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ABSTRACT

Behavioural phenomena are central to psychiatric disorders. Computational modelling allows the learning and
decision-making processes underlying behaviour to be modelled in great detail. By doing so, specific and possi-
bly highly complex hypotheses about the underlying processes can be directly tested on the data. The first part of this
chapter introduces Markov Decision Problems (MDPs) as a formal framework for decision-making. It then describes
several solutions to MDPs including reinforcement learning and dynamic programming, and briefly introduces some
of their key characteristics. The second part of the chapter provides a tutorial overview over how to use MDPs in a
generative modelling framework to test hypotheses about learning and decision-making. The final part of the chapter
discusses the methods using a few worked examples from the literature.
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1 INTRODUCTION

Learning and decision-making are highly intertwined processes. While learning influences what decisions
are taken, the decisions taken determine what will be learned. Jointly, they serve the purpose of opti-
mizing behaviour and breakdown in a either will upset the functioning of the other. This vicious circle is
often seen in mental illness, where poor decisions in mental illness lead to the self-selection of individuals
into high-risk situations (Kendler et al., 1999) and thereby likely to more mental illness.

In this chapter, we will consider a series of approaches to the guidance of behaviour. Some, mostly from
Reinforcement Learning (RL; Sutton and Barto 1998) involve ’learning’, while others from the related



field of Dynamic Programming, are more akin to inference (Bertsekas and Tsitsiklis, 1996). The key aspect
to consider is that actions taken now do not just have rewarding or punishing consequences now, but also
in the future. For instance, theft may lead to a short-term gain, but in the longer term may well lead to
very significant losses that far outweigh the short-term gains. Identifying optimal behaviours at any one
point in time therefore requires thinking ahead and considering the various possible consequences of any
current behaviour. This, however, is extremely difficult: first, the list of possible things that may happen
in the future is vast, and second the future is uncertain. Reinforcement learning is a field with a host of
techniques for taking long-term outcomes into account when making decisions.

This chapter will first introduce so-called Markov Decision Problems (MDPs) and their solutions formally.
In a second part, it will give the reader tools to use these models to examine choice behaviour. In a third
part, we will examine a few specific models as examples of decision-making in health and illness. In the
following, we focus on the key concepts and omit a number of important details for the sake of simplicity.
The interested reader is referred to Bertsekas and Tsitsiklis (1996) and Sutton and Barto (1998) for
accessible but more in-depth treatments.

2 MARKOV DECISION PROBLEMS

Figure 1A shows the general Markov Decision Problem (MDP) setup that underlies Reinforcement Learn-
ing and Dynamic Programming methods. An MDP is defined by five components that we will briefly
introduce below:

• a set of states s ∈ S
• a set of actions a ∈ A and an associated set of action transition matrices T a
• a reward function R
• a policy π

The intuition is that an agent is in some particular state s. In this state, the agent can perform certain
actions a. Depending on the environment, this leads to a new state s′ and a reinforcement r which can
be positive or negative. Figure 1B shows a more specific example: a so-called grid world, where the state
is simply the position on the grid.

The techniques described below will typically focus on simple definitions of states within particular exper-
iments, where the relevant states can simply be the stimuli presented during the experiment. However,
the notion of state s in RL is potentially very broad. In neuroscience terms, it could include internal states
such as arousal or hunger, and as such is clearly a very complex construct.

The actions a are defined in terms of their impact on states. In Figure 1C, the action ’going left’ is defined
in terms of moving from any one state to its left neighbour. More generally, actions are defined in terms
of probability distributions over successor states (Figure 1D,E). Putting all state succession probabilities
for one action next to each other into one matrix results in the transition matrix T a for that action
(Figure 1D,E). This describes the consequences of emitting that action in each of the existing states; it is
generally assumed that the transition matrices are fixed and determined by the world, though they may
not be known to the agent.

This definition of actions has an important consequence for how states are defined: The consequences
of actions must depend only on the current state, and not on past states. Consider braking when driving
a car. The impact of braking depends not only on the position of the care, but also on its speed. Hence,
the impact of braking on transitions to other states cannot be described purely in terms of the current
position. In order for the techniques below to apply, the problem must be a so-called Markov Decision
Problem (MDP). For this to be true, speed should be part of how states are defined in the car example,
such that the consequence of braking is clearly defined for each state independent of what the previous
states were.

The reward r is a scalar, i.e. a unidimensional number that takes on positive or negative values for rewards
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FIGURE 1: A: The setting. An agent interacts with an environment by choosing actions which in
turn influences its current state.B: Grid world example. Each square in the grid is a different
state s. The state of the agent is indicated by a green square, i.e. it is roughly in the middle
of the grid. Actions correspond to moving around on this grid. In this example, the agent can
move to all adjacent squares, i.e. has 8 actions available in each state (exemplified by the
black arrows emerging from the green square in the middle). Some state lead to losses, here
indicated by the colour red, and some to gains, here indicated by yellow. A policy assigns
each state preferences for particular actions. The aim is to find an optimal policy, i.e. one
that maximises long-term rather than just immediate reward. C: Simple linear state-space
with two actions. While the red action ’right’ is deterministic and thus has only zeros and
ones in the transition matrix (D), the green action left is probabilistic (E).
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FIGURE 2: Decision tree. At the root of the tree, there are two available actions a1 and a2, each
of which probabilistically leads to one of three outcomes (o1-o3). For each of these, there
are new options a3 and a4. Overall, the size of the tree increases rapidly with the depth d
and width w of the tree as wd.

and losses, respectively. The richness of real rewards is captured by the dependence on actions and state
transitions: Rewards r are generated by a reward function R(s, a, s′) that depends both on the action
taken, and the current and next states. Just like ingesting food is rewarding when hungry but not when
sated, taking a step to the right can lead to a loss in states left of the red punishing barrier in Figure 1, and
to reward when left of the yellow reward area. Just like the transition matrices T , the reward function
R is assumed to be a fixed part of the environment, though again it may not be known to the agent. The
agent’s estimates of the transition matrices and the reward function are referred to as the agent’s model
M of the world.

