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ABSTRACT

Behavioural phenomena are central to psychiatric disorders. Computational modelling allows the learning and
decision-making processes underlying behaviour to be modelled in great detail. By doing so, specific and possi-
bly highly complex hypotheses about the underlying processes can be directly tested on the data. The first part of this
chapter introduces Markov Decision Problems (MDPs) as a formal framework for decision-making. It then describes
several solutions to MDPs including reinforcement learning and dynamic programming, and briefly introduces some
of their key characteristics. The second part of the chapter provides a tutorial overview over how to use MDPs in a
generative modelling framework to test hypotheses about learning and decision-making. The final part of the chapter
discusses the methods using a few worked examples from the literature.
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1 INTRODUCTION

Learning and decision-making are highly intertwined processes. While learning influences what decisions
are taken, the decisions taken determine what will be learned. Jointly, they serve the purpose of opti-
mizing behaviour and breakdown in a either will upset the functioning of the other. This vicious circle is
often seen in mental illness, where poor decisions in mental illness lead to the self-selection of individuals
into high-risk situations (Kendler et al., 1999) and thereby likely to more mental illness.

In this chapter, we will consider a series of approaches to the guidance of behaviour. Some, mostly from
Reinforcement Learning (RL; Sutton and Barto 1998) involve 'learning’, while others from the related



field of Dynamic Programming, are more akin to inference (Bertsekas and Tsitsiklis, 1996). The key aspect
to consider is that actions taken now do not just have rewarding or punishing consequences now, but also
in the future. For instance, theft may lead to a short-term gain, but in the longer term may well lead to
very significant losses that far outweigh the short-term gains. Identifying optimal behaviours at any one
point in time therefore requires thinking ahead and considering the various possible consequences of any
current behaviour. This, however, is extremely difficult: first, the list of possible things that may happen
in the future is vast, and second the future is uncertain. Reinforcement learning is a field with a host of
techniques for taking long-term outcomes into account when making decisions.

This chapter will first introduce so-called Markov Decision Problems (MDPs) and their solutions formally.
In a second part, it will give the reader tools to use these models to examine choice behaviour. In a third
part, we will examine a few specific models as examples of decision-making in health and illness. In the
following, we focus on the key concepts and omit a number of important details for the sake of simplicity.
The interested reader is referred to Bertsekas and Tsitsiklis (1996) and Sutton and Barto (1998) for
accessible but more in-depth treatments.

2 MARKOV DECISION PROBLEMS

Figure 1A shows the general Markov Decision Problem (MDP) setup that underlies Reinforcement Learn-
ing and Dynamic Programming methods. An MDP is defined by five components that we will briefly
introduce below:

e aset of states s € S

e a set of actions a € A and an associated set of action transition matrices 7¢
e areward function R

e apolicy

The intuition is that an agent is in some particular state s. In this state, the agent can perform certain
actions a. Depending on the environment, this leads to a new state s’ and a reinforcement r which can
be positive or negative. Figure 1B shows a more specific example: a so-called grid world, where the state
is simply the position on the grid.

The techniques described below will typically focus on simple definitions of states within particular exper-
iments, where the relevant states can simply be the stimuli presented during the experiment. However,
the notion of state s in RL is potentially very broad. In neuroscience terms, it could include internal states
such as arousal or hunger, and as such is clearly a very complex construct.

The actions a are defined in terms of their impact on states. In Figure 1C, the action ’going left’ is defined
in terms of moving from any one state to its left neighbour. More generally, actions are defined in terms
of probability distributions over successor states (Figure 1D,E). Putting all state succession probabilities
for one action next to each other into one matrix results in the transition matrix 7¢ for that action
(Figure 1D,E). This describes the consequences of emitting that action in each of the existing states; it is
generally assumed that the transition matrices are fixed and determined by the world, though they may
not be known to the agent.

This definition of actions has an important consequence for how states are defined: The consequences
of actions must depend only on the current state, and not on past states. Consider braking when driving
a car. The impact of braking depends not only on the position of the care, but also on its speed. Hence,
the impact of braking on transitions to other states cannot be described purely in terms of the current
position. In order for the techniques below to apply, the problem must be a so-called Markov Decision
Problem (MDP). For this to be true, speed should be part of how states are defined in the car example,
such that the consequence of braking is clearly defined for each state independent of what the previous
states were.

The reward r is a scalar, i.e. a unidimensional number that takes on positive or negative values for rewards
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FIGURE 1: A: The setting. An agent interacts with an environment by choosing actions which in
turn influences its current state.B: Grid world example. Each square in the grid is a different
state s. The state of the agent is indicated by a green square, i.e. it is roughly in the middle
of the grid. Actions correspond to moving around on this grid. In this example, the agent can
move to all adjacent squares, i.e. has 8 actions available in each state (exemplified by the
black arrows emerging from the green square in the middle). Some state lead to losses, here
indicated by the colour red, and some to gains, here indicated by yellow. A policy assigns
each state preferences for particular actions. The aim is to find an optimal policy, i.e. one
that maximises long-term rather than just immediate reward. C: Simple linear state-space
with two actions. While the red action ’right’ is deterministic and thus has only zeros and
ones in the transition matrix (D), the green action left is probabilistic (E).
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FIGURE 2: Decision tree. At the root of the tree, there are two available actions al and a2, each
of which probabilistically leads to one of three outcomes (01-03). For each of these, there
are new options a3 and a4. Overall, the size of the tree increases rapidly with the depth d

and width w of the tree as w®.

and losses, respectively. The richness of real rewards is captured by the dependence on actions and state
transitions: Rewards r are generated by a reward function R(s,a,s’) that depends both on the action
taken, and the current and next states. Just like ingesting food is rewarding when hungry but not when
sated, taking a step to the right can lead to a loss in states left of the red punishing barrier in Figure 1, and
to reward when left of the yellow reward area. Just like the transition matrices 7, the reward function
R is assumed to be a fixed part of the environment, though again it may not be known to the agent. The
agent’s estimates of the transition matrices and the reward function are referred to as the agent’s model
M of the world.

