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Abstract

W Behavioral choice can be characterized along two axes. One
axis distinguishes reflexive, model-free systems that slowly accu-
mulate values through experience and a model-based system
that uses knowledge to reason prospectively. The second axis
distinguishes Pavlovian valuation of stimuli from instrumental
valuation of actions or stimulus—action pairs. This results in four
values and many possible interactions between them, with im-
portant consequences for accounts of individual variation. We
here explored whether individual variation along one axis was
related to individual variation along the other. Specifically, we

INTRODUCTION

Pavlovian expectations of rewards or losses richly color
and confound instrumental action choice. Background
music is deployed in shops and restaurants to promote
spending and specific choices, whereas stimuli associated
with addictive substances are thought to perpetuate use
and promote relapse. Individual variation in the nature of
the underlying decision-making systems likely deter-
mines the strength of these effects.

Decision-making in humans and animals can be charac-
terized along at least two axes, both of which are important
for individual variation (Dayan & Berridge, 2014; Huys,
Tobler, Hasler, & Flagel, 2014). The first axis concerns
the distinction between model-free (MF) and model-based
(MB) decision-making (Doll, Duncan, Simon, Shohamy, &
Daw, 2015; Lee, Shimojo, & O’Doherty, 2014; Dezfouli &
Balleine, 2013; Daw, Gershman, Seymour, Dayan, & Dolan,
2011; Glascher, Daw, Dayan, & O’Doherty, 2010). The MF
habit system learns through repeated experience, whereas
the MB goal-directed system uses an internal model to pro-
spectively reason about the value of actions. Computation-
ally, MF decision-making relies on temporal difference
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asked whether individual’s balance between model-based and
model-free learning was related to their tendency to show
Pavlovian interferences with instrumental decisions. In two in-
dependent samples with a total of 243 participants, Pavlovian—
instrumental transfer effects were negatively correlated with the
strength of model-based reasoning in a two-step task. This sug-
gests a potential common underlying substrate predisposing in-
dividuals to both have strong Pavlovian interference and be less
model-based and provides a framework within which to inter-
pret the observation of both effects in addiction.

learning: Values are learned through comparisons of esti-
mated and actual received reward and updated with pre-
diction errors. In MB reinforcement learning algorithms,
the computation of values happens on the fly, integrating
internal representations of state-action-reward probabili-
ties and rewards (Sutton & Barto, 1998). Although MB
decision-making is therefore computationally costly, MF
decision-making is experientially demanding as changes
have to be experienced multiple times for the iterative
prediction error updates to change existing values. After
an outcome devaluation (e.g., through satiation), the MB
system can change preferences quickly, but the MF sys-
tem cannot. Individual variation in the balance between
MB and MF decisions, with a shift toward MF and away
from MB learning, is associated with addictive and impul-
sive traits in animals (Huys et al., 2014; Everitt & Robbins,
2005), and a bias has been reported in conditions such as
addiction and obsessive-compulsive disorder where be-
havioral preferences persist against explicit desires (Voon
et al., 2014, 2015; Gillan et al., 2011, 2014; Sebold et al.,
2014; Sjoerds et al., 2013).

The second axis concerns the distinction between in-
strumental and Pavlovian paradigms. In instrumental par-
adigms, actions a have values that depend on the
presence of particular stimuli or situations s, leading to
the valuation of stimulus—action pairs V(s,a). In Pavlovian
conditioning paradigms, stimuli s predict outcomes
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independent of actions. These situations are described by
action-independent stimulus values V(s) (Dayan, Niv,
Seymour, & Daw, 2006). Pavlovian values V(s) influence
actions in a variety of ways, including by eliciting
approach/withdrawal to the stimulus s and by promoting
or inhibiting the species-specific innate responses to s.
They also have two distinct influences on instrumental
processes in so-called Pavlovian—instrumental transfer
(PIT) paradigms. Pavlovian stimuli influence the ten-
dency to emit behavior generally (general PIT), with a
stimulus predicting water for instance also enhancing
responding for food, and they specifically increase
choices of actions that lead to the outcome the Pavlovian
stimulus is associated with (outcome-specific PIT). Indi-
vidual variation in Pavlovian processes has again been
related to addictive and compulsive traits (Garbusow
et al., 2014; Flagel, Waselus, Clinton, Watson, & Akil,
2013; Flagel et al., 2011; Robinson & Berridge, 1993).

