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Psychiatry is a medical field concerned with the treatment of

mental illness. Psychiatric disorders broadly relate to higher

functions of the brain, and as such are richly intertwined with

social, cultural, and experiential factors. This makes them

exquisitely complex phenomena that depend on and interact

with a large number of variables. Computational psychiatry

provides two ways of approaching this complexity. Theory-

driven computational approaches employ mechanistic models

to make explicit hypotheses at multiple levels of analysis. Data-

driven machine-learning approaches can make predictions from

high-dimensional data and are generally agnostic as to the

underlying mechanisms. Here, we review recent advances in the

use of big data and machine-learning approaches toward the aim

of alleviating the suffering that arises from psychiatric disorders.
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Today, medicine is increasingly focused on pragmatic evi-

dence-basedpractice: thesystematicstudyofwhattreatments

work best for a given problem [1]. Meta-analyses and system-

atic reviews leverage the large body of data available from

double-blind placebo-controlled clinical trials to infer average

effects across a population (e.g. for individuals with major
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depression, selective serotonin reuptake inhibitors are an

effective first-line treatment [2]). However, each patient

has a unique combination of comorbidities, socioeconomic

conditions, medical history, personality, and other factors

known to relate to prognosis and treatment response [3].

For example, past cocaine use might downregulate dopamine

function [4], which in turn influences learning and future

decisions [5] with consequences for future mental health.

Since each individual may have a complex and perhaps

unique combination of factors, even a very large data set

may not provide an opportunity to study similar individuals.

Furthermore, the way we traditionally analyze data is by

focusing on comparing groups that contain people who are

not similar, rather than trying to understand and model how

those person-to-person differences impact outcomes. Since

both the brain and psychiatric disorders themselves are com-

plex, the full scope of differences between people are in turn

complex. In this article, we discuss how big data and machine

learning are uniquely placed to address these complexities.

Individual predictions through machine-
learning approaches
Otherareasofmedicine have been successful indeveloping

approaches that more efficiently use existing data. The

obvious question is what type of data is useful. Psychiatry’s

first port of call should be existing data from randomized

controlled trials (RCTs), since patients are usually pheno-

typed carefully and monitored closely over time. However,

RCTs are expensive to run, and thus usually only enroll a

relatively small number of patients. Statistically speaking,

datasets with more questionnaire items than participants

can pose problems regarding overfitting: when there are

more predictors than data points, enough predictors can

always (please emphasize) produce perfect predictions [6].

Even standard cross-validation approaches can overesti-

mate predictive accuracy and reduce the true generaliz-

ability of models. Nevertheless, Machine learning provides

ways to address this (Box 1), with promising results.

Uher and co-workers first extracted robust factors from

questionnaire responses in an unsupervised manner and

then tested their power to predict treatment outcomes

[7,8]. Other subsequent machine-learning studies includ-

ing neuroimaging studies (e.g. [9]) focused on recovering

diagnostic information from high-dimensional data.

Recently, large numbers (>100) of clinical variables have

been successfully used to predict treatment response. In

first-episode psychosis, response to five different
www.sciencedirect.com
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Box 1 Explicit assessment of validation is critical

It is likely that we are collectively deluding ourselves about the true

generalizability of our models. Validation is typically assessed with

leave-one-out approaches or at best k-fold cross-validation within a

single study. However, both approaches are known to overestimate

predictive accuracy [59], and are better interpreted as demonstrating

that model performance was not grossly influenced by a small

number of individuals in the training data. Leaving individual sites out

of a multi-site study is a slight improvement, but is still considered

internal validation [60]. For example, Koutsouleris tested a first-epi-

sode psychosis algorithm on sites left out of an international multi-

site RCT and found significant site-to-site variability [10].