The aim is to find an optimal policy 7*(a; s). A policy 7(a; s) describes the probability of taking an action
a in state s. A policy is optimal if it always chooses one of the optimal actions in each state, where the
optimal action is the one that maximises the total sum of rewards that can be earned in the long term.
Conceptually the simplest approach to infer the optimal policy is to consider all possible actions from
a state; all the resulting state transitions and rewards; then all possible next actions for the successor
states etc. This results in a decision-tree, with the root at the current state (Figure 2). Unfortunately,
these decision-trees grow rapidly in size. For the simple grid-world example, the number of actions and
successor state to each state is 9 (disregarding the boundaries), and hence the decision-tree corresponding
to looking d steps ahead has 9¢ branches. Such an explicit tree search is hence prohibitive for all but the
very simplest of problems.



2.1 BELLMAN EQUATION

Optimal, in RL is defined in terms of achieving the maximal expected sum over rewards r; in the future,
i.e. for times ¢’ > ¢. The expected total future reward from state s at time ¢ when following a particular
policy  is called the value V™ (s) of the state and defined as:

o0
t/
g Tee 7Y
t'=0

where the discounting factor 0 < « < 1 is necessary to ensure that the sum is finite, but also gives rewards
in the near future more weight than rewards in the distant future. It is set to 1 if only finite problems are
considered. The key insight is that Equation 1 is a sum and due to the linearity of expectations (because
the average of two means is the same as the mean of two averages), it can be rewritten into two terms:
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immediate reward

The total future reward from the next timestep onwards, the second term in the equation above, is simply
the value of the next state-action pair V™ (s;;1), and hence we can write:

VW(St) =E [Tt|3t;ﬂ'] + E [7V”(st+1)|st;7r]

The rewards r; are drawn from the reward process R(s:,as, s¢+1). The expectations E[-] are over two
processes: first, the likely actions taken, and second the likely consequences of those actions. Expanding
these expectations and substituting the policy = for the first, and the transition matrices 7 for the second,
results in the so-called Bellman equation (Bellman, 1957; Sutton and Barto, 1998):

V(s0) = Y wlas;se) Y plsesrlar, se) (Rst, ar, se41) + 7V (5041)) )

at St4+1

or, using a more compact notation:

Vi(s) =D mla) Y T (Riy +9V7(s)

2.2 SOLVING THE BELLMAN EQUATION

Equation 2 describes a consistency between values of states s and its successor states s’ for a given
policy . If the reward function R and transition matrices 7 are known, then this consistency can be
used to solve the equation and infer the values V™ (s) for all states s. The first, and conceptually most
straightforward way is to recognise that equation 2 is linear and can be rewritten in vector form. Dropping
the subscript ¢ and letting the successor state be s’, we have:

vTs = V7(s)
"], = Zw(a;S)Zp(s’|a7s)7€(s,a7s’)

a

[T7)s = Y w(as) Y p(s'la,s)
a s’
We can now rewrite the Bellman equation as
vlh = " +A4T™Vv" 3

which is simply solved by:



Here, we note an important feature of the effective transition matrix T™ induced by the policy. It is a
square stochastic matrix all columns of which are probability distributions. As such, its leading eigenvec-
tor is 1, and the steady-state distribution of state visits is the eigenvector corresponding to that leading
eigenvalue. The values are hence only finite as long as v < 1. An alternative is to have a matrix T™
the leading eigenvector of which < 1. This is true if all states have a finite probability of leading to an
absorbing state that cannot be left and which has zero reward. This latter setting effectively curtails the
infinite sum of rewards in equation 1 to a finite sum of exponentially distributed length.

A different approach to solving the Bellman equation is to note that if the values assigned to states are
incorrect, then there is a difference A between the left and the right side of equation 3:

A= = r"+4T"v—-v
This can be used to turn the Bellman equation into an update equation:

Vielr = Vit A @
r" +~9T"v;

which can be shown to converge to the true value v” for the same reason as above (Bertsekas and
Tsitsiklis, 1996).

2.2.1 Model-free temporal difference prediction-error learning

These previous approaches to evaluating the value function require the model M of the world consist-
ing of the transition matrices 7 and the reward function R to be known, and are hence instances of
‘model-based’ value estimation. So-called model-free techniques do not require this. Instead, they only
require that samples can be drawn from the transition matrix and the reward function. Drawing sam-
ples corresponds to observing the reward and state consequences of taking an action, i.e. drawing an
action a; ~ 7(a; s¢) given the current state s;; and then observing a successor state s;11 ~ p(S¢y1|a, st),
and a reward r; ~ R(s, at,8:4+1) (see Figure 1A). The Bellman equation (Equation 2) contains two
expectations, one over the transition probabilities, and one over the action probabilities, which can be
approximated with samples drawn from the two distributions. Temporal difference learning effectively
performs the iterative update of equation 4 after every sample, but includes a learning rate 0 < « < 1:

Viti(se) = Vi(se) +ady
= Vt(st) + OZ(’I"t + Vt(8t+1) — Vt(st)) (5)

This fixed learning rate « effectively induces an exponentially decaying average over past samples. If it
is chosen to decay with the number of times a particular state has been sampled, this procedure can be
shown to converge to the true value function of the policy over time under some conditions (see toy
example below).

2.2.2  Phasic dopaminergic signals

Notably, the long-term expected future reward can be learned over time by comparing the expected re-
ward V;(s;) with the sum of the received reward and the expected reward of the successor state V;(s¢11).
The difference between the two, ¢;, is the temporal difference prediction error thought to be reported by
phasic dopaminergic firing (Schultz et al., 1997). We note here that this can be positive for a transition
from a state of low reward expectation to a state of high reward expectation even if the immediate reward
is zero. This is thought to explain the transfer of phasic firing observed during conditioning of a cue to
predict reward. Early on in learning, dopaminergic neurons do not respond to the cue, but do respond
to the (unexpected) reward. Over time, as the animal learns that the cue predicts the reward, the value
V of the cue increases, and its unexpected presentation elicits a prediction error, and hence firing in the
dopaminergic neurons. However, as the reward is predicted, the value V is equal to the reward r, and
hence a prediction error no longer occurs at the time of reward, resulting in no dopaminergic firing.



