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Psychiatric morbidity scores very highly in the World 
Health Organization’s tally of disease burden. In psychi-
atric disease, pervasive impairments in decision making 
conspire to move achievable current opportunities out of 
a person’s reach and lead to violations of social norms. 
The cumulative consequences of missed chances and 
poor choices result in an environment that is ever poorer 
in options, making progressive decline an all too predict-
able outcome.

Understanding how abnormal decision making can 
arise, which is an obvious (though not necessary) pre-
lude to fixing it, requires us to understand the causes of 
behavior as well as the fault lines where it can break. As 
in most such cases, there is a variety of possible causal 
accounts that appeal to principles cut from different 
cloths; in this case amplified by the fact that a multiplicity 
of underlying structural and functional systems underlie 
behavior (for a recent review, see Dolan & Dayan, 2013). 
Here, we provide a framework for describing some of 
these key facets, focusing on decision making. This anal-
ysis finds roots in the field of cognitive neuropsychiatry 
(Coltheart, 2007; Ellis, 1998; Halligan & David, 2001), 

which seeks to “explain clinical psychopathologies in 
terms of deficits to normal cognitive mechanisms” 
(Halligan & David, 2001), broadening this to include a 
focus on the neural substrates of those mechanisms. It 
also fits comfortably into nascent treatments of computa-
tional psychiatry (Huys, Moutoussis, & Williams, 2011; 
Maia & Frank, 2011; Montague, Dolan, Friston, & Dayan, 
2012).

Our framework is built around Bayesian decision the-
ory (BDT), which offers a coherent account of normative, 
instrumental, choice (Berger, 1985). BDT involves four 
central elements: (a) a state of the environment about 
which the decision making agent may only have partial 
information (arising from prior expectations and observa-
tions), (b) a set of actions, each of which can be executed 
at a state, (c) a utility function describing the net cost and 
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Abstract
Psychiatric disorders profoundly impair many aspects of decision making. Poor choices have negative consequences 
in the moment and make it very hard to navigate complex social environments. Computational neuroscience provides 
normative, neurobiologically informed descriptions of the components of decision making that serve as a platform for 
a principled exploration of dysfunctions. Here, we identify and discuss three classes of failure modes arising in these 
formalisms. They stem from abnormalities in the framing of problems or tasks, from the mechanisms of cognition used 
to solve the tasks, or from the historical data available from the environment.
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benefit of performing each action at each underlying true 
state, and (d) an inference procedure. The last of these 
should pick the action that maximizes the expected util-
ity, by integrating over the distribution describing its 
uncertainty about the current state. The mapping from 
observations to action is called a policy. BDT has for-
mally easy extensions to the case that sequences or tra-
jectories of decisions must be made in the future—it 
dovetails perfectly with the theory of reinforcement 
learning (RL; Sutton & Barto, 1998) that underpins a vast 
wealth of work on the neural and psychological bases of 
decision making.

The framework identifies three major fault lines along 
which normative behavior can break and abnormalities 
ensue. These involve the basic building blocks determin-
ing what problem subjects solve, the computational pro-
cesses determining how they solve them, and the effects 
of experience.

•• Solving the wrong problem: People will behave 
differently because they inherently believe or care 
about different things. In substance addiction, for 
instance, the utility function may be so skewed 
toward a drug that it obliterates all the negative 
side effects of drug taking. But the behavior may 
still be consistent, that is, “optimal,” with respect to 
that particular skewed utility function, even if this 
interferes with other aspects of life. Similarly, an 
aberrant, but very strong, prior belief can result in 
delusions in which the ability to take evidence 
contrary to the belief into account is impaired, but 
correctly so from the perspective of someone 
adhering to such a belief. Aberrant behavior can 
then arise from a gross mismatch between a per-
son’s internal description of the decision problem 
and the true state of the world.

•• Solving the right problem, but poorly or wrongly: 
Here, the notion is that mechanisms of inference 
and integration might be suboptimal or deviant, 
leading to incorrect estimates of states or choices 
of action, even if there is nothing amiss with the 
internal description of the components of the 
problem. This could arise from frank mechanistic 
flaws, computational limitations, or altered compu-
tational costs. Indeed, as we will see, BDT can be 
sufficiently intractable for man or machine that the 
use of approximations, heuristics, and multiple dif-
ferent mechanisms with idiosyncratic domains of 
optimal applicability all abound. If different people 
employ different approximations in a single cir-
cumstance, they can behave differently.

•• Solving the right problem correctly, but in an unfor-
tunate environment: In paradigms such as learned 
helplessness (Maier & Watkins, 2005), healthy  

subjects exposed to an abnormally aversive envi-
ronment generalize their experience so that their 
behavior in other environments becomes poor. This 
can be seen as a natural consequence of learning 
from experience (for instance about the prior distri-
bution over the controllability of future environ-
ments; Huys & Dayan, 2009), which itself is a central 
part of the way in BDT that priors and observations 
lead to posteriors and hence to choices.

We discuss these in turn later. But we emphasize that 
they are not rigidly distinct. For instance, one might 
naively expect that optimal agents will ultimately, given 
sufficient experience, become correctly calibrated to 
their current surroundings, for instance making correct 
judgments about the settings of parameters associated 
with the environment if they use the correct model class. 
As we shall see, this expectation is not borne out for 
active agents that exert control over their own sources of 
information. If previous environments have led to unfor-
tunate expectations about the current one (the third 
problem) or if the subjects are unable to infer correctly 
what they need to observe (the second problem), then 
they might seem to be solving the wrong task (the first 
problem).

Equally, the heuristics involved in addressing the 
intractabilities of inference might be justified by particu-
lar prior expectations about the environments in which 
they are to be used, and so if those priors were wrong, 
then the heuristics would perform poorly. This would 
blur the lines between the first and second fault lines. For 
instance, under stress, it may be appropriate to expend 
little cognitive effort and act quickly; but if the stress 
response is inappropriate for the particular environment, 
then this might appear like a maladaptive prior on the 
necessity for speed.

Note that we are at the early stages of examining these 
questions and issues and have only very simple illustra-
tions. The various parts of BDT can get almost arbitrarily 
complicated, covering the most sophisticated inferences 
that we and our most powerful computers are able (and 
ultimately unable) to make.

As a systemic account of normal and abnormal behav-
ior, we see BDT as playing four roles (Chomsky, 1965; 
Marr, 1982). First, it throws into stark light the various 
computational components of decision making: states, 
representations of those states, utilities, and policies. 
Second, it indicates the factors of the possibly changing 
decision-making environment to which an organism 
should be sensitive if it is to perform well. Third, it pro-
vides a yardstick against which to measure the quality or 
optimality of actual behavior. Finally, it provides a frame-
work for organizing the rapidly growing evidence base in 
terms of an understanding of the actual algorithms and 
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implementations that create, maintain, infer, and other-
wise satisfy the various computational demands.

The first three of these roles seem rather abstract, in 
that they depend on the environment that the person or 
organism occupies more than any particular aspect of 
that organism. By contrast, the fourth role is quite con-
crete, linking to both psychological and neural data. 
However, it has long been recognized (Churchland, 1986) 
that formally clean distinctions are not actually possible 
between the abstract and the concrete, or to use the 
terms employed by Chomsky and Marr respectively, com-
petence and performance, or computational and algorith-
mic/implementational theories. For instance, the yardstick 
measuring the optimality of behavior should really take 
into account the extreme temporal and energetic demands 
of realizing that behavior. Those demands are exquisitely 
sensitive to the nature of the neural substrate. In total, 
this means that the experimentally addressable claims we 
make about behavior and its neural bases cannot be 
couched purely in terms of abstract claims about BDT, 
but must rather depend on actual facts about what peo-
ple do and how they do it. Indeed, we see the most criti-
cal contribution of the abstract aspects of BDT as being 
to inspiration and explanation.

As a final note: A well-recognized and yet pernicious 
problem in psychiatry is that diseases that are com-
monly considered to be unitary, perhaps because of cer-
tain symptoms that are shared among most patients, 
nevertheless include other symptoms that are quite dif-
ferent. Less well celebrated is that a single symptom can 
arise from failures of, or abnormal settings within, dif-
ferent of the many systems involved (for instance, one 
example is developed in J. Williams & Dayan, 2005). 
One consequence of both of these is that single condi-
tions or diseases will recur in multiple places in this 
review, with different facets arising under different fault 
lines.

BDT

BDT has been reviewed elsewhere, including in the con-
text of neural RL (Dayan & Daw, 2008), and so we will be 
brief. The true state of the environment is described by a 
(random) unobserved variable x = {xp, xs}. For the 
moment, we will think of this as comprising two major 
components: xp describes the problem as a whole, deter-
mining the causal texture of the domain (Dickinson, 
1980); xs is the state of the agent in the domain. For a 
maze, for instance, xp might include the layout of all the 
walls and openings, the locations of foods, the descrip-
tion of which foods contain which nutrients. By contrast, 
xs might describe exactly where in the maze the subject 
presently is and its current motivational state, for exam-
ple, whether hungry or thirsty or both. Most work in BDT 

treats xp as given and does not make it explicit. However, 
we are interested in the possibility that the internal rep-
resentation of the problem might be erroneous and so 
reify this component of the state.

