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Definition

Reinforcement learning (RL) techniques are a set
of solutions for optimal long-term action choice
such that actions take into account both immediate
and delayed consequences. They fall into two
broad classes: model-based and model-free
approaches. Model-based approaches assume an
explicit model of the environment and the agent.
The model describes the consequences of actions
and the associated returns. From this, optimal

policies can be inferred. Psychologically, model-
based descriptions apply to goal-directed deci-
sions, in which choices reflect current preferences
over outcomes. Model-free approaches forget any
explicit knowledge of the dynamics of the envi-
ronment or the consequences of actions and eval-
uate how good actions are through trial-and-error
learning. Model-free values underlie habitual and
Pavlovian conditioned responses that are emitted
reflexively when faced with certain stimuli. While
model-based techniques have substantial compu-
tational demands, model-free techniques require
extensive experience.

Detailed Description

Theory

Reinforcement Learning
Formally, reinforcement learning (RL; Sutton and
Barto 1998) describes a type of solution to Mar-
kov decision process (MDP) problems, which are
defined by a tuple S,A,T ,R,p:

• S: a set of states s�S.
• A: a set of actions a�A.

• T s0js,að Þ: the transition functionmaps each state-
action pairs to a distribution over successor states
s0, with s,s0 �S; a�A and

P
s0 T s0js,að Þ ¼ 1.

• R (s, a, s0) ! r: the reinforcement function
mapping state-action-successor state triples to
a scalar return r.
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The goal is to determine a policy a p(s) that
maps each state to the action maximizing the total
expected future return of actions a in state s.

a�  argmax
a
Q s,að ÞwhereQ s,að Þ

¼ 
X1
t0¼0

rt0 s,aj
" #

(1)

where the sum over the future returns results from
the fact that choices lead both to immediate
returns but also have longer-term consequences.

The sum in Eq. 1 may not be finite. For this
reason, it is often replaced by the discounted total
expected reward 

P1
t0¼0 g

t0rt0 js,a
� �

with the dis-
count factor 0� g� 1. The discount factor sets the
relative importance of immediate and future
rewards: g = 0 means that only the next reward
is considered, whereas g= 1 considers all rewards
to have equal importance no matter how far in the
future they occur.

Model-Based RL
Model-based RL assumes knowledge of the tran-
sition matrix T , the reward function R, and the
state and action spaces S,A which define the
model of the world. This means that the expecta-
tion in Eq. 1 can be written explicitly in terms of
T andR as the Bellman equation (Bellman 1957):

Q s,að Þ ¼
X
s0
T a

ss0 R s,a,s0ð Þ þ V s0ð Þ½ � (2)

withV s0ð Þ ¼ max
a0

Q s0,a0ð Þ (3)

TheQ value is the long-run expected return for
taking action a in state s. The optimal policy maps
each state to the action with the highest Q value:

p� sð Þ  argmax
a

Q s,að Þ: (4)

Equation 3 represents a recursive definition of
a decision tree of width w (determined by the
number of actions Aj j and the size of the state-
space reached by these actions). The computa-
tional cost of simple tree search is O wd

� �
where

d is the depth of the tree (see Fig. 1 for an exam-
ple). Although dynamic programming methods
such as policy iteration reduce this cost to

O Sj j3
� �

, this is still computationally prohibitive

for most real-life problems and additionally diffi-
cult to implement neurally as it involves matrix
inversion. Psychological and neurobiological
accounts of model-based RL thus emphasize
sequential evaluations of decision trees.

Model-Free RL
Model-free RL methods apply to situations where
agents do not know T and R where the decision
trees are too complex to evaluate. They approxi-
mate the expectations in Eq. 1 by sampling from
the world. Temporal difference reinforcement
learning (TDRL) constructs estimates of state or
state-action values from these samples by
bootstrapping. To achieve this, the total future
reward is written as the sum of the immediate
reward plus the average value of the successor
state:

V� sð Þ ¼ 
X1
t¼0

rt sj
" #

¼  r0 þ
X1
t¼1

rt sj
" #

¼  r0 þ V� s0ð Þjs½ � ¼  r0js½ � þ  V� s0ð Þjs½ �
(5)

For approximate valuesV, Eq. 5 does not hold:

V̂ sð Þ 6¼  r0js½ � þ  V̂ s0ð Þjs
� �

(6)

Letting the difference between the two sides be
dV, one can arrive at correct values by iterative
updates