2.3 POLICY UPDATES

Given the value V™ of each state under a given behavioural policy , the policy can now be improved in
a very simple manner by choosing that action which has the highest expected value in each state, i.e.

— B 1 if  a=argmax, Q"(d,s)
i as) = { 0 else
where
Q(ar,s0) = Y p(seralas, se) (Riss,ar, s001) + 7V (5041))

St41

is the state-action Q value of taking action a; in s; under the old policy 7. Again, this can be shown to
converge to the optimal policy under some conditions (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,
1998). What is notable here, is that optimal policies are always deterministic - there is no reason ever to
choose a suboptimal action.

Though conceptually simple, such policy updates are biologically unreasonable, as they would require
completely evaluating the value function for a policy prior to any behavioural adaptation. Updating the
policy prior to having performed a full evaluation of the value function has the potential of breaking
many of the guarantees. In contrast, Q-learning (Watkins and Dayan, 1992) is an ’off-policy’ method.
This means that the estimated values are not affected by the sampling process (the policy). It proceeds as
follows:

Qiri(as, sy) = Qt(ansf)+a(n+7m3XQt(a,8t+1)—Qt(at,St))

The key differences is the maximum operation over the next actions to be taken, which requires some
foresight and can be computationally challenging if the potential behavioural repertoire is large. As long
as all state-action pairs continue to be sampled, this converges to the true state-action value for any policy,
and hence the policy can be updated and learning occur online.

3 MODELLING DATA

3.1 GENERAL CONSIDERATIONS

Having provided a brief overview over the key features of reinforcement learning and dynamic program-
ming, we now turn to a tutorial overview of how these techniques can be used to probe human (and
animal) decision-making. The framework suggested here is distinct from the standard approach in a
number of ways. First, it is a generative framework. This means that the model can be run on the exper-
iment under scrutiny and simulate data akin to that obtained in the experiment. Rather than modelling
only specific aspects of the data, such as the averages in different conditions, the approach is to model the
process by which the data came about, and the data itself, in their “holistic” entirety. For this, the internal
inference processes that give rise to the data have to be captured in sufficient detail. The result is that
learning or inference process can be tested on the data in their entirety. The test statistics are replaced by
parameters determining the internal processes. Unlike traditional test statistics, their meaning is made
explicit by their function in the model.

The freedom to build different models is huge and vastly extends the kinds of processes that can be
inferred and tested. However, as each model has to be built separately, there is also ample scope for a
variety of mishaps. As a result, the modelling should contain three general steps. In a first, step, the model
needs to be built; in a second step this model should be validated with surrogate data; and in a third step
the model is applied to the real data. A general suggested framework is shown in Figure 3 (Daw, 2009).

A few comments are worthwhile. The key first step clearly is the model building. Here, the valuation
processes by which choice preferences arise in the models are the hypotheses to be tested. A reasonable



Model building The first step is to build a series of models. Each contains an internal process by which
different choice options are valued, and a link function which describes how preferences turn into
observed decisions. At least two models should be built: a model MO of 'no interest’ that performs
the task, but without involving the process of interest, and a model M1 that does contain the
process of interest.

Validation on surrogate data

1. Data generation: Run each model on the experiment from which data will be examined. Do
the generated data look reasonable?

2. Surrogate model fitting: Fit each model to the data generated from it. Are the true parame-
ters readily recovered? Are some parameters not identifiable?

3. Surrogate model comparison: Does the model comparison procedure correctly identify the
data generated by each model?

Real data analysis

1. Real model fitting: Fit each model to the real data.

2. Real model validation: Run each model with the fitted parameters on the exact experimental
instance presented to that particular subject. Are the key features of the real data captured
reasonably?

3. Real model comparison: choose the least complex model that best accounts for the data.

4. Parameter examination: only at this point should the parameters of the model be examined,
and only the parameters of the most parsimonious model should be ascribed meaning.

FIGURE 3: Overview over modelling approach.

approach is to build a series of models starting from a very simple 'null’ valuation process, and then adding
in the various features of interest to examine to what extent they parsimoniously contribute towards to
explaining the data. The second component is the link function, which needs to be probabilistic to allow
noisy experimental data to be fitted. We noted above that optimal policies are always deterministic.
Making this assumption when fitting models makes them very brittle as errors due to other, unforeseen
and maybe unrecorded events are interpreted as strong evidence. Hence, one role of the link function is
to assimilate noise from a variety of sources, and inferring its parameters allows for individual variation
in this. Nevertheless, its functional form should be checked, and we will return to this below.

Validation on surrogate data serves a number of purposes. First, it is important to check that the data
the model generates is actually comparable to the data obtained in the experiment. Second, by fitting
data from the surrogate model, the ability to identify and recover parameters is established. This is an
important step prior to interpreting any parameters. Third, the ability to reliably distinguish between
different models can be established on surrogate data comparable to the one available in the experiment
under scrutiny. Indeed, it is prudent to attempt to perform these steps prior to running the experiment
in real as they may suggest changes in experimental parameters, such as the length of the tasks or the
number of subjects to run.

Finally, the models need to also be validated on the actual data under scrutiny. One possibility is to com-
pare data generated from the model (with fitted parameters) to the real data. For learning experiments,
it is for instance often useful to plot learning curves and ask whether the model captures the shape of
these curves well. Once the models have been thus validated, it is meaningful to ask which of the models
provides the most parsimonious account of the data. This is the domain of model comparison. Note that
a model comparison is always relative, and does not provide any absolute information and even the best
amongst a set of models may still be too poor to provide any meaningful information. The interpretation
of parameters in the models should only follow at the end, once one model has been chosen as a good
characterisation of the data.