At any time, the agent has a prior distribution or den-
sity P(x) = P(xp)P(xs|xp) over x. We write Px x

p s( )  for 
P(xs|xp), to indicate the problem dependence of the 
prior distribution over xs. For some parts of the state (for 
instance often, but not always, the motivational compo-
nents), the agent might have perfect knowledge. In this 
case, the distribution would include delta functions. For 
other parts, it will be uncertain; observations y will help 
resolve this uncertainty via a quantity known as the likeli-
hood P(y|x). Again, for the present, we focus on obser-
vations that bear on xs and so write the likelihood as 
Px y x

p s( | )  noting that different problems (i.e., different 
values of xp) determine different likelihood functions. 
The agent can apply Bayes’s rule to derive the posterior 
distribution over the state xs as
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marginal distribution over y, and is the overall probability 
of observing y in problem xp. One can imagine receiving 
some further information y′, with likelihood Px y x

p s( | )′ . 
One beauty of this Bayesian formulation is that if y′ is 
independent of y given the value of xs (and xp), one can 
use the posterior Px x y

p s( | )  from Equation 1 as the prior 
for absorbing this extra piece of information, such that
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We usually write D to represent all the data that the 
agent has amassed, and so the full posterior is P Dx x

p s( | ).
Next, the agent has available a set   of actions that it 

can perform. Along with the external actions such as 
making a move or pressing a lever that are the normal 
objects of RL, there can also be internal actions such as 
the choice to deploy working memory or attention, or to 
continue evaluating an external action (Dayan, 2012; Hay 
& Russell, 2011; O’Reilly & Frank, 2006).

The agent is also assumed to have a utility (or inverse 
loss) function υx x

p
a s( , )  which indicates the benefit of 

executing action a if the true state in the domain is xs. 
The utilities can be state-dependent—so eating food (an 
action) might be lucrative only if hungry (as described in 
xs). Utilities could include the internal costs associated 
with cognition (Kool, McGuire, Rosen, & Botvinick, 2010; 
McGuire & Botvinick, 2010). Exactly how utilities arise is 
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rather subtle; we touch briefly on some of the issues 
later.

In BDT, subjects combine the posterior distribution 
over states, which incorporates information about the 
information D they have experienced, with the utility, to 
arrive at optimal policies p

x p
( )D  that maximize the 

expected utility. The dependence on the data D is critical 
to allow actions to be adaptive to all aspects of the state 
xs—including motivational components (e.g., allowing 
choices to differ depending on hunger versus thirst). 
Canonical equations for arriving at optimal policies are 
provided in the appendix. Policies might also be stochas-
tic, just favoring somewhat more of those actions with 
higher expected utilities, rather than only picking the 
best. As we will see, various forms of learning are critical 
in BDT, allowing subjects to acquire good behavior.

We also describe domains with temporal dynamics, 
where the internal state xs(t) changes over time t, with 
each action evoking its own set of stochastic transitions. 
For instance, foraging for food may exacerbate the need 
to find food, and wise foraging choices take this potential 
future state change into account. Here, it is necessary to 
determine not an individual optimal action, but rather a 
sequence of actions in the light of possible transitions. It 
turns out that intermediate variables can help to solve 

such problems more efficiently. The value x
x x
p

p
s t

π
( ( ))  of 

the state xs(t) (disregarding, for simplicity, the fact that 
this is not observed directly, but rather must be probabilis-
tically inferred from data D( )t ) is defined as the long run 
reward expected to be available from that state through 
following policy πx p

 (which specifies what actions might 
be taken at the succeeding states). Typically, rewards 
received in the far future are valued less than rewards that 
arise soon—this is captured by exponential discounting, 
employing factor 0 ≤ γ ≤ 1 at each step, although we dis-
cuss alternatives later. We are then interested in finding 
good policies; this leads to states having large values.

BDT requires two sorts of inference. One is to com-
pute the posteriors such as those in Equation 2 to esti-
mate the state xs (and indeed xp) as well as possible. The 
other is to find the optimal actions. Both of these are 
computationally hard. The latter is particularly difficult 
when it is necessary to optimize over long trajectories of 
future actions—and becomes much harder in the face of 
the first problem. Neurobiologically relevant solutions 
have focused particularly on the case in which the state 
x is assumed known.

For instance, consider the case that the decision maker 
observes the state and knows the transition structure T 
embodying the consequences of actions, and the utilities 
υx p

. It can project its possible state forward in time using 
its knowledge of the transitions, and, by summing the 
utilities that it expects to encounter, work out which 

action is currently best (this is a way of implementing 
Equations 4 and 5 in the appendix). This is called model-
based or goal-directed reasoning (Daw, Niv, & Dayan, 
2005; Dickinson & Balleine, 2002; Doya, 1999).

There is an alternative class of so-called model-free or 
habitual approaches that trades inferential calculation for 
experience. They are retrospective, storing, or caching 
into memory the affective value x

x

p

p
π

 of past experience 
through the environment, and then recalling an aspect of 
this directly (Daw et al., 2005; Doya, 1999; Sutton & 
Barto, 1998). Crudely, actions can become highly valued 
either because they lead directly to high utilities υ � 0 or 
because they make transitions to states predicting 

improved long-run utilities  x x
x x

p
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π π
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The latter solves the decision problem because it allows 
myopia: The best action can be defined in terms of the 
value of the state to which it likely leads, with this value 
reflecting everything that is critical about the longer term, 
downstream, outcomes.

Model-based and model-free methods are both well-
founded ways of finding optimal controls, and various 
implementations of each have been suggested. Although 
intermediate points between the two methods have been 
suggested, the two ends of the spectrum differ qualita-
tively: Model-based methods have superior statistical, but 
catastrophic computational characteristics; for model-free 
methods, it is exactly the other way around: They trade 
computational cost for experiential cost, rendering learn-
ing slow (Daw et al., 2005).

These characteristics have been used, at least to 
some extent, to distinguish the systems behaviorally 
(Dickinson & Balleine, 2002; Doya, 1999), because they 
imply that model-based control is instantly sensitive to 
manipulations of the subject’s motivational state, or the 
contingencies in the environment and so leads to rapid 
behavioral change, whereas model-free control is 
slower to adapt, depending on averaging multiple 
experiences of the change. This is because the model-
based system computes the values of actions prospec-
tively whereas the model-free system computes them 
retrospectively.

Some of the various components and implementa-
tions of BDT can also be distinguished neurally 
(Balleine, 2005; Daw et al., 2005; Dickinson & Balleine, 
2002). For instance, it has often been suggested that the 
ventromedial prefrontal cortex is heavily involved in 
evaluation associated with model-based control 
(Hampton, Bossaerts, & O’Doherty, 2006; Killcross & 
Coutureau, 2003; K. S. Smith, Virkud, Deisseroth, & 
Graybiel, 2012), whereas phasic dopamine neuron fir-
ing in the midbrain covaries with a prediction error δ  
that the model-free system uses to update predictions 
associated with states (D’Ardenne, McClure, Nystrom, & 
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Cohen, 2008; Montague, Dayan, & Sejnowski, 1996; 
Schultz, Dayan, & Montague, 1997) and actions (Morris, 
Nevet, Arkadir, Vaadia, & Bergman, 2006; Roesch, Calu, 
& Schoenbaum, 2007) and also causally influences 
learning and choice (Steinberg et al., 2013; Tai, Lee, 
Benavidez, Bonci, & Wilbrecht, 2012). Note, though, 
evidence that model-based and model-free methods can 
be integrated (Daw, Gershman, Seymour, Dayan, & 
Dolan, 2011; Gershman, Markman, & Otto, 2014; 
Johnson & Redish, 2007) may complicate these distinc-
tions. One form of dopamine’s influence is the appar-
ently competing direct and indirect pathways through 
the striatum (controlling active or “go” responses, and 
selective inhibition or “nogo” in the terms of Frank, 
2005), which are separately modulated by D1 and D2 
dopamine receptors (Alexander & Crutcher, 1990; Frank, 
2005; Kravitz, Tye, & Kreitzer, 2012). Consistent with the 
integration mentioned is evidence that these separated 
pathways are just as present in the dorsomedial as the 
dorsolateral regions of the striatum, which are impli-
cated respectively in model-based and model-free con-
trol (Balleine, 2005).

