhaps most
relevant application of a supervised generative embedding approach is
to establish model-based predictors about individual treatment re-
sponses and clinical trajectories. This requires prospective studies
where initial neuroimaging measurements are combined with clinical
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follow-up assessments. While these studies are rare due to their labori-
ous and time-consuming nature, a recent paper by Harle et al. (2015)
provided a compelling demonstration for the power of model-based
predictions. In brief, these authors acquired fMRI data from occasional
stimulant users during a stop-signal task and demonstrated that a
Bayesian model of this task was able to predict clinically relevant
abuse and dependence symptoms 3 years later. Importantly, this
model-based prediction, based on prediction error induced activity in
several brain regions including prefrontal, insular and cingulate cortex,
significantly outperformed predictions based on clinical variables and
conventional fMRI analyses.

A second central challenge concerns the heterogeneous nature of
spectrum disorders defined by phenomenological classification
schemes. A recent study used an unsupervised generative embedding
approach to demonstrate how spectrum diseases could be dissected
into mechanistically separate subgroups (Brodersen et al., 2014). The
study used a simple three-region DCM for inferring connectivity be-
tween visual, parietal, and prefrontal regions from fMRI data of an N-
backworkingmemory task (Deserno et al., 2012). The ensuing posterior
estimates of effective connection strengths entered a variational Gauss-
ianmixturemodel, which served to identify themost likely partitioning
of schizophrenic patients into connectivity-subgroups. The results
pointed to three distinct patient subgroups which were distinguished
by different changes in visual-parietal-prefrontal coupling under work-
ing memory load. Importantly, this clustering was validated by relating
it to independent clinical symptoms (which themodel did not have ac-
cess to), showing that the three physiologically defined subgroups dif-
fered significantly with respect to negative symptoms.

At this point, one might question whether the attempt to dissect
spectrum disorders into discrete sub-entities is the most promising ap-
proach, or whether a dimensional perspective would not be more ap-
propriate than a categorical disease concept. It is worth pointing out
that, under a generative modelling approach, categorical and dimen-
sional perspectives coexist and can be reconciled naturally (see also
the discussion in Stephan et al., 2016). That is, in computational models,
most parameters are of a continuous nature, and the disease-relevant
mechanisms they encode would naturally underpin a dimensional de-
scription. On the other hand, variations of certain model parameters
can induce abrupt qualitative shifts in system behaviour
(i.e., bifurcations); this in turn, speaks to the plausibility of categorical
classifications.

It is, of course, straightforward to extend unsupervised generative
embedding approaches to computational models of behaviour. This
might identify patient subgroups in spectrum diseases that are charac-
terized by different information processing styles or task solving strate-
gies (Huys et al., 2016; Wiecki et al., 2015). A recent empirical
demonstration was provided by (Zhang et al., 2016) who showed that
parameter estimates from a generative model (hierarchical drift diffu-
sion model) applied to saccadic responses could differentiate between
patients with movement disorders (progressive supranuclear palsy
and Parkinson's disease) with significantly higher accuracy than using
the “raw” behavioural data.

Regardless of whether a physiological and/or computational per-
spective is adopted, however, a key challenge for the future will be to
validate any putative subgroups or procedures for differential diagnosis
in prospective studies that use clinically relevant outcomes such as
treatment response as real-world benchmarks (Stephan et al., 2015).
Establishing the clinical utility of single-subject computational assays
is by no means a trivial endeavour. Due to the necessity of clinical
follow-up, these studies typically take a long time and are resource-
demanding. One might also be concerned that it could take a long
time until computational assays for psychiatry reach a practically ac-
ceptable level of sensitivity and specificity for single-patient decisions.
Here, it is worth noting that there is no universally accepted threshold,
and routine tests in other medical disciplines vary greatly in terms of
sensitivity and specificity, depending on the urgency of the problem,
strategies for single patient predictions, NeuroImage (2016), http://dx.
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availability of alternatives, and benefit-cost considerations. For exam-
ple, fecal occult blood test screening for colorectal cancer has a sensitiv-
ity of only 60–80% at best (Burch et al., 2007), compared to a sensitivity
of 99.7% for HIV tests (Chou et al., 2005). In psychiatry, given the almost
complete lack of predictive clinical tests, even moderately accurate
computational assay could be extremely useful, provided they address
key clinical problems – such as predicting individual treatment re-
sponse in schizophrenia or depression – and provided the necessary
data can be acquired in a cost-efficient manner.