MB and MF systems have been shown to work in
parallel in both instrumental and Pavlovian paradigms
(Dayan & Berridge, 2014; Huys et al., 2014; Jones et al.,
2012; Daw et al., 2011; McDannald, Lucantonio, Burke,
Niv, & Schoenbaum, 2011; Daw, Niv, & Dayan, 2005;
Killcross & Coutureau, 2003), leading to a quartet of
values and many opportunities for complex interactions
(Dayan & Berridge, 2014; Huys et al., 2014). For instance,
outcome-specific PIT requires access to the specific na-
ture of the outcome associated with the Pavlovian stimu-
lus s. Computationally, this is by definition not contained
in the MF value and, therefore, must depend on aspects
of MB evaluation. On the other hand, devaluation of the
outcome frequently fails to impact outcome-specific PIT
(Eder & Dignath, 2015; Watson, Wiers, Hommel, & de
Wit, 2014; Hogarth & Chase, 2011; Allman, DeLeon,
Cataldo, Holland, & Johnson, 2010; Hogarth, Dickinson,
& Duka, 2010; Corbit, Janak, & Balleine, 2007; Holland,
2004; Rescorla, 1994), suggesting computational mix-
tures, with MB processes for instance retrieving MF
values that are resistant to devaluation. Indeed, possibil-
ities for such complex interactions have been increasingly
examined recently (Cushman & Morris, 2015; Huys et al.,
2012, 2015; Guitart-Masip et al., 2012).

There are thus multiple paths toward the interaction
between different valuation systems, and these are likely
influenced by established individual variation both in
terms of Pavlovian influences on choice and the balance
away from MB decisions. We thus wanted to examine
what the empirical, dominant pattern of covariation be-
tween MB/MF tradeoffs and Pavlovian influences on
choice are in a healthy sample.

Specifically, we explored whether individual differ-
ences in PIT effects are associated with individual differ-
ences in the behavioral contribution of MB/MF learning
in a separate instrumental choice task (Daw et al.,
2011). We have previously observed increased PIT and
reduced MB decisions in alcohol-dependent patients
(Garbusow et al., 2014, 2015; Sebold et al., 2014) and
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hence expected PIT effects overall to be driven more
by MF learning and to covary negatively with MB control.
On the basis of these findings, we expected decreased
MB but enhanced MF behavior in those participants with
higher PIT effects. We aimed to test the described
hypothesis in an exploration sample and replicate them
in a secondary, demographically, and behaviorally distinct
sample.

METHODS
Participants

At the time of analysis, a total of 267 participants were
recruited as part of a longitudinal study on alcohol use
disorder (LeAd study, www.Lead-studie.de, clinical trial
numbers NCT01679145 and NCT01744834). The two-
center study contains two separate projects. One project
examines alcohol-dependent patients and age, gender,
and education-matched healthy control participants. We
analyzed healthy control participants only, because our
hypotheses did not focus on alcohol dependence (7 =
78). Data of 11 participants were excluded, two due to
positive drug screenings, three due to technical issues,
and another six due to poor task performance, leav-
ing 67 participants (10 women, M,,. = 43.07 years,
SD,ge = 11.02 years) for analyses. We first analyzed these
participants and will therefore subsequently refer to
them as the exploration sample. The second project
examines 18-year-old participants (all men), representa-
tively sampled from the local registry (z = 187). Data
of two participants were removed due to technical issues,
five due to positive drug screenings, two due to other
exclusion criteria of the LeAd study (e.g., no alcohol in-
take in the past year), and two additional participants due
to poor task performance, leaving 176 participants for
analyses. Those participants were analyzed subsequently
to the exploration sample, and we will thus henceforth
refer to them as the replication sample. As both samples
differed profoundly by demographic and behavioral char-
acteristics (see Results), this is a very stringent test. Both
samples were examined for current and past psychiatric
disorders using the Composite International Diagnostic
Interview (Jacobi et al., 2013; Wittchen & Pfister, 1997).
Exclusion criteria comprised a lifetime history of bipolar
or psychotic disorder, current diagnosis of major depres-
sion, posttraumatic stress disorder, borderline person-
ality disorder, obsessive-compulsive disorder, hypomania,
generalized anxiety disorder, past and current substance
dependencies other than nicotine, past and current neuro-
logical disorders, a history of severe head trauma, and cur-
rent medication that affects the CNS.