It should come as little surprise that a function as criti-
cal as decision making should be distributed over a wide 
swathe of cortical and subcortical territories. However, 
from a clinical viewpoint, this means that we might 
expect problems to be intricately buried both in particu-
lar neural systems and their interactions—and thus hard 
to find and treat. More subtly, although we will discuss an 
exception later, some of the components that we have 
described, particularly those associated with model-
based reasoning, may most parsimoniously be viewed in 
psychological terms, rather than in terms of their neural 
realizations. Thus, for instance, a simple psychological 
construct such as a changed prior might be represented 
by small manipulations to the efficiencies of an obscurely 
distributed welter of synapses. In those cases, the most 
appropriate clinical focus might also be psychological 
rather than neural. In turn, though, these psychological 
interventions could depend on explicit or implicit 
effects—for instance, changing a prior by directed rea-
soning about its inaccuracy, or just showing by example 
that it does not correctly capture the actual statistics of an 
environment.

Note that the application of BDT need not be restricted 
to just the choice of actions. It has also been applied to 
the choice of the vigor or latency of those actions (Niv, 
Daw, Joel, & Dayan, 2007) in the case that the subject 
has to maximize the rate with which it accumulates util-
ity. In this case, it turns out that a critical role is played 
by the opportunity cost for any (unrewarded) passage of 
time; if this cost is high, then subjects should act vigor-
ously; if it is low, then they can act slothfully. This turns 
out to be true both for actions that lead to maximal 

rewards and other, incidental, actions that are also exe-
cuted. There is evidence that a signal like this is reported 
by relatively tonic levels of dopamine (Beierholm et al., 
2013; Niv et al., 2007) with the effect of energizing action 
(Salamone & Correa, 2002).

Incorrect Problem

The most direct route to aberrant behavior arises from 
abnormalities in the definition of the problem itself, that 
is, from abnormalities in the prior, likelihood, or utility 
function, described collectively by xp. These capture the 
important and intuitive notions of behavioral variation 
arising from the fact that people may have different a 
priori beliefs or explanatory schema, or may endow the 
same event with different meanings, or may have differ-
ent aims. These jointly define the decision-making task, 
and so determine its subjective—albeit not objective—
optimal (and approximately optimal) solutions.

Before proceeding, we should emphasize that although 
they are conceptually very different, the prior Px x

p s( )  
and the likelihood Px y x

p s( | )  are multiplied in Equation 
1, and so disambiguating their separate contributions to 
aberrant behavior may not always be possible. However, 
in all but limited circumstances, there is a key asymmetry 
between the effect of the two: Prior expectations can ulti-
mately be washed away by sufficient observations. Two 
important exceptions to this are (a) if the prior rules out 
some possibilities, then they cannot be rescued by the 
likelihood and (b) if the prior indicates that the world 
changes quickly, then the weight of observations may not 
be able to accumulate to overwhelm the prior. We dis-
cuss abnormalities in priors and likelihoods in separate 
sections because of the conceptual differences.

Abnormalities in prior beliefs about 
state

Prior beliefs Px x
p s( )  play a special role in Bayesian for-

mulations. They encapsulate internal beliefs that an agent 
might privately hold about the causal structure of obser-
vations, informed by experience accrued over various 
timescales. Such priors are most important in two cases. 
The first is because Px x

p s( )  determines the possible 
latent causes for any observation (Courville, Daw, 
Gordon, & Touretzky, 2004; Courville, Daw, & Touretzky, 
2005; Fiser, Berkes, Orban, & Lengyel, 2010; Gershman & 
Niv, 2012). Most extremely, if some states xs are not part 
of a subject’s problem-dependent state space x p

, or are 
effectively prohibited by having a zero prior weight 
(which is one of the exceptions mentioned earlier), then 
these latent causes cannot possibly be inferred. If the 
prior deems some states possible, but overwhelmingly 
unlikely, then vast amounts of data y could be necessary 
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to infer them. Given that latent states are not ruled out, 
the second case in which priors exert substantial influ-
ence is in the face of a lack of information, that is, when 
they are strong relative to the likelihood terms Px y x

p s( | )  
or Px y x

p s( | )′  in Equations 1 and 2 (Koerding & Wolpert, 
2004a; Weiss & Adelson, 1998). This corresponds to situ-
ations in which the current information y is ambiguous 
or outright uninformative.

The structure of problem-dependent prior distributions 
over state x xs p

∈  can influence decisions in various 
ways, including manipulating possible beliefs, generaliza-
tion, representation and memory storage. Other aspects 
of priors are discussed in later sections.

Vetoing. Beliefs held with unusual conviction are a 
prominent feature of many psychiatric disorders. Such 
persistence may arise either because the problem-depen-
dent state space x p

 allows only for states that would 
usually not be entertained or because the prior belief is 
very strong and puts vanishingly little prior belief on any 
alternatives. Via the multiplication in Equation 1 this may 
effectively nullify (if zero) or enforce (if a delta function) 
certain beliefs, irrespective of any observations. For 
instance, a prior distribution that places a high probabil-
ity on threat (or rules out benign states) would force any 
ambiguous observation that could have either malign or 
benign interpretations, to lead to a posterior distribution 
that favors the former (O. J. Robinson, Charney, Over-
street, Vytal, & Grillon, 2012).

Equally, in aspects of depression that can be character-
ized by pessimistic expectations (Strunk, Lopez, & 
DeRubeis, 2006), subjects may have “dysfunctional 
beliefs” according to which negative explanations or 
causes are more likely a priori (Beck, Rush, Shaw, & 
Emery, 1979). Cognitive therapies hence focus both on 
reshaping patients’ prior beliefs (Beck et al., 1979; J. M. 
G. Williams, 1992), as well as their interpretation of events 
(which concerns the likelihoods).

Generalization. The structure of priors can also influ-
ence generalization. Consider an extinction experiment, 
where an animal might initially experience that a condi-
tioned stimulus (CS; which is a predictor) predicts an 
aversive event (an unconditioned stimulus, or US), but 
then suddenly starts appearing without the now feared 
consequence. Animals do not unlearn the association 
between the CS and the aversive event, as can be shown 
by renewal, spontaneous recovery, and reinstatement 
experiments (Bouton, 2002). The animal thus appears to 
combine stability with plasticity and learn about the 
novel (lack of) association without overwriting and for-
getting the previous one. Prior distributions can provide 
a structural solution to this stability-plasticity dilemma 
(Carpenter & Grossberg, 1988) by allowing for different 

(the plasticity) latent or hidden circumstances in which 
relationships between stimuli and outcomes only change 
very slowly (the stability). When some facet of the envi-
ronment appears to change quickly, this prior licenses 
the inference that a new circumstance has become active, 
rather than having to overwrite, and thus lose, existing 
learning in the current circumstance (Courville et al., 
2004; Gershman, Blei, & Niv, 2010; Gershman & Niv, 
2012; Lloyd & Leslie, 2013; Redish, Jensen, Johnson, & 
Kurth-Nelson, 2007; Wolpert & Kawato, 1998). One can 
expect generalization to be promiscuous and concrete 
within a circumstance, but restricted and abstract between 
them.

The extent to which subjects adjust to change by infer-
ring new latent causes is determined through the medium 
of one aspect of their prior beliefs. Variation in this aspect 
of the prior could capture individual variability in relapse 
(Clark et al., 2006; Haug et al., 2003) after extinction-
based therapies. Such therapies are first-line treatment 
choices for many anxiety disorders and are possibly 
superior to pharmacology alone (e.g., Haug et al., 2003; 
Hofmann, Wu, & Boettcher, 2013). Contextual effects are 
also well known to be important in other instances of 
relapse, as in drug addiction (Crombag, Bossert, Koya, & 
Shaham, 2008). Furthermore, priors that promote overly 
strong generalization can also capture a rather broad set 
of results on learned helplessness (Lieder, Goodman, & 
Huys, 2013b)—an animal model for depression (Maier & 
Watkins, 2005). Indeed, pathological overgeneralization 
is a hallmark of depression (Beck et al., 1979), where low 
self-esteem serves as an general explanation for all per-
ceived failures (Carver & Ganellen, 1983).

Representation. Prior distributions can also influence 
generalization via representation. A notion that is stan-
dard in unsupervised learning (Hinton & Sejnowski, 
1999) is that the neural representation of a state such as  
xs can be seen as the coordinates of that state in a coor-
dinate system that characterizes the whole collection of 
possible states x p

, as determined exactly by the prior 
distribution Px x

p s( ). Representations satisfy properties 
such as the sparsity or mutual independence of their 
components; these emerge from the structure of the 
prior. The resulting representations can play a central 
role in inference. Consider a simple probabilistic reversal 
learning task, in which subjects have to choose one of 
two stimuli. One stimulus always yields rewards with a 
high probability, the other with a low probability. How-
ever, at times not known to the subject, the identity of the 
better stimulus switches. If the prior distribution man-
dates a representation in which the anticorrelation 
between the outcomes is explicit, then learning that one 
stimulus no longer provides reward will automatically 
generalize to the prediction that the other stimulus will 
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provide reward. Conversely, if the prior distribution man-
dates a representation in which the anticorrelation is not 
explicit, then no such generalization will be licensed.