3.2 A TOY EXAMPLE

As a first example, we consider very simple learning experiment in Figure 4A. In this experiment, each
action a; on trial ¢ yields an immediate reinforcement r;, but does not have any influence on future
options. Hence, the total summed future reward in this case is simply the average immediate reward
offered by each of the stimuli.

The first model assumes that individuals perform temporal difference learning, adapted to this extremely
simple scenario. Taking equation 5 and observing that there is no next state, but only immediate rewards,
the temporal difference prediction error learning becomes simple prediction error learning V5 (s;) =
VIP(s4) + a(ry — VIP(s;)), as in Rescorla-Wagner learning (Rescorla and Wagner, 1972). The second
model assumes that individuals simply perform averages over the reinforcements earned for each of
the two stimuli, which is the correct inference to perform given how the outcomes are generated. The
expected values V" are hence

1 ¢ 1 [ t—1 1
Viti(s) = tZTt/—t<Z7"t/+7’t> = tav(s)+¥""t
=1 =1
1 av av av av 1 av
= S (@ =1Vs) +re) + V() = Vi¥(s) = V¥ (s) + o (re = Vi¥(s))
The first line rewrites the sum over all past rewards as an iterative update. The second line then rewrites
this into a form similar to that of the TD learning rule. Comparing these, we see that the fixed learning rate
« in the TD learning rule has been replaced by a decaying term 1/¢ in the average. While the averaging
rule gives each of the ¢ samples the same weight, the TD rule always gives the most recent sample a
weight «, and the samples prior to that an exponentially smaller weight. While the TD rule has one free

parameter «, the averaging rule has no free parameters.

3.3 GENERATING DATA

Given a model of the choice process, it is straightforward to generate data by using a link function that
maps the values V onto probabilities of taking particular actions. A frequent choice is the use of a softmax
link function whereby the probability of choosing stimulus s on trial ¢ is:

eBVi(s)

The data in Figure 4B were generated from the TD model with this softmax.

3.4 FITTING MODELS

Having built a model and generated data from it, the next step is to fit the model to the generated
data. Fitting a model means finding the set of parameters that are most compatible with the data. The
maximum likelihood (ML) parameters are those under which the data are most likely. To find them, we
must maximise the likelihood of all the T" actions ay, - - - ar by one subject given that subject’s parameters:

oML — argmaxlog p(ay, - - ar|f) )
[

The question is how to compute the total likelihood of all choices. On first sight, this appears difficult
because choices depend on previous choices and so cannot be treated independently. However, if every
choice only depends on the value V; at the time of the choice ¢ as assumed in equation 6, then the
probability of of observing a sequence of stimulus choices ay, - - - ar is simply:

T T
logp(ay, - --arl) = log Hp(atWt) = Z log p(a:[Vi) ©)
t=1

t=1
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FIGURE 4: A: Simple toy learning experiment. On each trial, individuals have to choose one
of two squares. The blue square yields small rewards on 80% of trials, and the red square
on 20% of trials. B: Surrogate data generated from a simple learning model. Each of the
horizontal rows shows the choice data for one subject, with gray indicating choice of the blue
and white choice of the red button. The red superimposed line is the average probability of
choosing the red button across subjects on that trial. C: Plots of true parameters 3 against the
parameters inferred from data in panel B. The red line indicates correct equality. D: Plots of
true learning rates o against those inferred from data in panel B. Note that both parameters
were transformed to deal with natural limits on their values: to ensure 8 > 0, all models
are written in terms of 5 = exp(f’), and to ensure 0 < « < 1 they are written in terms of
a=1/(1+exp(a)).



which is notable: even though choices at any time ¢ clearly depend on the previous ones, once we con-
dition on the values the choices become independent of the previous choices. The values can be updated
iteratively prior to computing the likelihood of each choice, leading to an algorithm that takes this general
and very simple form:

initialize values V
foreach trial t do
compute log likelihood of choice a; on trial ¢ given parameters : I; = log p(a:|Vs, 6)
update value V;,; given outcomes on trial ¢
end
compute total log likelihood I =}, I;
Algorithm 1: Likelihood computation

The total likelihood can now be passed to any of a number of optimization tools to solve Equation 7.
Figure 4C,D shows the result of a ML fit in black for the TD model with the two parameters « and S.
As can be seen, the black dots are sometimes very far off the diagonal, which unfortunately is relatively
typical for these kinds of models. Although ML estimators are asymptotically unbiased, they do have high
variance. This is often a prominent problem because parameters have overlapping effects and therefore
can trade off each other. In these examples, whenever 3 was set to a very small value, the learning rate o
was set to a very high value.

The blue circles show a very simple and often very powerful solution to this, which is to impose a soft
prior on the parameters and performing maximum a posteriori (MAP) inference rather than ML. This is
very simply achieved by replacing equation 7 with

OMAP — argmax logp(a1,---ar|0)p(0)
6

The computation of the posterior likelihood is thus just the same as that of algorithm 1, but with the log
likelihood of the prior added to the total log likelihood of the choices.

At times, however, the choice of the prior p(f) can be difficult. In these situations, it can make sense to
infer the prior from the data in an empirical Bayesian setting (Huys et al., 2012). There are a number of
techniques available for this, and this is becoming a more common approach. Figure 4C,D shows this in
blue. For this simple example, little is gained over the basic MAP approach, but this changes for larger
models.

3.5 MODEL COMPARISON

Having fitted the model to the data, we can ask how good an account it provides. When doing so, however,
it is not sufficient to simply look at the model fit. Figure 5A shows data generated from a straight line with
some noise added. The top panel shows a linear fit, while the bottom panel shows a 6th order polynomial.
Clearly the latter is a better fit despite the fact that the top is closer to the truth. To understand why the
model with the better fit is nevertheless poorer, consider Figure 5B,C. As the data (orange dots) bunch
up towards the right, they are better fit by one of the triangular probability distributions in panel B than
by the two uniform distributions in panel C. The model in panel B, is very powerful. Different parameter
settings lead to wildly different distributions that often miss the data entirely and predict data which is
never observed. Hence, the powerful model is likely to predict novel data less well. We can think of this
as a trade-off between the different settings a model allows, and the fit it provides to the data. Figure 5D
illustrates that this problem exists for learning models, too.