The aim is to find an optimal policy π∗(a; s). A policy π(a; s) describes the probability of taking an action
a in state s. A policy is optimal if it always chooses one of the optimal actions in each state, where the
optimal action is the one that maximises the total sum of rewards that can be earned in the long term.
Conceptually the simplest approach to infer the optimal policy is to consider all possible actions from
a state; all the resulting state transitions and rewards; then all possible next actions for the successor
states etc. This results in a decision-tree, with the root at the current state (Figure 2). Unfortunately,
these decision-trees grow rapidly in size. For the simple grid-world example, the number of actions and
successor state to each state is 9 (disregarding the boundaries), and hence the decision-tree corresponding
to looking d steps ahead has 9d branches. Such an explicit tree search is hence prohibitive for all but the
very simplest of problems.



2.1 BELLMAN EQUATION

Optimal, in RL is defined in terms of achieving the maximal expected sum over rewards rt′ in the future,
i.e. for times t′ ≥ t. The expected total future reward from state s at time t when following a particular
policy π is called the value Vπ(s) of the state and defined as:

Vπ(st) = E

[ ∞∑

t′=0

rt+t′γ
t′
∣∣∣∣st;π

]
(1)

where the discounting factor 0 ≤ γ < 1 is necessary to ensure that the sum is finite, but also gives rewards
in the near future more weight than rewards in the distant future. It is set to 1 if only finite problems are
considered. The key insight is that Equation 1 is a sum and due to the linearity of expectations (because
the average of two means is the same as the mean of two averages), it can be rewritten into two terms:

Vπ(st) = E
[
rt
∣∣st;π

]
︸ ︷︷ ︸

immediate reward

+ E

[ ∞∑

t′=1

rt+t′γ
t′
∣∣∣∣st;π

]

︸ ︷︷ ︸
γ·reward from next timestep onwards

The total future reward from the next timestep onwards, the second term in the equation above, is simply
the value of the next state-action pair Vπ(st+1), and hence we can write:

Vπ(st) = E
[
rt
∣∣st;π

]
+ E

[
γVπ(st+1)

∣∣st;π
]

The rewards rt are drawn from the reward process R(st, at, st+1). The expectations E[·] are over two
processes: first, the likely actions taken, and second the likely consequences of those actions. Expanding
these expectations and substituting the policy π for the first, and the transition matrices T for the second,
results in the so-called Bellman equation (Bellman, 1957; Sutton and Barto, 1998):

Vπ(st) =
∑

at

π(at; st)
∑

st+1

p(st+1|at, st) (R(st, at, st+1) + γVπ(st+1)) (2)

or, using a more compact notation:

Vπ(s) =
∑

a

πs(a)
∑

s′

T ass′ (Rass′ + γVπ(s′))

2.2 SOLVING THE BELLMAN EQUATION

Equation 2 describes a consistency between values of states s and its successor states s′ for a given
policy π. If the reward function R and transition matrices T are known, then this consistency can be
used to solve the equation and infer the values Vπ(s) for all states s. The first, and conceptually most
straightforward way is to recognise that equation 2 is linear and can be rewritten in vector form. Dropping
the subscript t and letting the successor state be s′, we have:

[vπ]s = Vπ(s)
[rπ]s =

∑

a

π(a; s)
∑

s′

p(s′|a, s)R(s, a, s′)

[Tπ]s =
∑

a

π(a; s)
∑

s′

p(s′|a, s)

We can now rewrite the Bellman equation as

vπ = rπ + γTπvπ (3)

which is simply solved by:

vπ = (I− γTπ)−1rπ



Here, we note an important feature of the effective transition matrix Tπ induced by the policy. It is a
square stochastic matrix all columns of which are probability distributions. As such, its leading eigenvec-
tor is 1, and the steady-state distribution of state visits is the eigenvector corresponding to that leading
eigenvalue. The values are hence only finite as long as γ < 1. An alternative is to have a matrix Tπ

the leading eigenvector of which < 1. This is true if all states have a finite probability of leading to an
absorbing state that cannot be left and which has zero reward. This latter setting effectively curtails the
infinite sum of rewards in equation 1 to a finite sum of exponentially distributed length.

A different approach to solving the Bellman equation is to note that if the values assigned to states are
incorrect, then there is a difference ∆ between the left and the right side of equation 3:

∆ = = rπ + γTπv − v

This can be used to turn the Bellman equation into an update equation:

vi+1 = vi + ∆i (4)

= rπ + γTπvi

which can be shown to converge to the true value vπ for the same reason as above (Bertsekas and
Tsitsiklis, 1996).