When validation has been explicitly tested on an independent sam-

ple, performance invariably degrades. Chekroud et al. found that the

predictive accuracy of an antidepressant treatment algorithm that

was 65% accurate during cross-validation was only 60% accurate in

an independent RCT cohort, even though the training data included

thousands of patients [34]. A large consortium found no replicable

genetic result associated with treatment response in 3756 patients

with major depression [62].

Medicine is riddled with observational or retrospective findings that

initially seemed promising, but eventually did not improve outcomes

(e.g. the idea that vitamins might prevent cardiovascular disease). As

a field, we should implement strict replication and validation proce-

dures to avoid undermining the integrity of the care we are

attempting to guide [25,60]. A bare minimum is requiring explicit

assessment of validation, and a framework for setting individual

results into the broader context of findings between pure research

and clinical practice [57]. We should also be clearer about how any

one finding relates to outcomes. Genome-wide association studies

still tell us little about the treatments that will help patients get better,

despites samples numbering hundreds of thousands. The currency

of medicine is patients getting better and not model parameters. This

fact bears repeating.
antipsychotic treatments can be predicted from question-

naire responses with 71% balanced accuracy across treat-

ment sites [10]. Antidepressant response can be predicted

using a similar approach [11��]. When other forms of data

have been included in predictive models, performance has

generally improved modestly beyond clinical and socio-

demographic data. Whelan et al. predicted development of

alcohol misuse in adolescents (n = 692) from brain structure

and function, individual personality and cognitive differ-

ences, environmental factors including gestational ciga-

rette and alcohol exposure, life experiences, and candidate

genes [12]. While items relating to patient history and

personality hadthegreatestpredictivevalue,neuroimaging

and genetic variables still contributed some unique infor-

mation. Other studies — although small — also find that

cognitive markers and structural and functional MRI can

predict clinical outcomes [13–17]. EEG-derived resting-

state rostral cingulate theta activity predicts antidepressant

response beyond other variables ([18] but see Ref. [19]).

As well as predicting how likely an individual is to recover

overall, it is also useful to understand whether certain

treatments are more likely to work than others. Some

progress has been made, for example, in contrasting

antidepressants versus psychotherapy (e.g. [20]). One
www.sciencedirect.com 
other approach developed De Rubeis et al. [21] based

on work by Barber and Muenz [22] developed predictors

for each RCT arm separately and then applied them to

both arms. The difference in predicted outcome can then

be interpreted as a reflection of how likely the individual

is to respond to one treatment versus the other [23�]. This

was also attempted with a broad array of clinical, neuro-

imaging, and behavioral variables (c.f [24]). Critics have

argued that these tools are not yet useful for clinical

practice [25–29] because their performance remains mod-

est in terms of explained variance and predictive accuracy

[15,30], and the studies have enrolled very small samples

relative to the amount of data used for prediction [31].

Nevertheless, one promising study (Figure 1a) suggests

that resting-state EEG after medication washout can be

used to make antidepressant treatment recommendations

to clinicians [32,33�] and merits efforts for replication.

Finally, applying machine learning to existing data might

also help identify illness phenotypes that relate more

closely to the efficacy of existing treatments. Two recent

studies offer notable examples. Applying hierarchical

clustering to over 7000 depressed patients from multiple

RCTs, Chekroud et al. described how symptoms in com-

mon depression rating scales hang together, finding three

statistically robust and replicable symptom clusters: a

mood/emotional cluster, a sleep/insomnia cluster, and

an atypical symptom cluster [34]. The three clusters

differed in their responsiveness to antidepressants, sug-

gesting that treatments could be targeted in individuals

based on symptoms. Drysdale et al. employed similar

hierarchical clustering to resting-state fMRI data from

over 300 depressed patients [35], identifying four clusters

of patients that differed in their responsiveness to tran-

scranial magnetic stimulation therapy. Both studies share

commonalities that proved successful: an approach for

parsing phenotypic heterogeneity, aggregation of data

sets large enough to support the statistical techniques,

and demonstration that identified clusters meaningfully

relate to treatment outcomes. These large-scale symp-

tom-clustering and patient-clustering approaches are

beginning to make their way to clinical guidelines on

antidepressant selection [36], although the findings are

still primarily retrospective rather than prospective.