Caveats and application domains

As explained in the introduction, this paper focuses on two of the
threemost commonly used computational approaches to neuroimaging
data: generative models and model-based fMRI. Compared to more
complex biophysical network models, these approaches utilise suffi-
ciently simplified formulations that model inversion and parameter es-
timation becomes feasible. Nevertheless, certain caveats exist which
have been reviewed in previous papers (e.g., Daunizeau et al., 2011;
Stephan et al., 2010, 2015) and which we briefly summarise here.

Generative models attempt to solve the “inverse problem” of identi-
fying hidden variables from measurements. The feasibility of this en-
deavour can be jeopardised by various challenges, such as
identifiability problems or overfitting. Overfitting can be avoided by
the regularisation afforded by priors (Bishop, 2006) and can be detected
by model comparison, as discussed above. Additionally, in biological
systems, parameters often show strong interdependencies
(Gutenkunst et al., 2007), leading to potential identifiability problems
(i.e., several equally good solutions exist). In generative models, this
problem can be addressed in at least two ways. First, many inversion
schemes, such as the VB scheme of DCM, provide an estimate of poste-
rior parameter covariances; in turn, these are related to classical sensi-
tivity indices (Deneux and Faugeras, 2006) and can be used as a
diagnostic for identifying potentially problematic cases that may need
follow-up investigations with simulations. Second, some
implementations of BMS penalise models with identifiability problems
automatically. For example, this is readily visible in the case of the neg-
ative free energy approximation to the log evidence under Gaussian as-
sumptions; compare Eq. 15 (second term).

In addition to relative statements about model quality, as achieved
by straightforward application of BMS described above, one would
sometimes also like to specify model goodness in absolute terms. The
latter can be achieved in twodistinctways. Onepossibility is to compute
the posterior predictive density; this specifies how well future data can
be predicted given the parameter estimates obtained from currently
available data (for an example, see Huys et al. (2011). An alternative is
to examine how well the model allows for solving a concrete problem,
e.g. predicting a clinical outcome or treatment response (Fig. 1).
This can either be addressed with generative embedding (using a
cross-validation scheme with held out data) or by applying BMS to
hierarchical generative models whose parameters not only generate
subject-wise neuroimaging or behavioural measurements but also clin-
ical variables (see Friston et al., 2016).

Moving on to application domains, the physician or biomedical sci-
entist with little background in computational modelling may wonder
which model is most appropriate for which application. This paper is
not an ideal place for attempting an answer – not least because it fo-
cuses on general principles of generative modelling without explaining
specific models in depth – and we point the reader to previous over-
views of relevance for this issue (Gershman, 2015; Huys et al., 2016;
Kahan and Foltynie, 2013; Stephan et al., 2015; Stephan et al., 2010).
Generally the choice of an adequate model for a particular problem de-
pends on at least three factors: the specific clinical question of interest,
the amount of prior knowledge available, and practical constraints on
data acquisition and analysis (e.g., time and equipment available, pa-
tient compliance, benefit/cost ratio); see the discussion in (Stephan
Please cite this article as: Stephan, K.E., et al., Computational neuroimaging
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et al., 2015). In all brevity, a generative modelling approach requires a
priori hypotheses about disease mechanisms which can be represented
by an existing model class; if this is not the case, more exploratory and
descriptive approaches are preferable, such as the direct application of
machine learning methods to behavioural and/or neuroimaging data
(Klöppel et al., 2012; Orru et al., 2012; Wolfers et al., 2015). Further-
more, the stronger the practical constraints regarding time, costs and
necessary equipment, the more attractive models of behaviour become,
given the relative ease and cheapness of data acquisition, including the
possibility of acquiring data online (Gillan et al. 2016; Moran et al.,
2008) or via mobile phones (Rutledge et al., 2014). On the other hand,
generative models of fMRI data are indispensable for characterising
the connectivity of networks involving deep sources (e.g., brain stem)
while estimates of processes at synaptic and ion channel levels critically
require generative models of M/EEG data (for examples, see Cooray
et al., 2015; Gilbert et al., 2016; Moran et al. 2008, 2011).