2.2.1 Model-free temporal difference prediction-error learning

These previous approaches to evaluating the value function require the model M of the world consist-
ing of the transition matrices T and the reward function R to be known, and are hence instances of
’model-based’ value estimation. So-called model-free techniques do not require this. Instead, they only
require that samples can be drawn from the transition matrix and the reward function. Drawing sam-
ples corresponds to observing the reward and state consequences of taking an action, i.e. drawing an
action at ∼ π(a; st) given the current state st; and then observing a successor state st+1 ∼ p(st+1|at, st),
and a reward rt ∼ R(st, at, st+1) (see Figure 1A). The Bellman equation (Equation 2) contains two
expectations, one over the transition probabilities, and one over the action probabilities, which can be
approximated with samples drawn from the two distributions. Temporal difference learning effectively
performs the iterative update of equation 4 after every sample, but includes a learning rate 0 ≤ α ≤ 1:

Vt+1(st) = Vt(st) + αδt

= Vt(st) + α(rt + Vt(st+1)− Vt(st)) (5)

This fixed learning rate α effectively induces an exponentially decaying average over past samples. If it
is chosen to decay with the number of times a particular state has been sampled, this procedure can be
shown to converge to the true value function of the policy over time under some conditions (see toy
example below).

2.2.2 Phasic dopaminergic signals

Notably, the long-term expected future reward can be learned over time by comparing the expected re-
ward Vt(st) with the sum of the received reward and the expected reward of the successor state Vt(st+1).
The difference between the two, δt, is the temporal difference prediction error thought to be reported by
phasic dopaminergic firing (Schultz et al., 1997). We note here that this can be positive for a transition
from a state of low reward expectation to a state of high reward expectation even if the immediate reward
is zero. This is thought to explain the transfer of phasic firing observed during conditioning of a cue to
predict reward. Early on in learning, dopaminergic neurons do not respond to the cue, but do respond
to the (unexpected) reward. Over time, as the animal learns that the cue predicts the reward, the value
V of the cue increases, and its unexpected presentation elicits a prediction error, and hence firing in the
dopaminergic neurons. However, as the reward is predicted, the value V is equal to the reward r, and
hence a prediction error no longer occurs at the time of reward, resulting in no dopaminergic firing.



2.3 POLICY UPDATES

Given the value Vπ of each state under a given behavioural policy π, the policy can now be improved in
a very simple manner by choosing that action which has the highest expected value in each state, i.e.

πnew(a; s) =

{
1 if a = argmaxa′ Qπ(a′, s)
0 else

where

Qπ(at, st) =
∑

st+1

p(st+1|at, st) (R(st, at, st+1) + γVπ(st+1))

is the state-action Q value of taking action at in st under the old policy π. Again, this can be shown to
converge to the optimal policy under some conditions (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,
1998). What is notable here, is that optimal policies are always deterministic - there is no reason ever to
choose a suboptimal action.

Though conceptually simple, such policy updates are biologically unreasonable, as they would require
completely evaluating the value function for a policy prior to any behavioural adaptation. Updating the
policy prior to having performed a full evaluation of the value function has the potential of breaking
many of the guarantees. In contrast, Q-learning (Watkins and Dayan, 1992) is an ’off-policy’ method.
This means that the estimated values are not affected by the sampling process (the policy). It proceeds as
follows:

Qt+1(at, st) = Qt(at, st) + α(rt + γmax
a
Qt(a, st+1)−Qt(at, st))

The key differences is the maximum operation over the next actions to be taken, which requires some
foresight and can be computationally challenging if the potential behavioural repertoire is large. As long
as all state-action pairs continue to be sampled, this converges to the true state-action value for any policy,
and hence the policy can be updated and learning occur online.

3 MODELLING DATA

3.1 GENERAL CONSIDERATIONS

Having provided a brief overview over the key features of reinforcement learning and dynamic program-
ming, we now turn to a tutorial overview of how these techniques can be used to probe human (and
animal) decision-making. The framework suggested here is distinct from the standard approach in a
number of ways. First, it is a generative framework. This means that the model can be run on the exper-
iment under scrutiny and simulate data akin to that obtained in the experiment. Rather than modelling
only specific aspects of the data, such as the averages in different conditions, the approach is to model the
process by which the data came about, and the data itself, in their “holistic” entirety. For this, the internal
inference processes that give rise to the data have to be captured in sufficient detail. The result is that
learning or inference process can be tested on the data in their entirety. The test statistics are replaced by
parameters determining the internal processes. Unlike traditional test statistics, their meaning is made
explicit by their function in the model.

The freedom to build different models is huge and vastly extends the kinds of processes that can be
inferred and tested. However, as each model has to be built separately, there is also ample scope for a
variety of mishaps. As a result, the modelling should contain three general steps. In a first, step, the model
needs to be built; in a second step this model should be validated with surrogate data; and in a third step
the model is applied to the real data. A general suggested framework is shown in Figure 3 (Daw, 2009).

A few comments are worthwhile. The key first step clearly is the model building. Here, the valuation
processes by which choice preferences arise in the models are the hypotheses to be tested. A reasonable



Model building The first step is to build a series of models. Each contains an internal process by which
different choice options are valued, and a link function which describes how preferences turn into
observed decisions. At least two models should be built: a model M0 of ’no interest’ that performs
the task, but without involving the process of interest, and a model M1 that does contain the
process of interest.

Validation on surrogate data

1. Data generation: Run each model on the experiment from which data will be examined. Do
the generated data look reasonable?