V̂ iþ1 sð Þ  V̂ i sð Þ þ ϵdV (7)

with 0 � ϵ � 1.
TDRL combines such iterative updates with

sampling. Instead of evaluating the expectations,
it assumes that agents can repeatedly generate
actions from their (suboptimal) policy at at~p(st)
and on the t’th such interaction obtains state and
reward samples from the world:
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stþ1 � T sj st, atð Þ (8)

rt � R st, at, stþ1ð Þ (9)

These samples are used to approximate the
expectations, letting

dt ¼ rt þ V̂ t stþ1ð Þ � V̂ t stð Þ (10)

V̂ tþ1 stð Þ  V̂ t þ ϵdt (11)

A similar approach can be applied to learning
state-action values (Watkins and Dayan 1992).
Thus, while model-based RL methods prospec-
tively predict the consequences of actions based
on an understanding of the structure of the world,
model-free methods retrospectively approximate
these based on past experience. Nevertheless,
under certain situations, model-free methods
have strong convergence guarantees (Bertsekas
and Tsitsiklis 1996; Sutton and Barto 1998;
Puterman 2005). Policies p are often in turn for-
malized as parametric functions of the value func-
tions V orQ themselves, although this may break
certain guarantees (Bertsekas and Tsitsiklis 1996).

One biologically important variation of a rein-
forcement learning algorithm is the Actor-Critic
(Barto et al. 1983). The Critic uses TD to estimate
the value V t sð Þ for states, while the Actor

maintains the policy used to select actions. After
each action at, the Critic calculates the prediction
error and sends it to the Actor. A positive predic-
tion error indicates that the action improved the
potential for future rewards, and the tendency to
select the action should be increased. An example
of using the prediction error is to select actions
based on the Gibbs softmax method

pt s,að Þ ¼ ept s,að ÞP
a0e

pt s,a0ð Þ (12)

where pt(s, a) defines the “propensity” to take
action a in state s. These propensities are updated
by the prediction error pt(s, a) pt � 1(s, a) + ϵdt.

Sampling and Computational Costs
The algorithms discussed so far suffer either from
catastrophic computational requirements or from
equally drastic dependence on extensive sampling
in realistic environments. Solutions to these draw-
backs fall into four general categories: (1) subdi-
vision into smaller subtasks (possibly each having
their own subgoal; cf. Dietterich 1999; Sutton
et al. 1999); (2) pruning of the decision tree
(cf. Knuth and Moore 1975; Huys et al. 2012);
(3) approximations (e.g., neural networks for
function approximation, Sutton and Barto 1998;
or (4) structured representations (Boutilier et al.

Reward-Based Learning, Model-Based and Model-
Free, Fig. 1 Example decision tree. The problem consists
of first choosing between actions a1 and a2, each of which
has three possible outcomes, followed by choosing
between actions a3 and a4, each of which has another
three possible outcomes that might depend on which

action/outcome preceded them. Actions are shown in
solid black and outcomes as empty circles. Optimal action
choice requires evaluation of all the branches. In this sim-
ple problem, with a sequence of two choices, each leading
to three possible outcomes, the tree has width w= 6, depth
d = 2, and wd = 36 branches. (Adapted from Huys 2007)
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1995) and sampling techniques (Kearns and
Singh 2002; Kocsis and Szepesvari 2006).

A fourth approach, the successor representa-
tion (Dayan 1993), involves rewriting Eq. 5 by
observing that the total expected future rewards
involve repeatedly summing over the same
reward but weighted by the probability of
reaching that state-action pair:

Vp sð Þ¼
X
a

X
s0

p ajsð ÞT a
ss0R

a
ss0

þ
X
a

p ajsð Þ
X
s0
T a

ss0

X
a0

p a0js0ð Þ
X
s0 0
T a0

s0s0 0R
a0

s0s0 0

þ .. .
(13)

Letting P½ �as,s0 ¼
X
a

p ajsð ÞT a
ss0 be the effective

transitions when following policy p, we can
rewrite this as

Vp ¼ R þ PR þ P2R þ . . . ¼ I� Pð Þ�1R
(14)

where [R]s is the first sum in Eq. 13 above. That is,
the values of the states are linear in the immediate
rewards R, with the weights given by
I + P + P2 + P3 + . . . = (I � P)�1, which is the
total time spent in each state-action pair.

The strengths of model-based and model-free
computations can also be combined to offset their
mutual weaknesses. In Dyna-Q (Sutton 1990),
samples as in Eq. 9 are generated from the agent’s
internal estimates of T and R to updating model-
free values. Conversely, model-free state values
can be substituted for subtrees to reduce the size of
decision trees (e.g., Campbell et al. 2002).