Hierarchical models

Computational models are opening up tantalising possibilities to
infer, from non-invasively measured brain activity and behaviour, on
core mechanisms of disease. In this paper, we have provided an over-
view of generative modelling and considered two main approaches –
model selection and generative embedding – which can link the infer-
ential power of computational models to clinical predictions in individ-
ual patients. We have tried to present the key ideas behind these
concepts without going too deeply into mathematical details, in the
hope that this will help biomedically and clinically trained colleagues
to access the rapidly growing literature on computational modelling in
psychiatry and neurology.

This paper is concerned with individual subject predictions and has
therefore focused on approaches that rest on inverting the generative
model(s) for each subject separately. In other words, these approaches
separate the problem of inference (onmodel structure and parameters)
from the problemof prediction (of a clinically relevant variable) or pop-
ulation structure learning (subgroup detection). While this two-step
procedure is presently the most widely used strategy and is also more
easily accessible from a didactic point of view, complementary and
more sophisticated approaches are appearing on the horizon. This in-
volves hierarchical models which allow for single-subject inference
while exploiting information about the population as a whole. Gener-
ally, this hierarchical strategy comes under the rubric of “empirical
Bayes” where the estimation of individual subject's parameters pro-
ceeds under priors that are informed by the variability across subjects
(Friston et al., 2002; Huys et al., 2011). However, a critical conceptual
advance concerns the development of hierarchical generative models
which, in addition to subject-wise neuroimaging or behavioural data,
include the clinical variable of interest (e.g., distribution of treatment
outcomes in the population or structure of subgroups) as an
explanandum.

First examples of such unified hierarchical models are presently
appearing in the literature. For example, Friston et al. (2016) have pro-
posed a hierarchical generative model of fMRI group data which uses a
nonlinear first-level model (DCM) to explain individual subjects' fMRI
data, and a linear second-level model to explain the distribution of con-
nectivity parameter estimates at the group level. The latter can be in-
formed by any clinical variable of interest, such as diagnostic labels,
treatment responses, or clinical scores, and can thus be used for
model-based predictions in terms of either classification or regression.
Notably, this model is inverted using extremely efficient model reduc-
tion techniques based on VB.

An alternative approach by (Raman et al., 2016) unifies DCM (of in-
dividual subject's fMRI data) withmixture models (of population struc-
ture) within a single hierarchical generative model which is inverted
usingMCMC techniques. This approach allows for simultaneously infer-
ring connectivity in individual subjects and for detecting subgroups
strategies for single patient predictions, NeuroImage (2016), http://dx.
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defined by model parameters. The inversion of subject-specific DCMs is
governed by subgroup-specific prior distributions that are determined
in an empirical Bayesian fashion. These new developments open up ex-
citing possibilities for exploiting generativemodels for clinical diagnosis
and prognosis.

Summary and outlook

This paper has provided an overview of the emerging use of compu-
tational models for clinically relevant single-subject predictions. Our
particular focus has been on generative models which enable inference
on (patho)physiological and (patho)computational mechanisms from
individual behavioural and neuroimagingmeasurements. Thesemodels
may prove useful for supporting clinical decision-making on their own
(e.g., differential diagnosis through Bayesianmodel selection) or in con-
junction with machine learning techniques that use parameter esti-
mates as features (generative embedding). This combination of
generativemodelling andmachine learning has great potential for tack-
ling key clinical problems in psychiatry and neurology that arise from
the heterogeneity of current disease constructs, such as outcome pre-
diction and individual treatment allocation. The success of this endeav-
our will depend on carefully designed prospective validation studies
and close collaborations between clinically and computationally trained
scientists.

We hope that this paper makes a useful contribution to this neces-
sary interdisciplinary exchange and provides inspiration for the devel-
opment and deployment of computational neuroimaging approaches
to future diagnostic applications.
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