Information storage. Prior beliefs, likely via this 
impact on representation, also influence the formation 
and preservation of memories. Chess masters are better 
than inexperienced players at remembering chess board 
configurations, but only for configurations that are likely 
to arise in real games (Chase & Simon, 1973). Equally, 
features of a story that fit with cultural expectations are 
more easily remembered (Bartlett, 1932). This can be 
understood in terms of the information content of events, 
or their latent causes, under the prior: The more unlikely, 
the more (Shannon) surprise they contain, and hence the 
more memory resources have to be devoted to their 
encoding and storage (MacKay, 2003). This clearly poses 
a danger to normative inference, in that the process 
described in Equation 2 becomes more efficient for some 
observations than others—potentially forming a conduit 
for the rapid development of maladaptively strong beliefs 
(Garety et al., 2005; though see Moutoussis, Bentall, El-
Deredy, & Dayan, 2011). However, note also the flip side 
of this—events that are unlikely might seem more impor-
tant targets of encoding and storage, despite those extra 
costs.

Abnormalities in the likelihood

The likelihood defines how experiences y relate to inter-
nal states or other unobserved (hidden) variables in the 
world xs. Roughly speaking, the likelihood defines not 
only the “experience” of low-level sensory phenomena, 
but, at a more abstract description level, also the “mean-
ing” of events as defined by the effect on inference about 
the hidden state. As such, it is one of the key links deter-
mining the consequences of experience.

One very general fault line associated with the likeli-
hood arises from an inability to represent the true state of 
affairs for observations. For instance, the probability of 
rare events is often overestimated (if explicit; Kahneman 
& Tversky, 1979) or underestimated (if experiential; 
Jessup, Bishara, & Busemeyer, 2008), in a way that affects 
risk sensitivity (Tom, Fox, Trepel, & Poldrack, 2007). 
Inaccuracies can also arise indirectly from noise in the 
representation of the events y. For instance, it is often 
critical to estimate the rates of affectively charged out-
comes. Rate estimation often depends on time estima-
tion, which is in turn modulated by affective events 
(Droit-Volet & Meck, 2007) and which is notoriously 
uncertain (as in the substantial studies of interval timing; 
Gibbon, 1977). If the way that this uncertainty grows with 

interval length is incorrectly characterized in Px y x
p s( | ), 

then systematic biases can ensue.
Errors in processes associated with corollary discharge 

have been suggested as offering a specific path to aber-
rant likelihoods. When subjects act on the world, they 
can expect particular sorts of sensory input arising from 
their own behavior. Corollary discharge is the general 
term for the neural signals that provide information about 
forthcoming movement; these can “cancel” out predict-
able input, leaving what is unpredicted to be processed 
(Crapse & Sommer, 2008; Stephan, Friston, & Frith, 2009). 
If these signals or the way that they are processed are 
dysfunctional—perhaps because of problems with con-
nectivity (Stephan, Baldeweg, & Friston, 2006), with dif-
ferent perceptual or decision-making modules no longer 
being correctly calibrated with each other—then the like-
lihoods of the input will become erroneous because the 
probabilities of the actual input will not reflect the aspects 
of that input that are self-created. This leads to incorrect 
inferences about true causes in the world, and possibly 
delusions (Adams, Stephan, Brown, Frith, & Friston, 2013; 
Stephan et al., 2009). It applies not only to external 
actions; internally directed actions including the pro-
cesses involved in model-based evaluation and episodic 
future thinking (Hassabis, Kumaran, Vann, & Maguire, 
2007; Hassabis & Maguire, 2009; Schacter, 2012; Schacter 
et al., 2012), a human analogue of the well-described 
phenomena of hippocampal preplay in rodents ( Johnson 
& Redish, 2007; Pfeiffer & Foster, 2013), could also be 
misattributed, leading to hallucinations (Bentall, 2004).

More mechanistically, schizophrenia has been related 
to electrophysiological responses to sensory stimuli in 
the visual and auditory cortex (Brenner et al., 2009) that 
are thought to be related to imbalanced glutamate/GABA 
neurotransmission as a result of a loss of GABAergic 
interneurons at the cortical level (Lewis, 2013; Lisman et 
al., 2008). This would be an example of a case in which 
the most parsimonious description of the problem would 
be neural rather than psychological. However, depending 
on the imbalances in different pathways, it might appear 
as an example of a wrong likelihood, where aberrant 
processing of incoming information leads to an inability 
to represent the true state of affairs for the observations. 
In this context, when the abnormal likelihood is promi-
nent (or the prior about the “normal” perception is weak), 
a delusional interpretation of the reality may emerge.

Disturbances that may readily be ascribed to aberrant 
likelihood functions exist in many nonpsychotic diseases, 
too. For instance, depression risk is associated with sig-
natures of increased neural threat signals (Roiser, Elliott, 
& Sahakian, 2012) even in the absence of any overt 
behavior or conscious perception. Equally, work using 
trust games has shown that patients with borderline 
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personality disorder are unable to perceive and correctly 
interpret social approaches after a bond of trust has been 
partially broken (King-Casas et al., 2008).

Utility function

The utility defines the subjective values of actions and 
states. As such, it determines what actions are subjec-
tively optimal. An abnormal setting in the utility function 
implies an abnormality in the reinforcement derived from 
consummatory aspects of primary reinforcers, such as 
food, sex, safety, or danger. It can lead to a diverse wealth 
of inappropriate behavior that is nevertheless perfectly in 
accordance with subjects’ goals. Specific particularities 
can have quite circumscribed effects, and indeed may 
contribute substantially to the normal variation in person-
alities and personal preferences—de gustibus non est 
disputandum.

One characteristic issue, for instance, is that the utility 
function might decrease or flatten for appetitive out-
comes, reducing their absolute or relative attractiveness. 
An example of this is anhedonia, a core feature of depres-
sion (Bylsma, Morris, & Rottenberg, 2008; Hasler, Drevets, 
Manji, & Charney, 2004; Pizzagalli, Jahn, & O’Shea, 2005; 
Treadway & Zald, 2011). Clinically, it is characterized by 
a loss of pleasure from things people used to like, or lack 
of caring about those things. Similar alterations exist in 
the setting of schizophrenia with negative symptoms, or 
apathy in Parkinson’s disease. Indeed, a reduced or flat-
tened utility function might produce psychomotor retar-
dation by affecting vigor through decreases in the 
opportunity cost of time, as discussed earlier (Mazzoni, 
Hristova, & Krakauer, 2007; Niv et al., 2007). The oppo-
site, where certain events become more intrinsically 
rewarding or aversive are apparent in the euphoric states 
that characterize mania, or in the hyperalgesia associated 
with both depression or chronic pain syndromes 
(American Psychiatric Association, 1994; World Health 
Organization, 1990). In addictions, the utility function 
may become skewed toward drugs: In alcoholism, for 
instance, drink cues become potent activators of key stri-
atal motivational areas such as the nucleus accumbens at 
the expense of monetary reinforcers (Wrase et al., 2007).

We include discounting under the umbrella of issues 
to do with the utility function, because the discount fac-
tor, γ , controls the relative utility of rewards that arrive 
sooner compared with those that arrive later. If some-
one’s value of γ  is near to 0, then they will have an 
extremely short-term outlook, favoring immediate small 
rewards over far larger rewards that might be a little 
delayed—this can be a source of apparent impulsivity. 
One influential notion has been that the neuromodulator 
serotonin controls γ , and hence the degree of patience 
(Miyazaki, Miyazaki, & Doya, 2012; Schweighofer et al., 

2008; Tanaka et al., 2004; Tanaka et al., 2007) or willing-
ness to wait.

However, in explicit tests, humans and other animals 
often show forms of hyperbolic discounting, weighing a 
utility υ τ τx x

p
a s( ( ), ( )) that will arrive τ − t  time steps in 

the future by a function of the form 1
k t+ −τ  rather than by 

the exponential form γ τ −t . This leads to a qualitatively 
different sort of impulsivity whereby choices become 
temporally inconsistent (Ainslie, 2001). Consider a sub-
ject at time t contemplating a choice between two options 
that will happen at time 2t. The subject’s preference 
between these (later) options at t could be different from 
their preference at time 2t. This arises because hyperbolic 
discounting is steep in the short run and flat in the long 
run (compared with exponential discounting). Thus, the 
subject at time t might engage in expensive, apparently 
suboptimal, commitment behavior to prevent their future 
self (at time 2t) from defecting against the choice that 
they currently prefer (Crockett et al., 2013).