2. Surrogate model fitting: Fit each model to the data generated from it. Are the true parame-
ters readily recovered? Are some parameters not identifiable?

3. Surrogate model comparison: Does the model comparison procedure correctly identify the
data generated by each model?

Real data analysis

1. Real model fitting: Fit each model to the real data.
2. Real model validation: Run each model with the fitted parameters on the exact experimental

instance presented to that particular subject. Are the key features of the real data captured
reasonably?

3. Real model comparison: choose the least complex model that best accounts for the data.
4. Parameter examination: only at this point should the parameters of the model be examined,

and only the parameters of the most parsimonious model should be ascribed meaning.

FIGURE 3: Overview over modelling approach.

approach is to build a series of models starting from a very simple ’null’ valuation process, and then adding
in the various features of interest to examine to what extent they parsimoniously contribute towards to
explaining the data. The second component is the link function, which needs to be probabilistic to allow
noisy experimental data to be fitted. We noted above that optimal policies are always deterministic.
Making this assumption when fitting models makes them very brittle as errors due to other, unforeseen
and maybe unrecorded events are interpreted as strong evidence. Hence, one role of the link function is
to assimilate noise from a variety of sources, and inferring its parameters allows for individual variation
in this. Nevertheless, its functional form should be checked, and we will return to this below.

Validation on surrogate data serves a number of purposes. First, it is important to check that the data
the model generates is actually comparable to the data obtained in the experiment. Second, by fitting
data from the surrogate model, the ability to identify and recover parameters is established. This is an
important step prior to interpreting any parameters. Third, the ability to reliably distinguish between
different models can be established on surrogate data comparable to the one available in the experiment
under scrutiny. Indeed, it is prudent to attempt to perform these steps prior to running the experiment
in real as they may suggest changes in experimental parameters, such as the length of the tasks or the
number of subjects to run.

Finally, the models need to also be validated on the actual data under scrutiny. One possibility is to com-
pare data generated from the model (with fitted parameters) to the real data. For learning experiments,
it is for instance often useful to plot learning curves and ask whether the model captures the shape of
these curves well. Once the models have been thus validated, it is meaningful to ask which of the models
provides the most parsimonious account of the data. This is the domain of model comparison. Note that
a model comparison is always relative, and does not provide any absolute information and even the best
amongst a set of models may still be too poor to provide any meaningful information. The interpretation
of parameters in the models should only follow at the end, once one model has been chosen as a good
characterisation of the data.



3.2 A TOY EXAMPLE

As a first example, we consider very simple learning experiment in Figure 4A. In this experiment, each
action at on trial t yields an immediate reinforcement rt, but does not have any influence on future
options. Hence, the total summed future reward in this case is simply the average immediate reward
offered by each of the stimuli.

The first model assumes that individuals perform temporal difference learning, adapted to this extremely
simple scenario. Taking equation 5 and observing that there is no next state, but only immediate rewards,
the temporal difference prediction error learning becomes simple prediction error learning VTDt+1(st) =
VTDt (st) + α(rt − VTDt (st)), as in Rescorla-Wagner learning (Rescorla and Wagner, 1972). The second
model assumes that individuals simply perform averages over the reinforcements earned for each of
the two stimuli, which is the correct inference to perform given how the outcomes are generated. The
expected values Vav are hence

Vavt+1(s) =
1

t

t∑

t′=1

rt′ =
1

t

(
t−1∑

t′=1

rt′ + rt

)
=
t− 1

t
Vavt (s) +

1

t
rt

=
1

t
((t− 1)Vavt (s) + rt) + Vavt (s)− Vavt (s) = Vavt (s) +

1

t
(rt − Vavt (s))

The first line rewrites the sum over all past rewards as an iterative update. The second line then rewrites
this into a form similar to that of the TD learning rule. Comparing these, we see that the fixed learning rate
α in the TD learning rule has been replaced by a decaying term 1/t in the average. While the averaging
rule gives each of the t samples the same weight, the TD rule always gives the most recent sample a
weight α, and the samples prior to that an exponentially smaller weight. While the TD rule has one free
parameter α, the averaging rule has no free parameters.

3.3 GENERATING DATA

Given a model of the choice process, it is straightforward to generate data by using a link function that
maps the values V onto probabilities of taking particular actions. A frequent choice is the use of a softmax
link function whereby the probability of choosing stimulus s on trial t is:

p(at = s|Vt) =
eβVt(s)

eβVt(s) + eβVt(s̄)
(6)

The data in Figure 4B were generated from the TD model with this softmax.

3.4 FITTING MODELS

Having built a model and generated data from it, the next step is to fit the model to the generated
data. Fitting a model means finding the set of parameters that are most compatible with the data. The
maximum likelihood (ML) parameters are those under which the data are most likely. To find them, we
must maximise the likelihood of all the T actions a1, · · · aT by one subject given that subject’s parameters:

θ̂ML = argmax
θ

log p(a1, · · · aT |θ) (7)