Collecting bigger data
Given the promise of large samples and the possibility of

collecting clinical measures even in large genomic biobanks

(e.g. [37]), what big data would be most valuable for psychi-

atric research? Online services like Amazon Mechanical

Turk (AMT) allow large samples to be rapidly tested on

cognitive tasks, allowing robust assessment of novel task

characteristics and their relationship to self-reported clinical

symptoms [38]. For example, Gillan et al. tested 1413 indi-

viduals on AMT on both a cognitive task and standard

questionnaires covering nine diagnostic categories [39��].
Their analysis revealed three underlying trans-diagnostic
Current Opinion in Neurobiology 2019, 55:152–159
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Figure 1
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(a) Automated analysis of resting-state EEG (rEEG) after medication washout returned a medication ranking in currently depressed patients.

Treatment selection based on rEEG outperformed an optimized clinical protocol based on STAR*D in a 12-site clinical trial [32]. (b) Classifier

performance is higher when applied to model parameters estimated from data rather than directly from raw data itself. Behavioral data for

200 agents was simulated with a generative model and split into training and validation sets. A classifier trained on the raw data (purple curve,

AUC 0.74) was outperformed by a classifier trained on a single learning rate parameter estimated from the data using a reinforcement learning

model (blue curve, 0.87). Panels adapted from Ref. [6].
factors: anxiety/depression, compulsion and intrusive

thought, and social anxiety. The compulsion and intrusive

thought factor selectively related to task performance, a

result replicated in a separate experiment. The same

trans-diagnostic factor was associated with high confidence

but low self-evaluation ability while the anxiety/depression

factor was associated with low confidence but high self-

evaluation ability [40]. AMT has also been used to describe

the landscape of emotional experience using a factoranalysis

on emotion labels and ratings elicited by 2185 videos [41].

Concerns have been raised about the reliability of online

testing. Reassuringly, depressive symptoms on AMT have

high test–retest reliability (r = 0.87) after one week [42],

suggesting that online data can be sufficiently reliable. More

directly relevant to mental health are attempts to leverage

online data acquisition and testing for therapeutic means.

For example, a smartphone study of digital cognitive behav-

ioral therapy (CBT) in individuals with insomnia success-

fully reduced insomnia, and mediated reductions in paranoia

and hallucinations [43].

Online testing provides a rapid means of prototyping

new paradigms in a diverse sample of individuals with a

broad range of common clinically relevant symptoms.

Depression and anxiety have among the highest costs of

all psychiatric disorders and are both as common in

online samples as in the general population [42]. Hence,

online data collection platforms may allow data to be

collected quickly and cheaply, providing an opportunity

to acquire enough data to support more sophisticated

analyses. There are some downsides to this approach. An

online community of workers might also have systematic

biases that complicate interpretation of results. Incen-

tivizing individuals to truthfully reveal information
Current Opinion in Neurobiology 2019, 55:152–159 
about their private introspective state is also difficult,

although some people may be more willing to reveal

personal information anonymously than in the presence

of a researcher. Promising results obtained in anonymous

online studies should be replicated in both more con-

trolled laboratory studies and less controlled smartphone

studies.

Mobile devices reveal rich real-time data in
the natural environment
Particularly noteworthy are opportunities provided by