Impulsivity is a relatively stable measure that is strongly 
associated with addiction. It reliably differentiates addicts 
from nonaddicts (Kirby, Petry, & Bickel, 1999; Petry, 
Bickel, & Arnett, 1998), is sensitive to acute intoxication 
(Tomie, Aguado, Pohorecky, & Benjamin, 1998), and 
characterizes addiction-relevant variation in learning 
(Lovic, Saunders, Yager, & Robinson, 2011) and in the 
function of the dopaminergic system (Buckholtz et al., 
2010). However, it is also very sensitive to experimental 
details (Evenden, 1999; Fassbender et al., 2014) and has 
multiple theoretical underpinnings depending on the 
exact situation. We return to this in the discussion.

One might think that there should be a fact of the mat-
ter as to which utility function (and form of temporal 
discounting) is best, perhaps by virtue of a grounding in 
homeostatic considerations (Keramati & Gutkin, 2011; 
Savage, 2003). However, not only are claims of this char-
acter almost impossible to prove, but one should also 
observe that individuals and species are involved in a 
game-theoretic contest ( J. M. Smith, 1993). The Nash 
equilibria in these games might well involve a mixed 
strategy, with different patterns of behavior such as 
impulsivity, which are mandated by different utility func-
tions, stably surviving at modest population frequencies 
(Suomi, 2006; J. Williams & Taylor, 2006).

Incorrect Inference

The next route to deviant behavior is to think that utili-
ties, likelihoods, priors, and states are correct, but that 
there are faults in inferences that are licensed from these 
ingredients.

A first route to incorrect inference, which has been 
linked to delusions (Hemsley, 1987, 1993, 2005), is if exter-
nal, sensory information associated with the likelihood is 
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incorrectly weighted against internal, contextual, informa-
tion associated with the prior. According to BDT, the opti-
mal weighting is associated with the relative (un)certainties 
or (im)precisions of these quantities, so errors in calculat-
ing or using these could have this effect (Adams et al., 
2013; Fletcher & Frith, 2009).

We will describe two further classes of culprits. The 
first lies in how the computations that lead to the assess-
ment of the state xs are executed. The second concerns 
the calculation of the policy. Here, the issue is that even 
if the problem, described by xp, is known, it may be 
intractable to infer the optimal policy by complete model-
based reasoning. We consider two classes of heuristic, 
each of which can lead to aberrant choice.

Inference about states

Realistic cases of BDT frequently result in very substan-
tial demands on computational and memory resources. 
In Equation 1, the numerator requires a multiplication for 
every potential state xs. As these are unobserved hidden 
states existing in the mind of the observer alone, there is 
no strict limit as to their number. Similarly, the denomina-
tor contains an integral or sum over these products: 
P P Px x xy x x y x

p p p
d s s s( ) ( ) ( | ).= ∫  Naively evaluating Equa-

tion 1 thus not only requires many computations, but 
also potentially a very large memory to store the interme-
diate results.

The substantial computational costs of model-based 
reasoning make it difficult to consider more than very 
few hidden states. Incomplete consideration of latent 
causes could lead to potential internal states being over-
looked, and thus facilitate inconsistencies. For instance, 
while occupying one motivational state, it is hard (at 
least for animals other than scrub-jays; Raby, Alexis, 
Dickinson, & Clayton, 2007) to generate expectations 
appropriate to another, predicted, motivational state 
(Loewenstein & Prelec, 1992). In addiction, for instance, 
sober patients may express the desire to limit consump-
tion, and yet be unable to prevent escalating consump-
tion once mildly intoxicated. The utility υx p

 of drugs in 
detoxified and mildly intoxicated states likely differs, 
and incomplete consideration of the different states 
might make appropriate choices difficult. Thus, choices 
made on the basis of the sober utility would fail to reflect 
the intoxicated utility (thus encouraging recidivism); 
choices made on the basis of the intoxicated utility 
would fail to reflect the actual disutility apparent in 
sobriety. One strategy around this is precommitment 
(Ainslie, 2001; Crockett et al., 2013), although this has its 
own attendant costs. Note also that a focus on few 
explanatory causes is reminiscent of perseverative 
thought processes such as rumination in depression or 
worry in anxiety.

The case that there are many observations over time 
y, y′, … would seem to magnify the problem. However, in 
Equation 2, the incorporation of a novel observation y′ 
appears only to demand the combination of the likeli-
hood Px y x

p s( | )′  with the previously computed posterior 
over latent state given the data up to that point Px x y

p s( | ). 
It is important that this means that the actual data y can 
be discarded, and only its representative (sufficient) sta-
tistics determining the posterior need to be kept in mem-
ory, resulting in a drastic reduction of memory 
requirements. Unfortunately, this distribution can itself be 
very complicated, parameterizing correlations, and heu-
ristics such as assumed density filtering or moment 
matching to a simpler distribution (Daw, Courville, & 
Dayan, 2008; Kruschke, 2006). These are not optimal and 
can lead to outcomes such as a disproportionate influ-
ence of early experience on inferences about the state xs.

Inference about actions

We observed earlier that given full knowledge of the 
transitions and utilities, optimal choices can be inferred 
by sums over trajectories of future actions in Equation 4. 
However, this is typically radically intractable. The essen-
tial difficulty is well illustrated by a game such as chess, 
say against an opponent whose policy is fixed. We have 
to choose the best sequence of actions in the light of the 
moves the opponent will make. Looking one move ahead 
means around 30 options need to be considered. The 
opponent has around 30 response options to each of 
these, and we have again the same number of options for 
each prior sequence available on the next move. Thus, if 
we were to look d steps ahead, we would have to choose 
between 30d sequences to work out what to do. There 
are alternatives that take advantage of the recursive struc-
ture of the problem, but they still require biologically 
unfeasible computations on the global state space 
(Puterman, 2005; Sutton & Barto, 1998).

There is thus a need for computationally feasible alter-
natives, approximations, and heuristics. These, in possi-
bly abnormal combinations, engender a wide variety of 
potential suboptimalities. We first discuss model-free 
solutions to the computational load faced by model-
based methods, and then consider (Pavlovian) policy 
heuristics.

Model-free control represents one canonical approach 
to the computational complexities of choice. For this, 
experience replaces cognition: Rather than relying on a 
description of the consequences of actions T , model-free 
solutions sample these consequences by (a) trying out an 
action, (b) taking note of the consequence, and (c) updat-
ing a cached value, which amounts to keeping a particu-
lar sort of running average. Habitual choices are 
computationally very straightforward. However, the use 
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of environmental samples is inefficient (Kakade, 2003), 
meaning that substantial experience is required in an 
unchanging word before the policy is appropriate. If 
aspects of the state or problem change then habitual 
behavior will be poor, and indeed inconsistent with 
information the agent can be shown, by other means, 
already to have acquired or possess.

Under normal circumstances, there is often a progres-
sive habitization of control (Dickinson, 1985; Dickinson & 
Balleine, 2002), putatively because of this balance between 
computational and sample complexity (Daw et al., 2005), 
or perhaps governed by the decreasing value of the infor-
mation that the computationally expensive operations of 
the model-based system could provide as the model-free 
system becomes more accurate (Keramati & Gutkin, 
2011). That is, given little experience, choice is model-
based, or goal-directed, but as the sample complexity 
bounds are satisfied, choice becomes model-free.

Alterations in the trade-off between model-free and 
model-based decisions is one route to psychopathology 
that is being actively examined. It could arise either by 
influencing the mechanisms determining the arbitration 
(Lee, Shimojo, & O’Doherty, 2014) or via influences on 
either of the two subsystems. In substance addiction, for 
instance, an increased prominence of habits could arise 
both via direct influences of addictive substances on pha-
sic dopaminergic signals (Dayan, 2009; Dickinson & 
Balleine, 2002; Huys, Pizzagalli, Bogdan, & Dayan, 2013; 
Redish, 2004) and via an impairment of prefrontal goal-
directed control (Chen et al., 2013; Otto, Gershman, 
Markman, & Daw, 2013; Redish, Jensen, & Johnson, 2008; 
Takahashi et al., 2011; Volkow, Fowler, Wang, Baler, & 
Telang, 2009). A change in this balance could also lead to 
reduced cognitive flexibility in a variety of psychopathol-
ogies from schizophrenia to Parkinson’s disease and, eat-
ing disorders (Maia & Frank, 2011; Waltz, Frank, Robinson, 
& Gold, 2007). Model-based evaluation is particularly 
susceptible to corruption in the computations involved; 
adjusting appropriately to this has been postulated as 
leading to symptoms in schizophrenia (Moutoussis et al., 
2011) and depression (Lieder, Goodman, & Huys, 2013a). 
Even if there is just competition between different mech-
anisms of choice, then hesitation, or psychomotor slow-
ing could result, potentially leading to an overall lack of 
choice.

Among other factors influencing the trade-off between 
model-based and model-free control is the complexity of 
the state space—because this determines how much 
sampling appears to be necessary for model-free values 
to become correct. Thus, an incorrectly impoverished 
state space, stemming either from incorrect prior distribu-
tions (as discussed in the previous section) or perhaps 
from superficial recall from memory ( J. M. G. Williams et 
al., 2007), would result in overgeneralization and then 

early dominance by what would be incorrect model-free 
values. Limitations in working memory have also been 
suggested as damaging learning, potentially in a model-
based system (Collins & Frank, 2012); and this could also 
make for an early impetus toward habits.