The question is how to compute the total likelihood of all choices. On first sight, this appears difficult
because choices depend on previous choices and so cannot be treated independently. However, if every
choice only depends on the value Vt at the time of the choice t as assumed in equation 6, then the
probability of of observing a sequence of stimulus choices a1, · · · aT is simply:

log p(a1, · · · aT |θ) = log

T∏

t=1

p(at|Vt) =
T∑

t=1

log p(at|Vt) (8)
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FIGURE 4: A: Simple toy learning experiment. On each trial, individuals have to choose one
of two squares. The blue square yields small rewards on 80% of trials, and the red square
on 20% of trials. B: Surrogate data generated from a simple learning model. Each of the
horizontal rows shows the choice data for one subject, with gray indicating choice of the blue
and white choice of the red button. The red superimposed line is the average probability of
choosing the red button across subjects on that trial. C: Plots of true parameters β against the
parameters inferred from data in panel B. The red line indicates correct equality. D: Plots of
true learning rates α against those inferred from data in panel B. Note that both parameters
were transformed to deal with natural limits on their values: to ensure β ≥ 0, all models
are written in terms of β = exp(β′), and to ensure 0 ≤ α ≤ 1 they are written in terms of
α = 1/(1 + exp(α′)).



which is notable: even though choices at any time t clearly depend on the previous ones, once we con-
dition on the values the choices become independent of the previous choices. The values can be updated
iteratively prior to computing the likelihood of each choice, leading to an algorithm that takes this general
and very simple form:

initialize values V
foreach trial t do

compute log likelihood of choice at on trial t given parameters : lt = log p(at|Vt, θ)
update value Vt+1 given outcomes on trial t

end
compute total log likelihood l =

∑
t lt

Algorithm 1: Likelihood computation

The total likelihood can now be passed to any of a number of optimization tools to solve Equation 7.
Figure 4C,D shows the result of a ML fit in black for the TD model with the two parameters α and β.
As can be seen, the black dots are sometimes very far off the diagonal, which unfortunately is relatively
typical for these kinds of models. Although ML estimators are asymptotically unbiased, they do have high
variance. This is often a prominent problem because parameters have overlapping effects and therefore
can trade off each other. In these examples, whenever β was set to a very small value, the learning rate α
was set to a very high value.

The blue circles show a very simple and often very powerful solution to this, which is to impose a soft
prior on the parameters and performing maximum a posteriori (MAP) inference rather than ML. This is
very simply achieved by replacing equation 7 with

θ̂MAP = argmax
θ

log p(a1, · · · aT |θ) p(θ)

The computation of the posterior likelihood is thus just the same as that of algorithm 1, but with the log
likelihood of the prior added to the total log likelihood of the choices.

At times, however, the choice of the prior p(θ) can be difficult. In these situations, it can make sense to
infer the prior from the data in an empirical Bayesian setting (Huys et al., 2012). There are a number of
techniques available for this, and this is becoming a more common approach. Figure 4C,D shows this in
blue. For this simple example, little is gained over the basic MAP approach, but this changes for larger
models.

3.5 MODEL COMPARISON

Having fitted the model to the data, we can ask how good an account it provides. When doing so, however,
it is not sufficient to simply look at the model fit. Figure 5A shows data generated from a straight line with
some noise added. The top panel shows a linear fit, while the bottom panel shows a 6th order polynomial.
Clearly the latter is a better fit despite the fact that the top is closer to the truth. To understand why the
model with the better fit is nevertheless poorer, consider Figure 5B,C. As the data (orange dots) bunch
up towards the right, they are better fit by one of the triangular probability distributions in panel B than
by the two uniform distributions in panel C. The model in panel B, is very powerful. Different parameter
settings lead to wildly different distributions that often miss the data entirely and predict data which is
never observed. Hence, the powerful model is likely to predict novel data less well. We can think of this
as a trade-off between the different settings a model allows, and the fit it provides to the data. Figure 5D
illustrates that this problem exists for learning models, too.

Bayesian model comparison takes this into account by using as a measure of fit not the best possible
likelihood, but the average likelihood over all possible parameter settings:

p(A|M) =

∫
dθ p(A|θ,M) p(θ) (9)
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model with best likelihood is always the most complex one at the top.



The Bayes factor between two models is then defined as

BF = loge
p(A|M1)

p(A|M2)
(10)

and is considered substantial if greater than 3, and conclusive if greater than 5 (Kass and Raftery,
1995). Unfortunately, the integral in Equation 9 is not always straightforward to evaluate, and there
exist a number of approximations to it. The simplest ones are the Akaike Information Criterion AIC =
−2 log p(A|θ̂ML) + 2d and the Bayesian Information Criterion BIC = −2 log p(A|θ̂ML) + d log(n) where
d is the number of parameters in the model and n is the number of data points. These penalise models by
counting their parameters. AIC tends to be less conservative, while BIC can be too conservative. Another
possibility is to perform a Laplace approximation around the MAP parameters (Daw, 2009).

3.6 GROUP STUDIES

The methods so far have considered individual subjects. However, most studies, particularly in clinical
settings, deal with group data. Figure 6 shows different approaches to group data. Two simple approaches
are to treat all individuals as using the same parameters, i.e. a fixed-effects treatment (panel A) or treating
them entirely separately (B). While the former conflates different types of noise and is therefore not
recommended, the latter can inflate noise depending on how the parameters are estimated. A more
natural approach is to respect the fact that individuals in a group tend to be similar, and hence should
have similar parameters (C; Huys et al. 2012). However, even this still assumes that all individuals use
the same model. Two relaxations of this approach exist. First, one can employ a random effects treatment
over models (D; Stephan et al. 2009), or one can nest multiple models in a more complex model (E; Daw
et al. 2011; Guitart-Masip et al. 2012). While the former assumes that individuals in a group may differ
in terms of their internal processes, it assumes that these internal processes are homogeneous. The latter
conversely assumes that individuals employ a mixture of strategies, but that this is true across the entire
group.