mobile devices like smartphones. The data that can be

collected are extremely rich, spanning ‘active’ cognitive

task and self-report data with consistent results

(Figure 2a) for equivalent tasks delivered in the labora-

tory and by smartphone [44–46]. A smartphone study in

18 420 participants showed that momentary happiness

reflected whether things are going better than expected,

and not how well things are actually going [47]. Happiness

in the computational model could be predicted by the

history of rewards and expectations and related to fMRI

measurements in the striatum. Depressive symptoms did

not affect the strength of this relationship, but instead

altered the set point around which happiness varies

(Figure 2c) [48��]. Repeated sampling of emotional

self-reports has also started to identify dynamic qualities

in depression over months and even years. Depressed

patients with worse outcomes over several years show

stronger inter-connectedness of symptoms [49], and tran-

sitions between states of wellness and depression suggest

that these states have features that render them inher-

ently stable (Figure 2d) [50]. Features associated with

stable healthy and depressed states might be identifiable
www.sciencedirect.com
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Figure 2
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Computational models capture mood fluctuations. (a) Risky decision-making task tested both in the lab and using a smartphone platform with

over 130 000 participants. (b) Lab happiness data and computational model fit. Happiness depends on the history of expectations and prediction

errors resulting from those expectations. (c) Baseline mood parameters in the model are correlated with depressive symptoms (n = 1864; data

from Refs. [47,48��]). (d) Self-reported symptoms over time show evidence of stable attractor states. Before a transition between healthy and more

depressed states, the autocorrelation and variance of symptoms increases, both measures of critical slowing down, a phenomenon arising in

dynamical systems transitioning between different stable states. The left panels show that autocorrelation and variance of sadness increase in

healthy participants if they experience an increase in depressed symptoms at follow-up, while the right panels show that autocorrelation and

variance of contentedness increase in depressed patients that experience an improved state at follow-up. (adapted from Ref. [50]).
in individuals [51], allowing targeted treatments when

such features are detected.

Smartphones passively collect a number of streams of data

that might eventually contribute toward a richer under-

standing of psychopathology. Elements including acceler-

ation, movement, location, voice, keyboard use patterns,

and social interactions through many sensors might even-

tually form part of a digital phenotyping of individuals

[52,53]. For example, accelerometer data on 91 105 UK

Biobank participants were used to derive circadian rhyth-

micity parameters related to sleep-activity patterns. Circa-

dian disruption was associated with increased lifetime risk

of both major depression and bipolar disorder [54].

Theory-driven and data-driven approaches
are complementary
Data-driven analyses are agnostic about the nature of the

data being analyzed. This can be a weakness because

algorithms might neglect what science has already estab-

lished about the structure of the data. Knowledge of the

generative processes can be used to derive so-called suffi-

cient statistics, statistically optimal summaries capturing

non-random variation in the data. General-purpose

machine-learning algorithms are not obliged to recover

sufficient statistics, while theory-driven models are well

placed to do so. Hence, theory-driven models can efficiently

summarize complex data given things that we know about a

generative process, and these summaries can provide inputs
www.sciencedirect.com 
for machine-learning  algorithms. Combining theory-driven

and data-driven approaches can outperform data-driven

approaches alone [6]. Figure 1b provides an example for

the case of reinforcement learning. Widely used in the

machine learning community, reinforcement-learning algo-

rithms have been extensively examined in neuroscience

experiments and the generative processes are increasingly

understood at the neurobiological level [55,56].

How do we ensure big data and machine
learning improve outcomes?
First, there is a need to generate large data sets that allow

the community to parse the complexity inherent in treat-

ing psychiatric illness. We have pointed out a number of

ways to generate and use large data sets. This will require

collaboration, both among academics and with industry.

The experience and success of the Psychiatric Genetics

Consortium, along with academic–industry partnerships

[37] are good examples of how fruitful this approach can

be. With sufficiently large data sets, machine-learning

techniques can better reach their potential for identifying

more expressive functions in data, such as non-linearities

or higher-order interaction effects that might not emerge

readily using traditional statistical techniques.

Second, recovery of imperfect diagnostic labels is of

limited value, as is comparison of cognitive and neural

processes between healthy and patient populations with a

specific diagnosis. The progress over the past thirty years
Current Opinion in Neurobiology 2019, 55:152–159
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has shown that progress with these approaches has led to

few major breakthroughs. Instead, we suggest that neuro-

biological research must examine interventions or risk

failing to address the core aim of psychiatry, alleviating

the burden of illness. Interventional research is more

difficult and risky than cross-sectional research

. Interventions throw up complex ethical issues and

necessarily involve longitudinal designs, which are bur-

densome for both participants and experimenters. It is

particularly risky for early career scientists because fail-

ures are costly yet common.