Procedure

All participants first completed a PIT task and then the two-
step task (Daw et al., 2011). Both tasks were programmed
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using Matlab 2011 (version 7.12.0) with the Psychophysics
Toolbox Version 3 (PTB-3; Brainard, 1997; Pelli, 1997). The
two-step task and parts of the PIT task were performed in-
side an MRI scanner. The study was approved by local
ethics committees. All participants gave written informed
consent and were paid a fixed amount (10 €/hr) plus an
additional bonus contingent on their performance.

PIT Task

Participants underwent (1) instrumental training, (2)
Pavlovian training, (3) PIT, and (4) a forced-choice task
(see Garbusow et al., 2014). For description of each part,
see Figure 1.

The task is notable in three features: in the use of ap-
proach; of both appetitive and aversive Pavlovian stimuli;
and in that it contains instrumental stimuli for which

either go or no-go yield more, but on average equal,
reinforcement. The use of approach is motivated by the
intuitive importance of maladaptive approach to drugs in
addiction. By collapsing across equally valued go and no-go
instrumental scenarios, it ensures that the PIT effect is not
specific to active versus inactive responses. By including
both gains and losses, it extracts Pavlovian conditioned
stimuli (CS) effects that are related specifically to value
independent of its sign.

Two-step Task

Each participant performed 201 trials of the two-step
decision-making task described by Sebold et al. (2014;
see Figure 2A). In each trial, participants had to perform
an initial choice between two stimuli on a gray back-
ground. This choice then led to one of two second-stage
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Figure 1. (A) Instrumental training: Participants were instructed to collect shells by repeated button presses after which they received probabilistic
feedback. In “go trials” collection of a shell was monetarily rewarded in 80% and punished in 20% of trials, and vice versa if not collected. In “no-go
trials” on the other side, collection of a shell was monetarily punished in 80% and rewarded in 20% of the trials, and vice versa if not collected. A
learning criterion for the instrumental training was enforced to ensure comparable task performance between participants (after a minimum of 60
trials, 80% correct choices over 16 consecutive trials). Thus, participants performed the instrumental training until the learning criterion was met or
for a maximum of 120 trials. (B) Pavlovian conditioning: At the beginning of each trial, participants saw a fractal-like stimulus accompanied by the
sound of a tone (combined CS). After a delay of 3 sec, an unconditioned coin stimulus (US) was presented for another 3 sec. Participants were
instructed to be attentive on the CS-US pairings. CS-US associations consisted of two CS paired with images of +2/+1 EUR coins, one CS paired with
0 EUR, and two CS paired with —1/2 EUR. All participants completed 80 trials. (C) PIT: Each trial consisted of the presentation of one of the
previously learned shells superimposed on the combined CS. Crucially, both, the auditory and visual CS from the Pavlovian conditioning were
presented. Participants were instructed to perform the instrumental task again (thus to collect shells from “go trials” but leave shells from “no-go
trials”). Participants had 3 sec to respond. The intertrial interval was exponentially distributed ranging from 2 to 6 sec, in which a fixation cross was
displayed centrally. No feedback was presented, but participants were instructed that their choices would influence their final monetary outcome. In
total, participants completed 90 trials. (D) Forced choice task: Participants saw pairings consisting of two combined CS from the Pavlovian
conditioning. In each trial, participants had to choose one stimulus over the other based on their Pavlovian contingencies. All possible CS pairings
were presented three times in a randomized order. We used these data to verify acquisition of Pavlovian expectations and excluded participants for
further data analyses (exploration sample 7z = 6, replication sample z = 2) if they did not perform better than chance in this part.
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Figure 2. (A) The structure of the two-step task. In each trial, participants chose between two initial stimuli, leading them to a second stage
(either green or yellow), at which participants again had to make a choice. Each second-stage choice was probabilistically rewarded. These reward
probabilities slowly changed over time. Each first-stage choice was frequently associated with a certain transition to the second stage (70% of all trials)
but rarely associated with the opposing second stage (where it led to in only 30% of all trials). (B) MF decision-making does not consider transition
frequencies: Actions resulting in reward have a higher probability to be repeated than actions that did not end up being rewarded. Thus, MF
decision-making predicts a main effect of reward. (C) Only MB decision-making takes transition probabilities into account. Hence, compared with
MF decisions, a distinct pattern of first-stage responses particularly after rare transitions is expected: After a rewarded rare transition, the best chance
of reaching that same rewarding second-stage stimulus again is to switch stimuli at the first stage and thereby use the frequent transition. Likewise,
after a rare, unrewarded transition, the best chance of avoiding that same stimulus is to stay at this same first-stage stimulus, which commonly
leads to the other, possibly rewarding second-stage stimuli. (D) Real data of the exploration sample shows a mixture of both MF and MB control.