4 DISSECTING COMPONENTS OF DECISION-MAKING

Having described the theoretical core of decision-making and how to fit these valuation models to data,
we turn to four examples. These are chosen to illustrate some of the insights gained from detailed mod-
elling of behavioural data with a combination of RL and Bayesian techniques.

4.1 REWARD LEARNING

Alterations to how rewards are processed are important in a number of psychiatric conditions. For in-
stance, anhedonia is one of the core elements of depression and refers to an inability to experience plea-
sure. Pizzagalli et al. (2005) asked whether anhedonia might specifically influence the ability of people
with depression to learn from rewards. They used a perceptual decision-making task where subjects had
to report the length of a briefly presented mouth (Figure 7A) as either short or long. Unbeknownst to the
subjects, one option was rewarded more frequently than the other. Over time, subjects came to express a
bias towards identifying the more rewarded stimulus, but this bias was abolished by anhedonia. This task
raises two possibilities: either anhedonia blunts the sensitivity to rewards; or it blunts the ability to learn
from the rewards. In principle, this might be testable by using a very simple prediction error learning to
value the different choices:

Qt+1(at, st) = Qt(at, st) + α(ρrt −Qt(at, st)) (11)



A. A. A.

✓

Ai

A.

µ✓, �✓

A. A. A.

✓i ✓·✓· ✓·

A.

µ✓, �✓

A. A. A.

✓i ✓·✓· ✓·

A.

µ✓, �✓

A. A. A.

✓i ✓·✓· ✓·

A.

µ✓, �✓

A. A. A.

✓i ✓·✓· ✓·

Ai A. A. A.

✓i ✓· ✓· ✓·

A. A. A.

✓· ✓· ✓·
A B

C D E
✓i ⇣i

Ai

FIGURE 6: Group data. A: A fixed-effects analysis would assume that all subjects share the same
parameters. This is not recommended. B: The extreme opposite is to perform separate ML fits
for each subject. This in effect assumes that all subjects are independent and have parameters
that are not a priori related. C: In a group design, it is natural to assume that individual
subjects are drawn from a group that describes their similarity. For instance, parameters of
individuals in a group could cluster around a particular value. However, although this model
is a random-effects model in terms of the individual parameters, it is nevertheless still a fixed-
effects treatment of the model itself: all individuals are assumed to be examples of the same
model. D: Next, it is possible to consider random-effects treatments of the models, i.e. that
some individuals in a group will behave according to model 1, others according to model 2,
and yet others according to model 3. E: Finally, it is possible to examine whether individuals
behave according to two different models. As this is simply a more complex model, it can be
combined with the approaches in panel A-D.



Huys et al. Biology of Mood & Anxiety Disorders 2013, 3:12 Page 3 of 16
http://www.biolmoodanxietydisord.com/content/3/1/12

500 ms 

1750 ms 

500 ms 

100 ms 

Correct!!
You won 
5 cents

short?
long?

Long correct: 
Short correct: 

75% rewarded
30% rewarded

Long correct: 
Short correct: 

30% rewarded
75% rewarded

Long = rich: 

Short = rich: 

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

R
es

po
ns

e 
B

ia
s

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

ε=0.03, γ=2

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

ρ=2, γ=2

Control
Treatment

ρ=2
ρ=1

ε=0.04
ε=0.01

B

A C D E

F

Altering 
learning rate

Altering 
reward sensitivity

Prototypical
empirical pattern

Healthy Stress PPX Hx MDD BPD

0.6

0.8

1

F
ra

ct
io

n 
co

rr
ec

t

Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:

1
2 log

(n(a1|sr) n(a1|sl)
n(a2|sr) n(a2|sl)

)
(1)

where sr and sl indicate presentation of the rich and lean
stimulus, respectively, a1 and a2 are the two possible key
presses, and n(a|s) is the number of times a particu-
lar choice was made in response to that stimulus. Each
count n was augmented by 1

2 to avoid numerical insta-
bilities. Outlier trials with very short (< 150 ms) or very
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the WM process, and thus, as expected, SZ subjects had a signif-
icantly higher score than controls (Fig. 3F; t ! 3.8; p ! 0.0003).
Notably, this score was significantly negatively correlated with
the direct WM measure (! ! "0.52; p # 10"6), and this re-
mained true within each group (both p values #0.05; ! # "0.29).

These results confirmed our hypothesis that the observed
learning impairment in patients was related to a deficit in the
working memory component of the model, rather than in rein-
forcement learning or in choice selection. We next investigated
whether positive or negative symptoms of schizophrenia im-
pacted any aspect of behavior. Based on prior work (Waltz et al.,
2007, 2011), we had hypothesized that negative symptom severity
might be related to the WM parameters. Correlations between
symptoms and fit model parameters, as well as PCA components
or the MCCB working memory measure, yielded no significant
associations (BPRS, BNSS, and SANS scales; all p values $ 0.1;
Spearman ! # 0.24). This lack of association with negative symp-
toms might reflect the fact that the current task more closely
relates to the sort of rule-based working memory process that
would involve lateral prefrontal cortex, whereas prior associa-
tions with negative symptoms involved representing specific re-
ward values for each stimulus or action, functions attributed to
more limbic portions of prefrontal cortex hypothesized to be
related to negative symptoms, such as orbitofrontal cortex (Gold
et al., 2012).