If the states S are not fully observable, the
problem becomes a partially observable MDP
(Kaelbling et al. 1998), which presents substantial
additional complexities.

Behavior
Model-based and model-free accounts of behav-
ior were held to be incompatible for much of the
last century (Hull 1943; Tolman 1948). However,
key signatures of both systems can be discerned
within individual animals’ (Balleine and

Dickinson 1994; Killcross and Coutureau 2003;
Yin et al. 2004, 2005) and humans’ (Valentin et al.
2007; Daw et al. 2011) behavior and neurobiol-
ogy. These signatures reflect central differences in
their utilization of information. For a discussion,
see Daw et al. (2005), Dayan and Berridge (2014),
and Huys et al. (2014). This is also evidence for
the use of the successor representation in humans
(Russek et al. 2017; Momennejad et al. 2017).

In instrumental paradigms, particular actions
a are reinforced in the presence of certain stimuli
or in situations s. These experiments are modelled
using Q a,sð Þ values. In Pavlovian paradigms,
stimuli s lead to reinforcements independent of
subjects’ actions. These paradigms are modelled
using stimulus values V sð Þ. Importantly, there can
be model-based and model-free versions of both,
leading to a quartet of values VMF sð Þ,VMB sð Þ,
QMF s,að Þ and QMB s,að Þ. Both model-free values
VMF sð Þ and QMF s,að Þ are scalar representations
that change slowly. These two features account for
its key behavioral signatures (Fig. 2).

The consequences of the scalar nature of
model-free values are most clearly seen in Pav-
lovian scenarios, where VMF sð Þ reflect only the
magnitude of reinforcements but not other aspects
such as whether an action was rewarded by food
or water. One paradigmatic example is blocking
experiments (Kamin 1969). In these, learning the
reward association of a stimulus “B” in a com-
pound “AB” is prevented if “A” already fully
predicts the reward. Then the reward is fully pre-
dicted; no prediction error occurs. Hence, model-
free values are not updated and hence no learning
occurs. Thus, if the model-free system makes no
prediction about certain aspects of stimuli, then
shifts in these aspects should not lead to learning.
In transreinforcer blocking, animals treat a reward
reduction and delivery of a shock punishment as
equivalent (Dickinson and Dearing 1979), argu-
ing for a linear and unitary representation of
rewards and punishments as encapsulated in the
single value r in Eq. 11. In Pavlovian unblocking,
animals similarly can show an insensitivity
toward shifts between rewards of equal magnitude
but different modality (e.g., water and food;
McDannald et al. 2011), showing that only the
reward value, but not its other sensory features,
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is encoded. As a scalar value, model-free values
can, however, replace reinforcements and be
approached (if positive; Dayan et al. 2006) or
avoided (if negative; Guitart-Masip et al. 2011).
In conditioned reinforcement experiments, behav-
ior is motivated by stimuli associated with the
rewards (i.e., having positive model-free value
VMF sð Þ) even in the absence of the rewards them-
selves (Bouton 2006). This can be captured by
Actor-Critic models (Barto et al. 1983). By the
same argument, model-free state or stimulus
values VMF sð Þ can also influence the vigor with
which ongoing actions are performed (Pavlovian-
instrumental transfer; Huys et al. 2011). These
three features are also central to the notion of
incentive value (McClure et al. 2003).

Model-free values change slowly over time as
they rely on iterative updating (Eqs. 7 and 11). The
consequences of this have been mainly examined
in instrumental settings (though see Schoenbaum
et al. 2009; Robinson and Berridge 2013 for Pav-
lovian examples). The paradigmatic example is
outcome devaluation (Fig. 3). On the very first
trial after the devaluation, the model-free system
would have had no opportunity to update theQMF

s,að Þ values via prediction errors d and hence
would predict continued responding. Conversely,
by considering the now undesired outcome of
actions, model-based evaluation should lead to a

reduction in lever pressing on the very first trial
after the devaluation. Accounts of the shift from
early model-based and goal-directed to later
model-free and habitual behavior rely on their sta-
tistical properties (Daw et al. 2005) or the tradeoff
between the cost of cognition and the value of
improved choices (Keramati et al. 2011).