(E) Real data of the replication sample shows a mixture of both MF and MB control.

options (either green or yellow) from which one stimulus
had to be selected again. Crucially, the transition from
first-stage choices to the specific second stage was prob-
abilistic: Whereas one option on the first stage led fre-
quently to the green second-stage option (70%) but
rarely to the yellow second-stage option (30%), the other
first-stage choice was associated with frequent yellow
second-stage visits but rare green second-stage visits. At
the second stage, participants were probabilistically re-
warded with 20 cents or 0 cent (red cross superimposed
on the 20-cent coin). To encourage participants to learn
throughout the experiment, all four second-stage payoff
probabilities changed slowly according to Gaussian ran-
dom walks with reflecting boundaries at 0.25 and 0.75.
We used the same random walk as in the original publi-
cation. In each stage, participants had 2 sec to perform
their response. Variable intertrial intervals were drawn
from an exponential distribution between 1 and 6 sec.
Before starting the task, participants completed a training
session with different random walks and a different stim-
ulus set. Crucially, the training version was carefully trans-
lated from the version implemented by Daw et al. (2011).
MB and MF decisions make distinct predictions on how
reward and transition should influence first-stage behav-
ior Although first-stage actions of an MF system merely
rely on whether choices of the previous trial resulted in
rewarded or unrewarded outcomes, an MB system addi-
tionally takes transition frequencies into account, which
results in a more elaborated first-stage decision pattern
(Figure 2B and C).
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Data Analysis

We first analyzed data from the exploration sample and
subsequently validated our results with the replication
sample. All regression analyses were conducted using
generalized linear mixed-effects models implemented with
the Ime4 package (Bates, Maechler, Bolker, & Walker,
2014) in the R programming language, version 3.1.2
(cran.us.r-project.org). For orthogonal contrasts in linear
mixed-effects models, we used effect coding (—0.5/
+0.5). Computational modeling was performed in Matlab
2012-2015 (versions 8.0-8.5).

PIT Task

All analyses focused on the PIT part (see Figure 1C),
when participants had to perform a previously acquired
response in the presence of Pavlovian stimuli.

The number of button presses in each trial was mod-
eled as a Poisson distribution in a generalized linear
mixed-effects model. In each trial, it was regressed on
the nominal Pavlovian value of the CS in the background
(=2, —1,0, +1, +2). The model contained an additional
nuisance variable to remove the influence of instrumental
value (go/no-go) from the foreground stimuli. The within-
subject factors (intercept, main effect of Pavlovian value,
instrumental value, and their interaction) were treated as
random effects across participants. Specific instrumental
stimuli (shells) and Pavlovian stimuli (fractals-like) were
taken as additional crossed random effects to control for
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item effects. We extracted individual regression coeffi-
cients for the CS stimuli (henceforth referred to as PIT
slope) for further analyses. As the PIT slope histograms
were bimodal, we clustered participants into two groups
using a mixture of Gaussians fitted with expectation max-
imization (mixtools package; Benaglia, Chauveau, Hunter,
& Young, 2009). We also tested whether the PIT regres-
sion coefficients were significant in individual participants.
However, these are for descriptive purposes only: As par-
ticipants did not respond at all on some trails, button
presses showed a zero inflation.

Two-step Task

We performed two sets of analyses. The first was a mixed-
effects logistic (Otto, Skatova, Madlon-Kay, & Daw, 2015;
Schad et al., 2014; Otto, Raio, Chiang, Phelps, & Daw,
2013) where first-stage choices (stay/switch) were re-
gressed on the previous trial outcome and transition
frequency (common or rare). Within-subject factors (in-
tercept, main effect of reward, main effect of transition
and their interaction) were taken as random effects
across participants.

RTs.  Knowledge of the transition frequency is only used
when decisions are MB, whereas in MF decisions com-
mon and rare trials are considered as equivalent. Thus,
the difference between second-stage RTs after common
versus rare transitions should reflect the level of involve-
ment of MB control (Deserno, Huys, et al., 2015). We
therefore repeated the above analyses, but using log-
transformed second-stage RTs. Values two standard devi-
ations below mean (0.5% of cases) were excluded from
further analyses (this step did not influence the results).
For visualization, MB RT effects were calculated from the
individual difference between mean second-stage RTs
after rare versus common transitions.