Clearly, these issues span different aspects in the devel-

opment of novel methods. We recently suggested a road-

map inspired by the drug development pipeline [57]

(Figure 3). This distinguishes early phases in which

relevant probes are developed and intermediate phases

in which the relationship of these probes to clinical issues

(particularly treatment) are established. In later phases

(akin to phase III or phase IV clinical trials), use of probes

is examined with respect to clinical improvement. Adopt-

ing such a framework might help structure the field and

clarify the importance of examining the relationship

between probes and clinical outcomes.

Finally, we hope that big data and machine learning might

spearhead a move toward clinically relevant outcomes that

nevertheless allow a more direct link to particular neural or

cognitive processes. Currently, outcome measures in
Figure 3
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mental health either reasonably index severity by collaps-

ing across symptoms likely related to neurobiologically

distinct domains, or reasonably index individual neurobio-

logical processes but fail to relate to mental health in a

clinically relevant manner. For example, an ICD-10 or

DSM-5 diagnosis of depression requires a combination

of symptoms that can include anhedonia, depressed mood,

sleep disturbances, and changes in concentration. The

presence of these symptoms indexes suffering, need for

care, and important long-term outcomes namely mortality,

remission, and return to work, but may not directly relate to

any neural or cognitive process. In contrast, detailed mea-

sures of motivation can be mapped onto precise neural

substrates, but variation in individual processes bears

insufficient relationship to the severity of the illness, that

is paramount for clinical practice.

Dangers in the application of machine
learning to psychiatry
As a medical discipline, psychiatry’s first aim is to do no

harm. The collection of useful big data in mental health

requires deeply personal information. Abuse of this data is

possible given the profound stigma and social impairment

concomitant with mental illness. At the same time, the

specific data available to machine-learning approaches can

lead to biases if certain types of data are not well repre-

sented. Algorithms can inherit the biases present in the

training data sets (e.g. semantics derived from standard

internet-based language corpora exhibit common race and
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r psychiatry can be thought of in parallel to the drug development

terventions. These then need to be tested for robustness and assessed

tandard testing in clinical trials to establish their efficacy. Machine

entification to the assessment of robustness and to the generalization

www.sciencedirect.com



Machine learning and big data in psychiatry: toward clinical applications Rutledge, Chekroud and Huys 157
gender biases [58]). Given that psychiatric care encom-

passes compulsory treatment, black box algorithms have

the potential to be profoundly discriminatory. This is one

issue that the European Union General Data Protection

Regulation (GDPR) addresses with the requirement of

appropriate procedures to prevent algorithmic biases.

Another danger is the growing perception that machine-

learning algorithms are a viable solution in low-N high-p

settings, that is, settings where the number of predictors

exceeds the number of individuals in the sample. It is

correct that machine-learning algorithms will converge in

these settings, whereas traditional statistical approaches (e.

g. logistic regression) will fail due to unique separation and

fitted probabilities of zero or one occur. Many researchers

interpret this as an excuse to apply machine-learning

algorithms to small samples. However, there is no silver

bullet that can replace collecting enough data to generate

stable and generalizable predictions [31,34,59]. Although

algorithms like the elastic net (a form of penalized regres-

sion) and tree-based ensembles (e.g. XGBoost, gradient

boosting machines, or random forests) are often used and

will fit in low-N high-p settings, caution should be taken to

validate the performance of these models on an indepen-

dent sample in line with established procedures [60,61]. If

these caveats are addressed, we believe that these new

approaches combining big data, machine learning and

theory-driven development of probes have enormous

potential to improve treatment of mental illnesses.
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