Bayesian model comparison takes this into account by using as a measure of fit not the best possible
likelihood, but the average likelihood over all possible parameter settings:

p(AIM) = / d p(Al6, M) p(0) ©)
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FIGURE 5: Model comparison. A: Data (black dots) generated from a straight line with added
noise is fit better by a complex 6th order polynomial (bottom) than by a straight line (top).
This is overfitting. B,C Intuition for the need to average over all possible parameter settings
to infer a model’s parsimony. An overly complex model will contain many parameter settings
that provide poor accounts of the data (orange), and only very few that provide a good fit.
When averaging these, the many poor fits outweigh the few very good fits (B). Conversely,
a simple model may not fit the data so well, but is never far from the data and does not
predict data that is never observed. D: Learning data generated from models of increasing
complexity (left to right), and fitted with models of increasing complexity. The best-fitting
model with best likelihood is always the most complex one at the top.



The Bayes factor between two models is then defined as

PAIM,)
BF =1 —_ - 10
%8 (AIMy) (10

and is considered substantial if greater than 3, and conclusive if greater than 5 (Kass and Raftery,
1995). Unfortunately, the integral in Equation 9 is not always straightforward to evaluate, and there
exist a number of approximations to it. The simplest ones are the Akaike Information Criterion AIC =
—2log p(A|AML) + 24 and the Bayesian Information Criterion BIC = —2log p(A|6ML) + dlog(n) where
d is the number of parameters in the model and n is the number of data points. These penalise models by
counting their parameters. AIC tends to be less conservative, while BIC can be too conservative. Another
possibility is to perform a Laplace approximation around the MAP parameters (Daw, 2009).

3.6 GROUP STUDIES

The methods so far have considered individual subjects. However, most studies, particularly in clinical
settings, deal with group data. Figure 6 shows different approaches to group data. Two simple approaches
are to treat all individuals as using the same parameters, i.e. a fixed-effects treatment (panel A) or treating
them entirely separately (B). While the former conflates different types of noise and is therefore not
recommended, the latter can inflate noise depending on how the parameters are estimated. A more
natural approach is to respect the fact that individuals in a group tend to be similar, and hence should
have similar parameters (C; Huys et al. 2012). However, even this still assumes that all individuals use
the same model. Two relaxations of this approach exist. First, one can employ a random effects treatment
over models (D; Stephan et al. 2009), or one can nest multiple models in a more complex model (E; Daw
et al. 2011; Guitart-Masip et al. 2012). While the former assumes that individuals in a group may differ
in terms of their internal processes, it assumes that these internal processes are homogeneous. The latter
conversely assumes that individuals employ a mixture of strategies, but that this is true across the entire

group.

4 DISSECTING COMPONENTS OF DECISION-MAKING

Having described the theoretical core of decision-making and how to fit these valuation models to data,
we turn to four examples. These are chosen to illustrate some of the insights gained from detailed mod-
elling of behavioural data with a combination of RL and Bayesian techniques.

4.1 REWARD LEARNING

Alterations to how rewards are processed are important in a number of psychiatric conditions. For in-
stance, anhedonia is one of the core elements of depression and refers to an inability to experience plea-
sure. Pizzagalli et al. (2005) asked whether anhedonia might specifically influence the ability of people
with depression to learn from rewards. They used a perceptual decision-making task where subjects had
to report the length of a briefly presented mouth (Figure 7A) as either short or long. Unbeknownst to the
subjects, one option was rewarded more frequently than the other. Over time, subjects came to express a
bias towards identifying the more rewarded stimulus, but this bias was abolished by anhedonia. This task
raises two possibilities: either anhedonia blunts the sensitivity to rewards; or it blunts the ability to learn
from the rewards. In principle, this might be testable by using a very simple prediction error learning to
value the different choices:

Qit1(ar, s¢) = Qular, s¢) + alpry — Qulay, st)) (11)



FIGURE 6: Group data. A: A fixed-effects analysis would assume that all subjects share the same

parameters. This is not recommended. B: The extreme opposite is to perform separate ML fits
for each subject. This in effect assumes that all subjects are independent and have parameters
that are not a priori related. C: In a group design, it is natural to assume that individual
subjects are drawn from a group that describes their similarity. For instance, parameters of
individuals in a group could cluster around a particular value. However, although this model
is a random-effects model in terms of the individual parameters, it is nevertheless still a fixed-
effects treatment of the model itself: all individuals are assumed to be examples of the same
model. D: Next, it is possible to consider random-effects treatments of the models, i.e. that
some individuals in a group will behave according to model 1, others according to model 2,
and yet others according to model 3. E: Finally, it is possible to examine whether individuals
behave according to two different models. As this is simply a more complex model, it can be
combined with the approaches in panel A-D.
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FIGURE 7: Reward learning. A: Pizzagalli et al. (2005) perceptual decision-making task. Subjects
have to indicate whether a briefly flashed mouth is long or short. Unbeknownst to them, one
option is more frequently rewarded than the other, leading to a bias in reporting that option
amongst healthy subjects. However, this bias could arise from either changes in the sensitivity
to rewards, or changes in the ability to learn from rewarding events. B: Across multiple
studies using this task, anhedonia was related to reward sensitivity, but not to learning rate.
C: Requiring subjects to learn about multiple stimuli at the same time slows down learning
both in controls (top) and patients with schizophrenia (bottom). D: Including a working-
memory component in the model accounts for the pattern of data in controls (top); and
its impairment for the pattern in patients (bottom). E: A model without a working memory
component is not able to account for the observed patterns. Panels A,B reproduced from
Huys et al. (2013) and Panels C-E from Collins et al. (2014).