Computational model. We additionally fitted a repar-
ameterization of the original Daw et al. (2011) rein-
forcement learning model to the data. It contains an
MF parameter (Pyvp) that weighs the contribution of an
MF temporal difference learner and a parameter (Byg)
that weighs contributions by the MB learner, which uses
the transition matrix as well as the reward contingen-
cies. We imposed broad Gaussian priors (mean 0, vari-
ance 10) on all parameters, and results are based on
maximum a posteriori parameter estimates. The model
fitted better than chance in 75% (55/67) of the partici-
pants in the exploration sample and 72% (126/176) of
the participants in the replication sample. Table 2 re-
ports the estimated parameters of both samples. For in-
ference, all parameters were transformed such that they
were unbounded, and we retained these transformations
to test correlations. None of the conclusions are affected
by this transformation.

Relationship between PIT and Two-step Tasks

To test whether PIT effects were related to two-step perfor-
mance, we added individual PIT slopes (as z-transformed
variable) as a between-subject predictor in the binomial
models of the two-step task and tested its interactions
with the other fixed-effects in the model.

For RT analyses, we performed linear mixed-effects re-
gression with PIT slopes (z-transformed) and transition
frequency as predictors for second-stage RTs.

In addition, we correlated individual MB (Bys) and MF
(Bmr) subject parameters from the computational model
with PIT coefficients (Spearman correlation).

RESULTS
Exploration Sample: Choices

There was a significant group level PIT effect (fixed effect
Pavlovian value, p < .0001; see Figure 3A) such that
participants pressed more when there was a positive
background CS and less when it was negative. Approxi-
mately half of the participants showed an individually
significant effect (slope significantly positive in 63% 42/
67 participants). The PIT slope was b = 0.27 on average
(fixed-effect coefficient) and varied substantially across
participants (random-effect SD = 0.36), suggesting large
interindividual variation in the extent to which actions
are controlled by Pavlovian stimuli, which is in line with
previous research on PIT effects in humans (Garbusow
et al., 2014; Prévost, Liljeholm, Tyszka, & O’Doherty,
2012).

In the two-step task, group level behavior reflected a
mixture of MF and MB decision-making. There were both
a significant main effect of reward (p < .0001) and a sig-
nificant interaction between reward and transition (p <
.0001; see Figure 2D).

To examine the relationship between PIT and the trade-
off between MB and MF choices, we performed two
tests. First, we entered individual PIT effects as additional
regressors in the two-step logistic regression and tested
(1) Reward X PIT slope and (2) Reward X Transition X
PIT slopes interactions. Significant interactions would in-
dicate that a relationship exists between the extent to
which actions are influenced by Pavlovian values and
MF versus MB learning, respectively. Individual PIT ef-
fects significantly interacted with MB decision-making
(Reward X Transition X PIT slope: p < .05), but not with
MF behavior (Reward X PIT slope, p > .05; see Table 1
and Figure 3B); as hypothesized, the association between
PIT effects and MB learning was negative. Thus, partici-
pants who showed larger PIT effects were less MB.

There was also a significant negative interaction be-
tween transition and PIT (transition X PIT, p < .05),
indicating that participants with small PIT effects tended
to stay more after common compared with rare trials. Al-
though the transition itself does not play a role in either
MB or MF system, the fact that those individuals who
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Figure 3. Results of the exploration sample. (A) Observed PIT effects. Button presses in the PIT task are strongly influenced by the value of the
Pavlovian background (CS value). (B) Repetition probability as a function of reward and transition frequency in the exploration sample separately
displayed for participants who show high and low PIT effects according to clustering of PIT effects as a mixture of Gaussians. Low PIT participants had
a mean PIT effect of 0.03 (# = 41), whereas high PIT participants had an average PIT effect of 0.66 (# = 26). (C) Second-stage RT as a function

of transition frequency negatively covaried with PIT effect: Participants who show no PIT effect discriminate strongly between rare and common trials
in their second-stage RTs, whereas participants who display large PIT effects do not show this discriminative second-stage RT behavior. (D) Estimates
of the MB parameter pyp displayed for participants who show high and low PIT effects according to clustering of PIT effects as a mixture of

Gaussians: Participants with high PIT values have lower Byp parameter estimates.

were less sensitive to it were more sensitive to Pavlovian
CSs is in keeping with a shift away from MB learning.