Similarly, an increased tendency to generalize would 
effectively reduce the state space by reducing the num-
ber of differentiable states, biasing the competition 
between model-free and model-based responding toward 
the former by reducing the sample complexity. Hence, 
the nature of the state or action space, and the prior over 
these, have important consequences for the acquisition 
of cached values, and potentially also for the trade-off 
between model-based and model-free systems.

Although it is less flexible than model-based control, 
the sort of model-free control we have so far considered 
is still mutable with experience. It thus fails to capture the 
even more complete insensitivity to outcomes character-
izing many perseverative psychopathological patterns, 
particularly in addiction (Vanderschuren & Everitt, 2004). 
It has been noted that there are more extreme forms of 
habit-like policies (such as direct actors, as in the actor 
critic rule; Barto, Sutton, & Anderson, 1983). For these, 
the propensity to choose an action is further divorced 
from any actual long-run value (which is what drives 
indirect actors, such as Q -learning; Watkins, 1989). The 
only formal requirement for propensities is that they be 
largest for the best available action, and so the differ-
ences can grow arbitrarily large. Direct actors of this sort 
can become highly resistant to change.

One potential substrate for the different sorts of 
model-free policy stems from the observation of a helical 
connection scheme between the striatum and dopamine 
neurons, running from ventromedial to dorsolateral 
regions and from the ventral tegmental area through the 
substantia nigra (Haber, Fudge, & McFarland, 2000; Joel 
& Weiner, 2000). The suggestion is that the most extreme 
dorsolateral region of the striatum is most actor-like, and 
least flexible (Belin, Jonkman, Dickinson, Robbins, & 
Everitt, 2009; Haruno & Kawato, 2006; Keramati & Gutkin, 
2013), and indeed that the process of habitization is 
accompanied by a migration along this axis of the control 
of behavior. Any alteration of this spatialized consolida-
tion process could lead to faster, or slower, reductions in 
flexibility with experience.

Another possible route to habitual behavior stems 
from the notion that subjects, having calculated an appro-
priate course of action using expensive, model-based 
evaluation, might just store the result in memory and then 
recall it whenever in the same state xs. This strategy, 
called memoization in the computer science literature, 
has been elaborated in various sophisticated probabilistic 
guises (Huys et al., in press; O’Donnell, Goodman, & 
Tenenbaum, 2009; Wingate, Diuk, O’Donnell, Tenenbaum, 
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& Gershman, 2013). Memoized actions, just like model-
free habits, do not themselves change with changes in 
(motivational) state xs—one would need a sophisticated 
form of forgetting to work out exactly which actions had 
been invalidated and should be removed. Limitations on 
the capacity of goal-directed evaluations may force sub-
jects to rely more strongly on previous solutions, which 
would then be incorrect in the face of changed motiva-
tional factors.

Although we have painted a rather stark division 
between model-based and model-free control, there is 
increasing work on various interactions between them. 
For instance, there is evidence that model-based systems 
might dream or preplay fictitious experience ( Johnson & 
Redish, 2007; Pfeiffer & Foster, 2013), and that this can 
train model-free values (Gershman et al., 2014; Simon & 
Daw, 2011). This follows a venerable computational sug-
gestion (Sutton, 1991) for improving the performance of 
model-free control. However, it implies a vulnerability—
if the values and choices produced by the model-based 
system are incorrect for whatever reason, then the 
model-free system, which might be perfectly capable of 
learning a powerful set of normative behaviors given 
only actual experience in the world, would nevertheless 
be incorrectly biased by virtue of this erroneous 
preplay.

Worse still, because the model-free controller can 
undergo its slow adaptation only in the light of the expe-
rience it receives, the same problem arises if the model-
based controller determines poor choices in the world, 
rather than just replaying fictitious poor choices. That is, 
even a normal, model-free controller risks ascribing a 
lack of reward to the environment rather than a fallacious 
model-based controller, and so again fail to alleviate the 
problem (Huys, 2007).

A converse to the model-based controller exerting its 
will over model-free control is the standard heuristic of 
replacing parts of the goal-directed decision tree with 
values derived from model-free experience (Campbell, 
Hoane, & Hsu, 2002)—that is, substituting a whole branch 
of the tree that would require expensive model-based 
evaluation with the model-free estimate of its value. The 
computational advantage of this is clear. If model-free 
learning had proceeded to its asymptote, then these val-
ues would be just what the model-based system would 
compute by exploring the branch. However, if the model-
free values are incorrect, then this can corrupt model-
based evaluation too, leading to suboptimal choice. A 
related possibility is that the model-based tree is initial-
ized in memory with model-free values, with model-
based processes then improving these values by 
progressively sampling transitions. Thus, subjects who 
are less able to execute these processes will automati-
cally rely more on model-free values.

Pavlovian policy heuristics

In realistic domains, it is hard to limit the range of pos-
sible actions. This leads to a very substantial inferential 
burden for model-based control, and high sample com-
plexity for model-free control. One heuristic of very 
widespread importance is a direct, hard-wired mapping 
to actions from affectively important outcomes, and, cru-
cially, predictions of those outcomes. These so-called 
Pavlovian responses can be seen as an example of evo-
lutionary programming.

Pavlovian responses (often called conditioned and 
unconditioned responses) can be subdivided into two 
broad classes. Consummatory responses are emitted in 
close proximity to the outcome, or even in its presence, 
and their nature is tightly linked to its particular features 
(Bolles, Holtz, Dunn, & Hill, 1980; Timberlake & Grant, 
1975). Preparatory responses are elicited by CSs that pre-
dict outcomes, even at some temporal or spatial distance. 
Just like instrumental evaluations, Pavlovian expectations 
of outcomes might, in principle, involve either model-
based or model-free methods (Doll, Simon, & Daw, 2012; 
Guitart-Masip, Huys, et al., 2012; Schoenbaum, Roesch, 
Stalnaker, & Takahashi, 2009), although there is some 
debate as to whether Pavlovian and instrumental model-
based evaluations follow the same rules and involve the 
same neural structures (Dayan & Berridge, 2014; M. J. F. 
Robinson & Berridge, 2013).

Whereas in most cases of instrumental conditioning 
outcomes are contingent on the choice of action, in 
Pavlovian conditioning, they are not. Thus, the responses 
are automatically elicited, can take on many forms 
(Timberlake, Wahl, & King, 1982), and are not adaptive to 
what might be required to get or avoid the outcome con-
cerned. Instead, Pavlovian responses are directly linked 
to the expectations evoked by the CSs and so can orga-
nize responses associated with biologically significant 
outcomes such as food, water, mates and threats that it 
would be tremendously inefficient or even dangerous to 
learn from scratch. This is obviously a critical advantage 
(Domjan, 2005); however, it means that Pavlovian 
responses can thus be emitted even when instrumentally 
disadvantageous, as in omission schedules (Anson, 
Bender, & Melvin, 1969; Breland & Breland, 1961; 
Hershberger, 1986; Morse, Mead, & Kelleher, 1967; D. R. 
Williams & Williams, 1969) where the emission of, say, an 
approach response results in the omission of the food 
reward. This also happens in humans (e.g., Guitart-Masip, 
Huys, et al., 2012).

If they do not need to be learned, then Pavlovian 
behaviors must be neurobiologically hard coded. Various 
brain areas have been implicated. For instance, stimula-
tion of the periaqueductal gray or the nucleus accum-
bens leads to species-specific, complex, topographically 
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organized aversive or appetitive behaviors (Bandler & 
Shipley, 1994; Reynolds & Berridge, 2002) modulated by 
cortical and neuromodulatory inputs (Faure, Reynolds, 
Richard, & Berridge, 2008; Faure, Richard, & Berridge, 
2010; Pecina & Berridge, 2005). Furthermore, as noted, 
the striatum is organized along two parallel pathways, 
with the direct, dopamine D1 receptor expressing, path-
way promoting active “go” and the indirect pathway pro-
moting “nogo” and expressing D2 receptors (Alexander & 
Crutcher, 1990; Frank, 2005; Kravitz et al., 2012). 
Alterations to receptors densities, such as the D2 down-
regulation seen in addiction, could directly influence the 
strength and probability of Pavlovian behaviors (Huys, 
Beck, Dayan, & Heinz, in press).