Neurobiology
The component of model-free learning best under-
stood is the representation of the temporal predic-
tion error d. Interpreting earlier work by Schultz
and Romo (1990) and Montague et al. (1996)
pointed out that the phasic firing of dopaminergic
midbrain neurons corresponds closely to the pos-
itive portion of the prediction error d. This has
been extensively validated with single-electrode
recordings (even in humans; Zaghloul et al. 2009),
functional neuroimaging (D’Ardenne et al. 2008),
cyclic voltammetry (Day et al. 2007), with
optogenetic manipulations (Steinberg et al.
2013) and in diseases of the dopamine neurons
(Frank et al. 2004). This is true both in Pavlovian
(Waelti et al. 2001; Flagel et al. 2011) and instru-
mental scenarios (Morris et al. 2006; Roesch et al.
2007). These phasic prediction errors are not just a
linear reflection of the magnitude and probability
of the expected reward (Tobler et al. 2005; Bayer
and Glimcher 2005) but also of the summed long-

Reward-Based Learning, Model-Based and Model-
Free, Fig. 2 Early experiment used to argue that rats can
build and use spatial representations. Figure after Tolman
(1948). (a) Rats were first trained to find a food source
located below the green point (a light). (b) After training,

the rats were placed in the same starting position at the
bottom of the maze but found their usual route blocked.
Instead, they now had multiple alternative arms they could
run down. (c) Histogram of arm the rats chose to run down
first
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term future rewards (Schultz et al. 1997; Enomoto
et al. 2011). Dopamine neurons have a low-firing
baseline and therefore appear to represent the
negative portion of the prediction errors d by the
length of the pause in firing (Bayer et al. 2007).
Phasic firing covaries with the development of
behavioral responses (Waelti et al. 2001; Flagel
et al. 2011) and can causally drive learning
(Steinberg et al. 2013; Saunders et al. 2018). Fur-
thermore, pharmacological manipulations of
dopamine alter the behavioral expression of
model-free vs model-based behaviors (Nelson
and Killcross 2006; Wunderlich et al. 2012).

In comparison, the neural location where pre-
diction errors are summated into model-free
values is much less well understood, although
multiple parts of the affective neural circuitry
appear to be involved, from the ventral (Cardinal
et al. 2002; Corbit and Balleine 2011; McDannald
et al. 2011) and dorsal portions of the striatum
(Yin et al. 2004, 2005), the ventromedial prefron-
tal cortex (Killcross and Coutureau 2003; Smith
and Graybiel 2013), to the amygdala (Corbit and
Balleine 2005).

Similarly, the neural bases of the model-based
system are also poorly understood. Depending on

the nature of the structure represented inT , different
neural substrates will be required. Hence, there is a
priori no reason to expect a unitary representation of
a single model-based system. However, particular
features of the system can probably be pinpointed.
For instance, learning about a stimulus-stimulus
transition matrix recruits the posterior parietal cor-
tex (Gläscher et al. 2010), while model-based
expectations of stimulus value involve the ventro-
medial prefrontal cortex (Hampton et al. 2006;
Schoenbaum et al. 2009). Recordings from spatial
navigation tasks in the rodent hippocampus are so
far unique in yielding direct neural evidence of the
implementation of sequential tree search (Johnson
and Redish 2007; Pfeiffer and Foster 2013).

Psychopathology
Given the representation of a key model-free com-
ponent by dopaminergic neurons, pathological
excesses of dopamine have been suggested to
involve a shift from model-based toward model-
free decision-making (Redish et al. 2008; Robbins
et al. 2012; Huys et al. 2014). This has been clearly
demonstrated in laboratory animals (Dickinson
et al. 2000; Nelson and Killcross 2006), though
data in humans has been less clear-cut (Voon

Reward-Based Learning, Model-Based and Model-
Free, Fig. 3 Devaluation experiments. (a) Animals are
first reinforced to press a lever for a particular food for
either a brief period of time or for a long period. This food
is then devalued, either by satiation or by pairing with
illness. Animals are then given the opportunity to press
the lever again, though in the absence of any food

outcomes (in extinction). (b) After brief initial training,
animals will refuse to press the lever (green bar), but after
extensive training, they will press the lever (purple bar) at
the same rate as at the end of training (blue bar) despite
refusing to consume the food if given the opportunity.
(Figure adapted from Balleine and Dickinson 1994)
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et al. 2015; Sebold et al. 2017; Nebe et al. 2017).
Similar arguments have been made about other
disorders with a striatal component, particularly
obsessive-compulsive disorders (Gillan et al.
2011, 2016), and models incorporating additional
neurobiological details about the striatum can
account for some of the choice patterns seen in
Parkinson’s disease, ADHD, and Tourette’s (Maia
and Frank 2011).
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