Exploration Sample: Computational
Modeling Results

Modeling analyses replicated these findings. There was a
significant negative correlation between the weight given
to MB choices, Byp, and PIT coefficients (spearman =
—.31, p < .01; see Figure 3D). There was no association
between PIT and Py (p > .05).

Exploration Sample: RTs

Only the MB component has access to transition frequency.
Hence, any difference in RTs between common and

rare transitions should be related to the involvement of
the MB system. RT differences between rare and com-
mon transitions correlated with Bug (Fspearman = -49,
p < .0001) but not with Byg (p > .05) and with Transi-
tion X Reward effects (rspearman = .39, p < .0001) but
not with reward effects (p > .05), indicating that RT effects
indeed reflect MB control. PIT effects again interacted
negatively with transition (p < .01; Figure 4C). Partici-
pants with low PIT effects showed stronger transition
effects on second-stage RTs and responded faster on
common than rare trials.

Replication Sample: Choices

As in the exploration sample, there were significant PIT
effects (fixed effect Pavlovian value, p < .0001; see

Table 1. Binomial Mixed-effects Results Testing the Influence of PIT Effects, Outcome of Previous Trials, and Transition of Previous
Trial, upon Response Repetition for the Exploration and Replication Sample

Exploration Sample

Replication Sample

Coefficient Estimate (SE) )2 Estimate (SE) D
Intercept 1.36 (0.13) <.0001* 0.96 (0.06) <.0001*
Transition 0.24 (0.07) .0006* 0.21 (0.04) <.0001*
Reward 0.80 (0.09) <.0001* 0.36 (0.04) <.0001*
PIT slope —0.17 (0.13) 18 —0.03 (0.00) .57
Transition X Reward 0.77 (0.17) <.0001%* 1.75 (0.14) <.0001*
Transition X PIT slope —0.13 (0.06) 04* —0.01 (0.04) 75
Reward X PIT slope —0.03 (0.09) 73 0.06 (0.04) 13
Reward X Transition X PIT slope —0.41 (0.16) .012% —0.31 (0.14) .03%
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Figure 4. Results of the replication sample. (A) Observed PIT effects. Button presses in the PIT task are strongly influenced by the value of the
Pavlovian background (CS value). (B) Repetition probability as a function of reward and transition frequency in the exploration sample separately
displayed for participants who show high and low PIT effects according clustering of PIT effects as a mixture of Gaussians. Low PIT participants had a
mean PIT effect of 0.008 (12 = 130), whereas high PIT participants had an average PIT effect of 0.39 (nz = 46). (C) Second-stage RT as a function of
transition frequency negatively covaried with PIT effect: Participants who show no PIT effect discriminate strongly between rare and common trials in
their second-stage RTs, whereas participants who display large PIT effects do not show this discriminative second-stage RT behavior. (D) Estimates of
the MB parameter Py displayed for participants who show high and low PIT effects according to clustering of PIT effects as a mixture of Gaussians:
Participants with high PIT values tend to have lower Byp parameter estimates, albeit this failed to reach statistical significance.

Figure 4A). However, the replication sample showed PIT
effects less frequently (52/176 = 29% of participants),
and the overall PIT slope (fixed-effect coefficient b =
0.12, random effect SD = 0.23) was numerically half
the size of that in the exploration sample.

The two-step task again reflected a mixture of MF and
MB decision-making with a significant main effect of re-
ward (p < .0001) and a significant interaction between re-
ward and transition (p < .0001). Results of interaction
between PIT and all two-step parameters are outlined in
Table 1. As in the exploration sample, individual PIT effects
interacted with MB decision-making (Reward X Transition
X PIT slope: p < .05), but not with MF behavior (Reward X
PIT slope, p > .05; see Table 1 and Figure 4B). Again, the
association between PIT effects and MB learning was neg-
ative, indicating that participants with large PIT effects used
less MB behavior in the two-step task.

Of note, however, participants in the replication sam-
ple were younger (18 vs. 43.1 years on average) and, in

keeping with previous results, were substantially less MB
(Age X Reward X Transition, p < .01 and Age X Reward,
p < .0001).

Replication Sample: Computational
Modeling Results

There was no association between Pyg and PIT (p > .05),
which mirrors the results from the regression analyses.
However, the correlation between individual By and PIT
coefficients also failed to reach significance (p > .05).
Upon visual inspection, participants with high PIT values
tended to have lower Byg values (Figure 4D). For explor-
atory purposes, we conducted an additional analysis
among the high PIT effect group for whom the model
fitted better than chance. Within this subgroup, PIT effects
were negatively correlated with Pyp (Fspearman = —-37,p <
.05) but not with Byg (p > .05).