In psychopathological terms, the fact that Pavlovian 
responses are not contingent on the outcomes they pro-
duce implies that they are a ready source of poor choices. 
Subjects for whom these responses are particularly strong 
will thus often be found to persist in performing behav-
iors that can be counterproductive. This suggests one 
should focus on the competition between instrumental 
and Pavlovian responses. It is hard to know how to bal-
ance computational efficiency against inflexibility; how-
ever, it is apparent that there is substantial individual 
variation (Meyer et al., 2012), which at least in one task 
in humans correlated with medial prefrontal activation 
(Cavanagh, Eisenberg, Guitart-Masip, Huys, & Frank, 
2013). Overly strong Pavlovian influences covary posi-
tively with addictive traits (Carter & Tiffany, 1999; Everitt 
& Robbins, 2005; Flagel et al., 2011; Meyer et al., 2012) 
and are predictive of relapse in alcohol addiction 
(Gruesser et al., 2004). Indeed, a stronger reliance on 
phasic dopaminergic signals in Pavlovian approach 
behavior has recently been identified as a trait risk factor 
for addiction, at least in rodents (Flagel et al., 2011; Meyer 
et al., 2012).

We might view phasic stress responses in similar terms. 
The idea is that stress systems evolved to deal with tem-
porally punctate events. However, with increasing life 
span and quality, temporally extended stressors prevail 
(Korte, Koolhaas, Wingfield, & McEwen, 2005). Thus, the 
acute reactions to stress, which can be seen as examples 
of hard-wired Pavlovian responses, may no longer be 
appropriate. An interesting example of this comes in the 
meta-control (i.e., control over control) inherent in the 
shift from goal-directed to habitual behavior occasioned 
by stress (Schwabe & Wolf, 2009). Although rapid 
responses may be useful for acute stressors, they may spe-
cifically prevent goal-directed responses aimed at alleviat-
ing the origin of a chronic stressor. A surprising correlate 
of depression is an enhancement of reactive aggression 
(Monahan et al., 2001), with potentially substantial nega-
tive consequences in the longer term by interfering with 
personal relationships (Kendler, Karkowski, & Prescott, 

1999). That is, evolutionarily acquired priors on behavior 
may worsen and prolong, rather than alleviate, particular 
situations.

We mentioned earlier that recent work has suggested a 
rich intertwining of model-based and model-free instru-
mental control. The interaction between Pavlovian and 
instrumental control has also been the topic of some 
interest. For instance, it has been suggested that Pavlovian 
influences can help complex, tree-based, decision-making 
tasks by taking automatic decisions whether to continue 
the evaluation of a subtree or to terminate it by pruning 
(Huys et al., 2012). The latter removes some of the com-
putational complexity. To the extent that such heuristics 
are relied on implies knock-on effects on other inference 
and valuation mechanisms if they break (Dayan & Huys, 
2008).

The fact that (Pavlovian) effects occasioned by predic-
tions might manipulate the mechanisms by which those 
predictions are actually made makes for a complex infer-
ential loop with potentially disastrous consequences. It 
might, for instance, exacerbate the sampling issue men-
tioned in the inference about states. In rumination, affec-
tively laden stimuli or situations might lead to perseverative 
cognitions (possibly by biasing internal state estimation) 
that might in turn further strengthen the affects associ-
ated with the stimuli. Certain psychopathological states 
do involve a strong focus of conscious thoughts on par-
ticular objects (Gelder, Harrison, & Cowen, 2006; Sims, 
2003): The hijacking of conscious explicit thoughts by 
affectively laden stimuli, states, or events might arise from 
the nefariously strong influence of Pavlovian influences 
on model-based calculations (Dayan & Huys, 2008).

We discussed earlier the problem of selecting between 
model-based and model-free instrumental controllers. 
Pavlovian influences add extra complexity to this choice. 
Indeed, there can even be game-theoretic competition, 
given that these different systems can make divergent esti-
mates, based on their own idiosyncratic sources of infor-
mation and processing. Accounts of drug addiction that 
appeal to issues such as incentive sensitization (T. E. 
Robinson & Berridge, 1993) are an example. The idea is 
that a longer-term consequence of many drugs of addic-
tion is sensitization, that is, a functional boost in the 
release or effect of dopamine particularly in the ventral 
striatum associated with their administration, and that this 
aspect of dopamine might loom larger in the Pavlovian 
controller than in either sort of instrumental control. This 
disagreement between the controllers as to the utilities (or 
perhaps the way that these utilities mediate choices) 
would lead to a conflict between the assessments made 
about the same pharmacological outcome. As for the case 
of temporal discounting, a consequence of this could be 
apparently maladaptive commitment behavior (Dayan & 
Berridge, 2014; McClure, Daw, & Montague, 2003).
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Finally, as depression progresses in severity it is often 
associated with psychomotor retardation. If patients over-
estimate the possibility of negative outcomes, possibly 
because of incorrect priors, then such sloth could arise 
from the Pavlovian heuristic that turns the expectation of 
punishment into behavioral inhibition (Carver & White, 
1994; Crockett, Clark, & Robbins, 2009; Dayan, Niv, 
Seymour, & Daw, 2006; Gray, 1982; Guitart-Masip, Huys, 
et al., 2012), perhaps by inhibition of the dopaminergic 
system (Guitart-Masip, Chowdhury, et al., 2012; Tye et al., 
2013).

Incorrect Experience

We have so far considered the case that the component 
of the state that describes the problem, xp, is known. 
However, at a longer time-scale, at least some compo-
nents of xp must also change as subjects find out more 
about the environment they inhabit. This has implica-
tions both for the analysis and inference about state xs, 
and about the decision problems that result.

In particular, unusual experiences can inspire unfor-
tunate expectations about the future. It is here that 
effects at the intersection of environments and genes, 
and the mechanisms these build, bite most strongly. 
That is, characteristics of the environment are known to 
have pervasive behavioral and cognitive sequelae. A 
version of Equation 2, but applied to xp rather than xs, 
illustrates one conduit for these: Past experience encap-
sulated in prior beliefs can shape current behavior. 
Many of these cases have the flavor of evolutionary or 
Darwinian psychiatry, with the maladaptivity resulting 
from mismatches between current and historical 
environments.

One particular issue for singular experiences is under-
standing their scope of application—that is, subjects have 
to solve the extremely difficult inference problem of 
working out how likely such an event is to recur, and in 
how confined a context the experience applies. This is a 
characteristic example of the case mentioned earlier in 
which subjects lack data, and so more deep-seated priors 
about these facets (sometimes called the meta-inference 
problem) can exert significant influence. This can be 
expected to lead to substantial individual differences in 
the effects of such experiences.

A paradigmatic example of the shaping and influence 
of prior beliefs is learned helplessness and variations 
thereof. In helplessness experiments animals are exposed 
to stressors that they do not have behavioral control over 
(Maier & Watkins, 2005; Willner, 2005). Compared with 
animals with control, these animals show impairments in 
escaping subsequent aversive stimuli and reductions in 
seeking rewards. The negative effect of experiencing 
shocks is avoided by the detection of controllability in 

the medial prefrontal cortex and the inhibition of the 
serotonergic dorsal raphé (Amat et al., 2005; Rozeske, 
Der-Avakian, Watkins, & Maier, 2012; Warden et al., 
2012). Notably, the development of a depressive and anx-
ious phenotype occurs in healthy animals. Thus, healthy, 
normative inference with adverse experiences can lead to 
prior beliefs about controllability such that a vast array of 
behaviors are affected adversely (Huys & Dayan, 2009). 
Again, the key issue comes to be generalization—in what 
realms do these negative experiences apply?

A related example is seen in longer-term reactions to 
stress. Among other sequelae, the corticosteroids released 
by stress lead to long-term remodeling of networks in the 
amygdala, prefrontal cortex, hippocampus, and hypo-
thalamus (Arnsten, 2009; McEwen, 1998; Mitra, Jadhav, 
McEwen, Vyas, & Chattarji, 2005), with consequent altera-
tions in Pavlovian responses (Grillon, Smith, Haynos, & 
Nieman, 2004) and likely their guidance of goal-directed 
mechanisms (Schwabe, Tegenthoff, Höffken, & Wolf, 
2012). Stress early on in life can have very long-lasting 
effects, for instance accounting for a substantial propor-
tion of the dysregulation of the stress axis seen in depres-
sion (Barr et al., 2004; Heim et al., 2000). This remodeling 
can be seen as baking a set of early observations about 
an environment into the architecture of inference and 
control. This could, for instance, enshrine a particular set 
of heuristics that would obviate subsequent expensive 
and thus potentially dangerous inference about aversive 
characteristics of the environment. However, if subse-
quent environments do not actually contain the threats 
that are implied, then flexible control will have been per-
manently compromised.