We also investigated the effects of drug dose on performance.
We found a significant correlation between a Haloperidol equiv-
alent dose and RL learning rate parameter "RL (Spearman ! ! "
0.37; p ! 0.009) as well as error neglect parameter pers (Spearman
! ! 0.46; p ! 0.001), indicating more error neglect and slower
learning for higher antipsychotic doses. Importantly, there was
no effect on the working memory capacity parameter (p ! 0.97)

or any other parameter (all p values $ 0.11). Finally, we found no
effect of duration of illness on any parameters.

Discussion
These behavioral and modeling analyses provide a new perspec-
tive on the genesis of reinforcement learning deficits in people
with schizophrenia. Our basic behavioral result that patients are
overall less able than controls to use feedback to guide optimal
response selection is consistent with many other reports in the
literature (Waltz and Gold, 2007; Polli et al., 2008; Murray et al.,
2008b; Somlai et al., 2011). Indeed, this body of behavioral work,
combined with functional neuroimaging evidence suggesting ab-
normalities in the signaling of prediction errors in both cortical
(Corlett et al., 2007) and striatal (Murray et al., 2008a; Koch et al.,
2010) regions and abnormal striatal dopamine (Abi-Dargham et
al., 1998; Howes et al., 2012), has led to a renewed focus on the
role of reward-related dopaminergic mechanisms in both the
positive and negative symptoms of schizophrenia (Kapur et al.,
2005; Howes and Kapur, 2009; Ziauddeen and Murray, 2010;
Deserno et al., 2013).

Our behavioral results and modeling strategy indicate, how-
ever, that learning impairments in SZ stem primarily from a core
deficit in working memory, which may be responsible for what
appears to be a reinforcement learning impairment. Specifically,
we found robust evidence that patients had reduced working
memory capacity, as well as faster working memory decay, cou-
pled with normal reinforcement learning rates. This was observ-
able in terms of a stronger detrimental effect of set size on
learning in patients than in controls, together with a diminished
effect of set size on reaction time. Assuming that the increased
reaction time with set size arises from greater taxing of WM pro-
cesses, the latter result is convergent with the modeling finding,
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Figure 4. Learning curves and model simulations. Left, Empirical data per group (SZ, patients; HC, healthy controls, dashed lines). Middle, RLWM model simulation. Right, RL model simulation
(# rule learning model including undirected noise, forgetting, and perseveration mechanisms). Learning curves indicate the probability of a correct response at the nth presentation of a single
stimulus (stim). For each subject’s fitted parameters, one set of learning curves was obtained by averaging over 100 simulations of the model with those parameters. Overall learning curves were
then obtained by averaging across subjects.
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the WM process, and thus, as expected, SZ subjects had a signif-
icantly higher score than controls (Fig. 3F; t ! 3.8; p ! 0.0003).
Notably, this score was significantly negatively correlated with
the direct WM measure (! ! "0.52; p # 10"6), and this re-
mained true within each group (both p values #0.05; ! # "0.29).

These results confirmed our hypothesis that the observed
learning impairment in patients was related to a deficit in the
working memory component of the model, rather than in rein-
forcement learning or in choice selection. We next investigated
whether positive or negative symptoms of schizophrenia im-
pacted any aspect of behavior. Based on prior work (Waltz et al.,
2007, 2011), we had hypothesized that negative symptom severity
might be related to the WM parameters. Correlations between
symptoms and fit model parameters, as well as PCA components
or the MCCB working memory measure, yielded no significant
associations (BPRS, BNSS, and SANS scales; all p values $ 0.1;
Spearman ! # 0.24). This lack of association with negative symp-
toms might reflect the fact that the current task more closely
relates to the sort of rule-based working memory process that
would involve lateral prefrontal cortex, whereas prior associa-
tions with negative symptoms involved representing specific re-
ward values for each stimulus or action, functions attributed to
more limbic portions of prefrontal cortex hypothesized to be
related to negative symptoms, such as orbitofrontal cortex (Gold
et al., 2012).

We also investigated the effects of drug dose on performance.
We found a significant correlation between a Haloperidol equiv-
alent dose and RL learning rate parameter "RL (Spearman ! ! "
0.37; p ! 0.009) as well as error neglect parameter pers (Spearman
! ! 0.46; p ! 0.001), indicating more error neglect and slower
learning for higher antipsychotic doses. Importantly, there was
no effect on the working memory capacity parameter (p ! 0.97)

or any other parameter (all p values $ 0.11). Finally, we found no
effect of duration of illness on any parameters.

Discussion
These behavioral and modeling analyses provide a new perspec-
tive on the genesis of reinforcement learning deficits in people
with schizophrenia. Our basic behavioral result that patients are
overall less able than controls to use feedback to guide optimal
response selection is consistent with many other reports in the
literature (Waltz and Gold, 2007; Polli et al., 2008; Murray et al.,
2008b; Somlai et al., 2011). Indeed, this body of behavioral work,
combined with functional neuroimaging evidence suggesting ab-
normalities in the signaling of prediction errors in both cortical
(Corlett et al., 2007) and striatal (Murray et al., 2008a; Koch et al.,
2010) regions and abnormal striatal dopamine (Abi-Dargham et
al., 1998; Howes et al., 2012), has led to a renewed focus on the
role of reward-related dopaminergic mechanisms in both the
positive and negative symptoms of schizophrenia (Kapur et al.,
2005; Howes and Kapur, 2009; Ziauddeen and Murray, 2010;
Deserno et al., 2013).