Table 2. Estimates for All Parameters Shown as the Medians Plus Quartiles across Participants

Exploration Sample

Replication Sample

By Bur p B2 a; a A Bus  Bur p B2 a; a A
25th percentile  0.09 129 032 1.7 034 033 036 064 076 017 1.7 026 039 0.23
Median 0.76 2.41 0.72 2.52 0.57 0.62 0.61 2.08 1.43 0.49 2.64 0.62 0.63 0.52
75th percentile 3.49 3.77 1.11 3.87 0.79 0.82 0.96 4.87 2.49 0.95 3.71 0.91 0.80 091

Pmp = MB component; pyr = MF component; p = stickiness parameter indicating first-order perservation; 3, = inverse temperature; oy = first-
stage learning rate; o, = second-stage learning rate; N = eligibility trace decay parameter.
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Replication Sample: RTs

Analysis of the second-stage RTs also replicated the re-
sults of the exploration sample, with individual PIT ef-
fects showing a trend toward interacting negatively with
transition (p < .05; Figure 4C and Table 2).

DISCUSSION

We examined the relationship between Pavlovian influ-
ences on behavior and the distinction between MB and
MF choices. Across two independent and demographi-
cally diverse samples, we found that the extent to which
Pavlovian values exerted control over behavior covaried
negatively with MB decision-making in an independent
task. In other words, participants whose decisions were
strongly controlled by Pavlovian values also expressed de-
creased contributions of deliberative MB strategies. The
same pattern was evident in RT analyses. Computational
modeling analyses revealed equivalent direction of ef-
fects, as the MB parameter Byp from a hybrid reinforce-
ment learning model was negatively associated with PIT
effects, although this association was only significant in
one of the two samples.

The PIT paradigm we employed could theoretically al-
low for both outcome-specific and general PIT effects:
The fact that the reward in the instrumental task and in
the Pavlovian conditioning were both monetary suggests
that outcome-specific PIT effects might be present. How-
ever, the parametric effect of CSs on behavior we observe
clarifies that the value of the stimulus, not just its identity,
is retrieved and influences choice. What we can say, then,
is that the tendency to retrieve the value of a CS in PIT
covaries negatively with MB reasoning in healthy popula-
tions. We therefore judge it strongly unlikely that the CS
value retrieved would itself rely on MB processes and
rather depends on MF ones. Such an interpretation is
in accordance with recent work on individual variation
in Pavlovian conditioning: Sign-trackers, who per defini-
tion express increased approach behavior toward condi-
tioned cues, have stronger MF phasic dopaminergic
signals (Flagel et al., 2011). Furthermore, they show less
MB learning in that they are less sensitive to devaluation
(Morrison, Bamkole, & Nicola, 2015) and Pavlovian ex-
tinction (Ahrens, Singer, Fitzpatrick, Morrow, & Robinson,
2016), and abolishing their MF learning through
dopamine blockade does not uncover alternative MB
reasoning (Flagel et al., 2011). Moreover, in humans,
sign-trackers express increased PIT effects (Garofalo &
di Pellegrino, 2015). As mentioned in the Introduction,
in outcome-specific PIT the outcome must be explicitly
accessed through a mental representation (a mental
model) not available to the MF system and has hence been
associated with the MB prospective system (Cartoni, Puglisi-
Allegra, & Baldassarre, 2013; Dolan & Dayan, 2013; Clark,
Hollon, & Phillips, 2012). Recent work has shown that the
MB system can also access MF values (Cushman & Morris,
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2015), which might explain the persistence of outcome-
specific PIT after devaluation (Eder & Dignath, 2015;
Watson et al., 2014; Corbit et al., 2007; Holland, 2004;
Rescorla, 1994) and extinction (Rosas, Paredes-Olay,
Garcia-Gutierrez, Espinosa, & Abad, 2010). However,
such an interpretation of our data would have allowed
even strongly MB participants to show strong PIT effects,
which was not the case as it arose primarily in the absence
of or in conflict with MB control.