where p scales the size of the received reward while « is the learning rate. However, as alluded to above,
this can be rewritten as:

t

Quii(ar,st) = (1—a)' Qoar,st) +ap y (1 —a)'ry s

t'=0

Due to the product ap, the two parameters are partially negatively correlated and specific statements
about them require substantial data. Nevertheless, when pooling across multiple experiments, it appears
that anhedonia is in fact related to a significant reduction in reward sensitivity but does not impact
learning rate (Figure 7B; Huys et al. 2013). Additional credence to this finding was given by the fact that
a dopaminergic manipulation mostly affected the learning rate. This is consistent with a multiplicative
change in the prediction error putatively reported by dopamine (Schultz et al., 1997). However, while
an impact of anhedonia on the learning rate might have implied dopaminergic mechanisms, the origins
of changes to reward sensitivity in depression remains uncertain (Treadway and Zald, 2011; Huys et al.,
2015a).

The ability to learn from rewards is also thought to be affected in schizophrenia. The prominent involve-
ment of dopamine suggested that this impairment may either arise through an impairment of striatal
reward learning mechanisms, or alternatively also through impairment of prefrontal working memory
mechanisms where dopamine also plays a key role (Durstewitz and Seamans, 2008). Collins et al. (2014)
exploited a standard operant conditioning task which is nevertheless sensitive to both working memory
and striatal prediction-error learning mechanisms: when subjects are presented with increasing numbers
of stimuli to learn about concurrently, a slowing of learning is observed (Figure 7C). This pattern is not
well accounted for by a simple change in learning rate and instead requires a working memory compo-
nent to be postulated (Figure 7D,E). Specifically, they consider a combination of two learners. The first
is the reward learning module and is as in Equation 11. The second, the working memory module, has a
learning rate « set to 1. This means that the resulting Q.,,,, values store the previous event, and discard
anything before that. After the choice, the Q. values are decayed to mimic forgetting. Strikingly, the
impairment seen in schizophrenia was due mostly to the working memory component, rather than to the
reward learning component.

4.2 PAVLOVIAN INFLUENCES

We next turn to the distinction between two types of values: Pavlovian values of state V(s) and instrumen-
tal or operant values of state-action pairs Q(s, a). The former designate desirable states, but imply a policy
or behavioural preference only via additional mechanisms, for instance evolutionarily pre-programmed
approach responses to appetitive states (Dayan et al., 2006). In contrast, the Q values measure the good-
ness of actions and hence can theoretically be used directly to motivate arbitrarily specific behaviours.
There is a rich literature distinguishing these (see Dayan and Berridge 2014 and Huys et al. 2014 for
reviews).

Figure 8A shows a very simple task which shows these components concurrently at work during learning
in humans: when subjects have to go and are rewarded, or when they have to withhold going and are in
a punishment context, they perform well, whereas performing go responses to avoid losses or nogo re-
sponses for reward is far more difficult (Figure 8B). Looking at the learning curves (Figure 8C), it appears
clear that learning is slower in the two difficult scenarios. A simple model (blue) that only incorporates
instrumental learning of stimulus-action values cannot account for this pattern. Incorporating a bias to-
wards or away from performing go responses also fails to capture the data (green lines). It is only when a
second, Pavlovian, learning mechanism is added to the instrumental learner that the performance across
the four contexts can be matched, and then does so in sufficiently great detail to merit the increase in
complexity (Figure 8D). This Pavlovian influence simply promotes the active go choice in proportion to
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FIGURE 8: Pavlovian and instrumental components of choice. A: Subjects were presented with
one of four stimuli on each trial. For the yellow stimulus, go responses were rewarded and
nogo not rewarded. For the orange stimulus, nogo responses were rewarded and go not
rewarded. Similarly, for the blue stimulus go responses led to avoidance of a loss while
nogo responses led to avoidance of the loss for purple stimuli. B: Overall pattern of results:
performance is impaired when go and loss are paired, and when nogo and rewards are
paired. C: Learning curves. The background shows individual choices (go white, nogo gray)
for each participant; black lines show averages over subjects; and coloured lines are data
generated from different models. D: Model comparison, with the most parsimonious model
having the lowest score (indicated with a red star). Figures from Guitart-Masip et al. (2012).



the average reward experienced for each stimulus

Viri(s) = Vi(s) +alpre — Vi(s))
_ Q(a,s) +€V(s) if ais go action
w(a,s) = { Qla, s) else

exp(w(ay, st))
Yoo exp(w(a’, s))

platls) =

that is when the stimulus leads to rewards, go is promoted, and when the stimulus tends to lead to losses,
go is inhibited proportionally to the value of the stimulus. This is another instance where each individual
appears to be influenced by multiple learning systems akin to Figure 6E.

Though not examined with this particular task, the influence of Pavlovian stimulus-bound values on
instrumental choices has been found to be aberrant in a variety of conditions ranging from alcoholism
to depression. In alcoholism, for instance, Pavlovian influences are stronger, and the extent to which this
involves the ventral striatum appears to predict relapse after detoxification (Garbusow et al., 2016).

4.3 MODEL-BASED AND MODEL-FREE DECISION-MAKING

A third example concerns the distinction between model-based and model-free decision-making. In model-
based decision-making, the agent is assumed to know the consequences of actions and knows where re-
wards are located. This implies knowledge of transition matrices 7 and reward functions R. At choice
time, evaluations of different behavioural options are performed by searching the tree defined by 7, R
(Daw et al. 2005, though see Daw and Dayan 2014). In model-free decision-making the values V are
accumulated over time through experience. At choice time, no further computation is required. The two
types of decision-making thus trade computational costs for experiential costs. Daw et al. (2011) designed
a task to measure the trade-off between the two types of learning within an individual.