It is important to note that the evidence about changes 
in the description of the problem, xp, typically comes 
from observations that pertain to the states, that is, xs. 
Thus constraints on inference about xs, for instance 
because of limited working memory, can have a deleteri-
ous impact. In particular, if information about the actual 
inputs y pertaining to xs has been discarded in favor of 
reduced statistics that are only valid for a given xp, then 
if xp has changed, new experience will be necessary. 
This may, for instance, speak to the sloth of many phar-
macological interventions in psychiatry. Antidepressants 
show characteristically delayed effects, often taking up 
to six weeks. If the effect of antidepressants is partly a 
change in the structure of latent causes considered as 
explanations (for instance, from more specific hidden 
causes due to a reduction in overgeneralization), then 
experience will be necessary for these causes to be 
learned about. This suggests that the accumulation of 
statistics over a lifetime, and the reduced chance of col-
lecting new experience, might be one rather normative 
argument for a decrease of cognitive flexibility over the 
life span.
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Discussion

We have described key elements of BDT, and illustrated a 
wide range of ways in which maladaptive choice can arise. 
We considered three broad categories: cases in which the 
conception of the problem or the utility are incorrect or 
abnormal; issues with determining the correct action given 
the description of the problem; and cases in which unfor-
tunate environments, potentially coupled with priors hav-
ing particular characteristics, might lead to unfortunately 
maladaptive expectations that do not fit the current envi-
ronment. Priors of various forms are crystallized into the 
architecture of state spaces and inferences; and a key role 
is also played by heuristics that make choice possible in 
the face of otherwise devastating computational demands.

We made many simplifications to link the various 
threads. Particularly egregious was the separation of two 
discrete components of state: xp, which describes the 
structure of the problem, the prior, likelihood and utility; 
and xs, which describes the current circumstance within 
this problem that the agent occupies. This is too simple 
because, given imperfect knowledge, these bleed into 
each other. Furthermore, in the section on learning xp, it 
was also apparent that we need priors over the nature 
and evolution of this (which can lead to problems in 
conditions such as posttraumatic stress disorder)—which, 
in our Bayesian formulation, can be considered as hyper-
priors, described by splitting xp into more stable (the 
hyperpriors) and less stable (the problem) components. 
A direction for the future would be to specify a richer 
hierarchy of components to the full state x and consider 
how information flows through observation and learning; 
and how choice is normatively determined.

Although we organized our discussion around the 
three categories mentioned, there are actually many 
potential interactions between them (only some of which 
we described); there are also cases in which there are dif-
ferent possibilities for where problems arise, which we 
cannot yet resolve. For instance, as we noted, because it 
is the product of the prior and the likelihood that deter-
mines the posterior, it is not always straightforward to 
disentangle them. Thus, in autism, there is a well-docu-
mented fractionation of experience, with a particular 
focus on details. Alternative accounts suggest that this 
arises from a weak “top-down” prior, or an overly strong 
“bottom-up” likelihood (Brock, 2012; Happe & Frith, 
2006; Mottron, Dawson, Soulieres, Hubert, & Burack, 
2006; Pellicano & Burr, 2012). Thus, aberrant beliefs might 
arise from opposite alterations of either; and one can 
envisage compensatory modifications to priors that 
exactly make up for any malfunction of the likelihood. 
Abnormal prior beliefs may be primary or compensatory 
for abnormal likelihoods. Experimentally, prior and likeli-
hood can be disentangled by varying the information y, 

for instance in learning tasks where the effect of the prior 
should vanish with increasing amounts of evidence 
(Stankevicius, Huys, Kalra, & Series, 2014).

Equally, we noted that delusional interpretations can arise 
as a result of overly weak influence of the likelihood (per-
haps arising from a specific form of glutamate/GABA imbal-
ance; Lewis, 2013; Lisman et al., 2008). From an empirical 
Bayesian viewpoint, priors can be seen as arising from accu-
mulated likelihoods. Thus one can understand the observa-
tion that whereas newly debuting psychotic patients often 
have unsystematic delusions (i.e., the patient does not know 
where the “signals” come from) and can accept that they are 
an abnormal experience, as the disorder goes untreated and 
turns chronic, patients often develop an explanation that 
puts together all the elements of the delusion (i.e., the 
patients “knows” who is sending the signals and why). This 
might arise as an incorrect prior is learned through iterative 
substitutions of more and more elaborated delusional poste-
riors. Such a learning mechanism may be related to the 
notion that a key factor determining the prognosis of schizo-
phrenia is the duration of untreated illness (Dell’Osso, Glick, 
Baldwin, & Altamura, 2013) and the fact that higher doses of 
antipsychotics are required to control symptoms in chronic 
patients (Kahn et al., 2008; Lieberman et al., 2005).

As another example, because of its pervasive effects on 
behavior, it may be hard to assign any measured changes 
strictly to alterations in the utility function itself—down-
stream mechanisms may well themselves be the subject of 
pathological changes (though see Koerding & Wolpert, 
2004b). Take observations of steep discounting, that is, tem-
poral impulsivity. This could arise directly as a consequence 
of a particular utility function. However, discount factors can 
arise normatively as being determined by the reachability 
and stability of environments (Kurth-Nelson, Bickel, & 
Redish, 2012); thus impulsivity could arise from early obser-
vations of instability (Kidd, Palmeri, & Aslin, 2013; J. Williams 
& Dayan, 2005). Impulsivity could also arise as a result of an 
inferential inability to build a deep decision tree of future 
states and actions, leaving only proximal outcomes as reli-
ably expected. Finally, impulsivity could also arise from 
overly strong Pavlovian approach tendencies to a proximal 
(small) reward (Carter & Tiffany, 1999; Dayan et al., 2006; 
Flagel et al., 2011). These different sources of impulsivity 
can be distinguished behaviorally—one of the benefits of 
the BDT analysis is that it makes crystal clear the require-
ment to do so. The answer matters because it would be 
important to separate out the causes for steep utility func-
tions in addiction (Kirby et al., 1999; Petry et al., 1998).

Similarly, an anhedonic inability to enjoy previously 
pleasant events may be because the primary reward with 
which they are associated is no longer reinforcing, but it 
may also be because they are no longer effectively asso-
ciated with the primary reward. One recent report 
attempted to assess this directly and suggested that 
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anhedonia in depression was associated more with the 
primary reinforcement than with learning (Huys et al., 
2013) although there certainly also is evidence for altera-
tions in downstream processes, including learning 
(Hasler et al., 2004; Huys et al., 2013; Treadway & Zald, 
2011). Similarly, patients with addiction show enhanced 
ventral striatal responses to drug-associated cues—which 
might just be related to exposure or learning, but also a 
reduced response to other rewards (Wrase et al., 2007).

Furthermore, as we have briefly illustrated in a few 
cases, the various mechanisms can feed off each other in 
a deleterious manner. Take the example of the effect of an 
unfortunate prior. It is often the case that such priors are 
overwhelmed by experience so that learners can become 
appropriately calibrated to their environments. However, 
if a subject interprets an extreme traumatic event as some-
thing that is in danger of recurring, they might avoid inter-
acting with the world in any way that would allow them 
to discover that it actually will not. This issue can be seen 
as afflicting the trade-off between exploration and exploi-
tation, and is analogous to the slow extinction of active 
avoidance (Moutoussis, Bentall, Williams, & Dayan, 2008). 
Agents that can influence or determine their own experi-
ence, will often normatively fail to become well calibrated, 
and so behave in a maladaptive manner.

Some forms of depression may also involve miscalibra-
tion, if incorrectly negative priors about the environment 
(Beck et al., 1979; Strunk et al., 2006) prevent the very 
exploration that would show that those priors are not true. 
As already discussed earlier, the delayed effect of SSRIs may 
be related to the need to relearn these wrong priors. It is 
interesting that SSRIs produce positive biases in the process-
ing of emotional information already at early stages of treat-
ment (Harmer & Cowen, 2013). The increased efficiency of 
an SNRI may be related to the known ability of noradrena-
line to increase attention (Chamberlain & Robbins, 2013), 
which in turn may facilitate the relearning process.

In sum, as is apparent from the many unresolved issues 
in this review, it is the very early days for using the tools 
of BDT as a route to dividing up the various sources of 
problems. The most important task is to define behavioral 
paradigms that discriminate between the various failures 
(Maia & Frank, 2011; Montague et al., 2012), whence it 
will become possible to think about any possible means 
of ameliorating the conditions that are revealed.

Appendix

A Formalization of BDT

We use the notation and descriptions from our initial 
description of BDT. If optimal, the agent’s policy should 
be to choose the action that maximizes its expected 

utility, averaged over its uncertainty about what the state 
actually is:
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where 0 ≤ γ < 1 is a discount factor that controls the rela-
tive impact of proximal and distal rewards in the expecta-
tion, a is a whole trajectory of actions (living in the space 
¥  of such trajectories), and the distribution of xτ  
evolves with the actions chosen, the data received and 
the transitions T.

Standard treatments of Equation 4 are based on 
dynamic programming (Bellman, 1957). For instance, if 
the states xs are perfectly known or identifiable from the 
observations y, and the policy π x xx x

p p
a as s( ; ) ( | )= P  is 

state dependent, with no explicit dependence on time, 
then the expectation on the right-hand side of Equation 4 
over future utilities υx p

 can then be written recursively:
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There is also a generalization of this to the case that 
the states x are not perfectly known (Kaelbling, Littman, 
& Cassandra, 1998).
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