In addition to a negative correlation with MB, we
had also predicted a positive correlation between MF
decision-making and (general) PIT effects, both because
the two-step task measures a tradeoff between MF and
MB (Doll, Bath, Daw, & Frank, 2016; Daw et al., 2011),
but also because we had expected the strength of MF
behavior in the two-step task to covary with the strength
of Pavlovian MF conditioning and for that reason to pro-
mote general PIT. Against our expectations, we did not
find a relationship between MF behavior and PIT, neither
through regression analyses nor by analyzing the MF
component from the computational model. This is likely
because the task does not have much power to detect
variation in the MF component, particularly separately
from MB variation (cf. Doll et al., 2016). Most studies
have found correlations with the MB rather than the
MF component, including cognitive (Schad et al., 2014;
Otto et al., 2013) and emotional (Otto et al., 2013) vari-
ables as well as pharmacological challenges (Worbe et al.,
2015; Wunderlich, Smittenaar, & Dolan, 2012), brain
stimulation (Smittenaar, FitzGerald, Romei, Wright, &
Dolan, 2013; but see Smittenaar, Prichard, FitzGerald,
Diedrichsen, & Dolan, 2014), and interindividual differ-
ences such as age (Eppinger, Walter, Heekeren, & Li,
2013) or psychiatric disorders (Sebold et al., 2014; Voon
et al., 2014). Other tasks such as the probabilistic selec-
tion task may be more appropriate to specifically strike
the MF system (Doll et al., 2016). Finally, it is worth
noting that the reward effect in the one-step repetition
probabilities is strongly influenced by the N parameter
in the model. This parameter directly determines how
strongly a reward at the second step impacts on MF ex-
pectations at the first step. The MF weight Byr, however,
could also theoretically be large without such an effect,
that is, for N = 0 when a one-step repeat probability
would show little reward effect. Hence, analyses of the
reward-related repeat effects relate to aspects of the MF
system more than to its overall behavioral dominance.

The study has some limitations. First, it is not entirely
clear that other, more general mechanisms might have
mediated the described association between both tasks.
For instance, decreased MB performance and increased
PIT effects might be caused by misunderstanding the in-
struction of either task. Specifically, we instructed all par-
ticipants to rely on transition frequencies in the two-step
task and to respond to the foreground stimuli in the PIT
task (which interferes with PIT effects). Thus, those par-
ticipants who showed decreased PIT effects and strong
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MB control might have also been those who were more
attentive to the instructions. A second limitation is that,
at least in the replication sample, Pavlovian values tended
to have comparably little influence on choice behavior
and only a small amount of participants showed PIT ef-
fects at all. Thus, the correlation between behaviors in
both tasks is likely to be caused by a subset of partici-
pants only. Indeed when we correlated the MB parame-
ter from the computational modeling with the PIT
coefficients, the association became only significant
when we limited our sample to participants with compa-
rably high PIT effects. Moreover, we note that there were
strong differences in the MF and MB component of the
two-step task between the exploration and the replica-
tion sample. The samples differed very substantially by
age, and there is strong evidence that age reduces MB
behavior (Eppinger et al., 2013). As such, the pattern
emerging across the two samples is strongly supportive
of the findings in both individual samples that a reduc-
tion in MB tendencies covaries with increase PIT effects.

Third, across both samples, we found a significant
main effect of transition. Thus, participants tended to
stay more after common compared with rare trials, an
assumption that is neither met by an MF nor an MB ac-
count. Even though this effect has not been observed in
the original study (Daw et al., 2011), several other studies
have reported a main effect of transition type. It is a small
effect that becomes apparent in large sample sizes (Voon
et al., 2014; Skatova, Chan, & Daw, 2013). Thus, null find-
ings might be due to a lack of statistical power. However,
we speculate that rare trials might be particularly salient
and induce subsequent response behavioral shifts by
reengaging MB controllers (Yasuda, Sato, Miyawaki,
Kumano, & Kuboki, 2004).

In conclusion, there is accumulating evidence that in
substance dependence and disorders of compulsivity PIT
effects are increased (Garbusow et al., 2014, 2015; Hogarth,
Field, & Rose, 2013; Glasner, Overmier, & Balleine, 2005)
whereas MB control appears to be disrupted (Sebold
et al., 2014; Voon et al., 2014). Moreover, MB neural sig-
natures are reduced in high-impulsive individuals (Deserno,
Wilbertz, et al., 2015), and impulsivity further seems to be
associated with PIT effects (Garofalo & di Pellegrino, 2015).
These findings suggest a common underlying mechanism
driving individual variation, possibly increasing the risk to
develop substance dependence.
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