Motivated by the suggestion that addictive and compulsive disorders might involve a shift from model-
based towards model-free decision-making (Robbins et al., 2012), this task has since been examined
extensively, with some supporting (Voon et al., 2015; Gillan et al., 2016), but also complicating evidence
(Nebe et al., 2016). The difficulties stem particularly from the fact that the model-free component appears
both poorly measured and unresponsive to any intervention (c.f. Huys et al. 2016).

4.4 COMPLEX PLANNING

We finally turn to a fourth example that uses RL techniques to examine how more complex planning
tasks are solved (Huys et al., 2012, 2015c). The motivation for doing so is that many daily tasks involve
planning problems that are extremely complex and easily overwhelm even powerful computers. They
therefore cannot be solved fully, but most be approximated and simplified. Figure 9A,B shows an example
task that has to be solved by planning, but which is difficult. Figure 9C,E show two possible strategies to
approximate the task. The first, pruning, involves reflexively stopping the consideration of a plan if the
plan requires transitioning through a salient loss (here, -70 points; c.f. panel B). This means that large
gains hiding behind the large losses are also missed. Indeed, subjects nearly never chose to transition
through the path involving a large loss when there was another equally good path (Figure 9D). Strikingly,
when comparing the inferred tendency to stop thoughts at salient loss points, this effect appeared nearly
independent of the size of the salient loss (Figure 9E). If pruning were an adaptive response to the large
loss, then this should have varied with loss size. This instead suggests a very simple, reflexive reaction
to stop thoughts when salient losses are encountered. Further models examined how subjects subdivided
the task (Figure 9F). Strikingly, they subdivided the task in a manner that nearly optimally reduced the
computational load (Figure 9G).
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FIGURE 9: Task and approximations. A: Subjects were shown six boxes. The randomly chosen

starting location was indicated by the bright box and the number of moves to plan by the
number at the top. Subjects were given time to plan, and then had to enter the entire planned
sequence in terms of left/right button presses prior to seeing the chosen sequence and the
rewards earned. B: The task consisted of a maze, and subjects were placed in one of the six
boxes at the beginning of each trial. They planned how to traverse the maze such as to maxi-
mize the sum of deterministic outcomes earned along the path. Each state had two successor
states, which could be reached deterministically by right or left button presses. C: Decision-
tree starting from state 3 and for a depth of 3 moves to plan. Pruning involves cutting off
branches of the tree. A simple pruning strategy is to avoid transitions through large losses. In
this particular setup with -70 as large losses, this would lead to the even larger gains being
forfeited. D: The lines shows the fraction of optimal paths chosen for each depth of problem.
In this version of the task, there were always two optimal paths: one through a salient loss
(blue line), the other avoiding the salient loss (green line). When given the choice, subjects
thus nearly deterministically avoided transitions through the large loss even when this had no
impact on the outcome. E: A computational measure of the probably of stopping the evalua-
tion of a tree at a salient loss (blue) and at other points (red) for three groups with different
salient losses of -70, -100 and -140. Strikingly, the stopping probabilities are barely different,
suggesting that the inhibition of thoughts is reflexive rather than adaptively goal-directed it-
self. F: Hierarchical decomposition. The complexity of the problem can be drastically reduced
by approximating it with a subdivision of the task into smaller problems that are composed
greedily. Here, for instance first solving the depth-2 tree, and then solving whichever depth-1
tree this leads to. G: The blue line shows the distribution of thought fragment lengths that
would maximally reduce computational load without affecting performance. The grey lines
are inferred from the data and show a close match, suggesting that individuals spontaneously
near-optimally subdivided the task to minimize computational costs. Figures from Huys et al.
(2012, 2015¢).



5 DISCUSSION

Learning and decision-making are closely related facets of human affect and cognition. Reinforcement
learning and dynamic programming provide principled approaches, which have been briefly reviewed
here. This was followed by a brief, tutorial-like overview over how to fit such models to actual data.
A point worth emphasizing is the importance of validating the model and of combining formal model
comparison with informal comparisons of data generated from the model with the real data. Finally, the
chapter covered a few prominent applications of the theory to psychiatric or neuroscience questions.

Taking a step back, one can ask what paths decision-theoretic accounts provide for psychiatric dysfunc-
tions. One categorization is into three such paths (Huys et al., 2015b):

e Solving the wrong problem. This features the use of the wrong model of the world: either max-
imising the wrong reward function (for instance judging a short-term drug reward more impor-
tant than long-term financial stability), or utilizing the wrong predictions about action conse-
quences (wrongly believing that one becomes more socially adept when high), or interpreting
events wrongly due to errors in the likelihood.

e Solving the correct problem, but poorly or wrongly. As most decision problems are too hard to
solve, some measure of approximation and error will naturally occur. The examples in the previous
section show that these features are actively being investigated.

e Solving the correct problem, correctly, but based on poor experience. Trauma and stress are strongly
associated with psychiatric ill-health. Behaviour following traumatic exposure may well represent
the ’correct’ solution even though it impairs well-being.

Finally, it should be mentioned that these techniques may well be useful in combination with other
techniques. For instance, the extraction of meaningful parameters in a generative model may provide a
very accurate and informationally efficient summary of complex, high-dimensional data. As such, these
models can function pre-processing to reduce the dimensionality of data prior to applying other analyses
(Wiecki et al., 2015b,a; Huys et al., 2016).

REFERENCES

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

Collins, A. G. E., Brown, J. K., Gold, J. M., Waltz, J. A., and Frank, M. J. (2014). Working memory contri-
butions to reinforcement learning impairments in schizophrenia. J Neurosci, 34(41):13747-13756.
Daw, N. (2009). Trial-by-trial data analysis using computational models. In Delgado, M. R., Phelps, E. A.,
and Robbins, T. W., editors, Decision Making, Affect, and Learning: Attention and Performance XXIII.

OUP.

Daw, N. D. and Dayan, P. (2014). The algorithmic anatomy of model-based evaluation. Philos Trans R
Soc Lond B Biol Sci, 369(1655).

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and Dolan, R. J. (2011). Model-based influences on
humans’ choices and striatal prediction errors. Neuron, 69(6):1204-1215.

Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorso-
lateral striatal systems for behavioral control. Nat Neurosci, 8(12):1704-1711.

Dayan, P. and Berridge, K. C. (2014). Model-based and model-free pavlovian reward learning: revalua-
tion, revision, and revelation. Cogn Affect Behav Neurosci, 14(2):473-492.

Dayan, P., Niv, Y., Seymour, B., and Daw, N. D. (2006). The misbehavior of value and the discipline of
the will. Neural Netw, 19(8):1153-1160.

Durstewitz, D. and Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine function
with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biological psychiatry,
64(9):739-749.

Garbusow, M., Schad, D. J., Sebold, M., Friedel, E., Bernhardt, N., Koch, S. P., Steinacher, B., Kathmann,
N., Geurts, D. E. M., Sommer, C., Miiller, D. K., Nebe, S., Paul, S., Wittchen, H.-U., Zimmermann,



U. S., Walter, H., Smolka, M. N., Sterzer, P., Rapp, M. A., Huys, Q. J. M., Schlagenhauf, F., and Heinz,
A. (2016). Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in
alcohol dependence. Addict Biol, 21(3):719-731.

Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., and Daw, N. D. (2016). Characterizing a psychiatric
symptom dimension related to deficits in goal-directed control. Elife, 5.

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., and Dolan, R. J. (2012). Go
and no-go learning in reward and punishment: interactions between affect and effect. Neuroimage,
62(1):154-166.

Huys, Q. J. M., Dayan, P., and Daw (2015a). Depression: A Decision-Theoretic Account. Ann. Rev.
Neurosci., 38:1-23.

Huys, Q. J. M., Eshel, N., O'Nions, E., Sheridan, L., Dayan, P., and Roiser, J. P. (2012). Bonsai trees in
your head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS
Comput Biol, 8(3):e1002410.

Huys, Q. J. M., Guitart-Masip, M., Dolan, R. J., and Dayan, P. (2015b). Decision-theoretic psychiatry.
Clinical Psychological Science, 3(3):400-421.

Huys, Q. J. M., Lally, N., Faulkner, P., Eshel, N., Seifritz, E., Gershman, S. J., Dayan, P., and Roiser, J. P.
(2015c). Interplay of approximate planning strategies. Proc Natl Acad Sci U S A, 112(10):3098-3103.

Huys, Q. J. M., Maia, T. V., and Frank, M. J. (2016). Computational psychiatry as a bridge from neuro-
science to clinical applications. Nat Neurosci, 19(3):404-413.

Huys, Q. J. M., Pizzagalli, D. A., Bogdan, R., and Dayan, P. (2013). Mapping anhedonia onto reinforce-
ment learning: A behavioural meta-analysis. Biol Mood Anxiety Disord, 3(1):12.

Huys, Q. J. M., Tobler, P. N., Hasler, G., and Flagel, S. B. (2014). The role of learning-related dopamine
signals in addiction vulnerability. Prog Brain Res, 211:31-77.

Kass, R. and Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90(430).

Kendler, K. S., Karkowski, L. M., and Prescott, C. A. (1999). Causal relationship between stressful life
events and the onset of major depression. Am. J. Psychiatry, 156:837-41.

Nebe, S., Kroemer, N. B., Schad, D. J., Bernhardt, N., Sebold, M., Miiller, D. K., Scholl, L., Kuitunen-Paul,
S., Heinz, A., Rapp, M. A., Huys, Q. J. M., and Smolka, M. N. (2016). (No) association of the balance
between habitual and goal-directed control with alcohol consumption in young adults. Manuscript in
preparation.

Pizzagalli, D. A., Jahn, A. L., and O’Shea, J. P. (2005). Toward an objective characterization of an anhe-
donic phenotype: a signal-detection approach. Biol Psychiatry, 57(4):319-327.

Rescorla, R. and Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness
of reinforcement and nonreinforcement. Classical conditioning II: Current research and theory, pages
64-99.

Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., and Ersche, K. D. (2012). Neurocognitive endophe-
notypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci, 16(1):81-91.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction and reward. Science,
275(5306):1593-1599.

Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., and Friston, K. J. (2009). Bayesian model
selection for group studies. Neuroimage, 46(4):1004-1017.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA.

Treadway, M. T. and Zald, D. H. (2011). Reconsidering anhedonia in depression: lessons from transla-
tional neuroscience. Neurosci Biobehav Rev, 35(3):537-555.

Voon, V., Derbyshire, K., Riick, C., Irvine, M. A., Worbe, Y., Enander, J., Schreiber, L. R. N., Gillan, C.,
Fineberg, N. A., Sahakian, B. J., Robbins, T. W., Harrison, N. A., Wood, J., Daw, N. D., Dayan, P., Grant,
J. E., and Bullmore, E. T. (2015). Disorders of compulsivity: a common bias towards learning habits.
Mol Psychiatry, 20(3):345-352.

Watkins, C. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279-292.

Wiecki, T. V., Antoniades, C. A., Stevenson, A., Kennard, C., Borowsky, B., Owen, G., Leavitt, B., Roos, R.,
Durr, A., Tabrizi, S. J., and Frank, M. J. (2015a). A computational cognitive biomarker for early-stage
huntington’s disease. PLoS One, page In Prep.

Wiecki, T. V., Poland, J., and Frank, M. J. (2015b). Model-based cognitive neuroscience approaches to



computational psychiatry clustering and classification. Clinical Psychological Science, 3(3):378-399.



	Introduction
	Markov Decision Problems
	Bellman equation
	Solving the Bellman equation
	Policy updates

	Modelling data
	General considerations
	A toy example
	Generating data
	Fitting models
	Model comparison
	Group studies

	Dissecting components of decision-making
	Reward learning
	Pavlovian influences
	Model-based and model-free decision-making
	Complex planning

	Discussion
	References