Our behavioral results and modeling strategy indicate, how-
ever, that learning impairments in SZ stem primarily from a core
deficit in working memory, which may be responsible for what
appears to be a reinforcement learning impairment. Specifically,
we found robust evidence that patients had reduced working
memory capacity, as well as faster working memory decay, cou-
pled with normal reinforcement learning rates. This was observ-
able in terms of a stronger detrimental effect of set size on
learning in patients than in controls, together with a diminished
effect of set size on reaction time. Assuming that the increased
reaction time with set size arises from greater taxing of WM pro-
cesses, the latter result is convergent with the modeling finding,
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Figure 4. Learning curves and model simulations. Left, Empirical data per group (SZ, patients; HC, healthy controls, dashed lines). Middle, RLWM model simulation. Right, RL model simulation
(# rule learning model including undirected noise, forgetting, and perseveration mechanisms). Learning curves indicate the probability of a correct response at the nth presentation of a single
stimulus (stim). For each subject’s fitted parameters, one set of learning curves was obtained by averaging over 100 simulations of the model with those parameters. Overall learning curves were
then obtained by averaging across subjects.
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the WM process, and thus, as expected, SZ subjects had a signif-
icantly higher score than controls (Fig. 3F; t ! 3.8; p ! 0.0003).
Notably, this score was significantly negatively correlated with
the direct WM measure (! ! "0.52; p # 10"6), and this re-
mained true within each group (both p values #0.05; ! # "0.29).

These results confirmed our hypothesis that the observed
learning impairment in patients was related to a deficit in the
working memory component of the model, rather than in rein-
forcement learning or in choice selection. We next investigated
whether positive or negative symptoms of schizophrenia im-
pacted any aspect of behavior. Based on prior work (Waltz et al.,
2007, 2011), we had hypothesized that negative symptom severity
might be related to the WM parameters. Correlations between
symptoms and fit model parameters, as well as PCA components
or the MCCB working memory measure, yielded no significant
associations (BPRS, BNSS, and SANS scales; all p values $ 0.1;
Spearman ! # 0.24). This lack of association with negative symp-
toms might reflect the fact that the current task more closely
relates to the sort of rule-based working memory process that
would involve lateral prefrontal cortex, whereas prior associa-
tions with negative symptoms involved representing specific re-
ward values for each stimulus or action, functions attributed to
more limbic portions of prefrontal cortex hypothesized to be
related to negative symptoms, such as orbitofrontal cortex (Gold
et al., 2012).

We also investigated the effects of drug dose on performance.
We found a significant correlation between a Haloperidol equiv-
alent dose and RL learning rate parameter "RL (Spearman ! ! "
0.37; p ! 0.009) as well as error neglect parameter pers (Spearman
! ! 0.46; p ! 0.001), indicating more error neglect and slower
learning for higher antipsychotic doses. Importantly, there was
no effect on the working memory capacity parameter (p ! 0.97)

or any other parameter (all p values $ 0.11). Finally, we found no
effect of duration of illness on any parameters.

Discussion
These behavioral and modeling analyses provide a new perspec-
tive on the genesis of reinforcement learning deficits in people
with schizophrenia. Our basic behavioral result that patients are
overall less able than controls to use feedback to guide optimal
response selection is consistent with many other reports in the
literature (Waltz and Gold, 2007; Polli et al., 2008; Murray et al.,
2008b; Somlai et al., 2011). Indeed, this body of behavioral work,
combined with functional neuroimaging evidence suggesting ab-
normalities in the signaling of prediction errors in both cortical
(Corlett et al., 2007) and striatal (Murray et al., 2008a; Koch et al.,
2010) regions and abnormal striatal dopamine (Abi-Dargham et
al., 1998; Howes et al., 2012), has led to a renewed focus on the
role of reward-related dopaminergic mechanisms in both the
positive and negative symptoms of schizophrenia (Kapur et al.,
2005; Howes and Kapur, 2009; Ziauddeen and Murray, 2010;
Deserno et al., 2013).

Our behavioral results and modeling strategy indicate, how-
ever, that learning impairments in SZ stem primarily from a core
deficit in working memory, which may be responsible for what
appears to be a reinforcement learning impairment. Specifically,
we found robust evidence that patients had reduced working
memory capacity, as well as faster working memory decay, cou-
pled with normal reinforcement learning rates. This was observ-
able in terms of a stronger detrimental effect of set size on
learning in patients than in controls, together with a diminished
effect of set size on reaction time. Assuming that the increased
reaction time with set size arises from greater taxing of WM pro-
cesses, the latter result is convergent with the modeling finding,
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Figure 4. Learning curves and model simulations. Left, Empirical data per group (SZ, patients; HC, healthy controls, dashed lines). Middle, RLWM model simulation. Right, RL model simulation
(# rule learning model including undirected noise, forgetting, and perseveration mechanisms). Learning curves indicate the probability of a correct response at the nth presentation of a single
stimulus (stim). For each subject’s fitted parameters, one set of learning curves was obtained by averaging over 100 simulations of the model with those parameters. Overall learning curves were
then obtained by averaging across subjects.
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FIGURE 7: Reward learning. A: Pizzagalli et al. (2005) perceptual decision-making task. Subjects
have to indicate whether a briefly flashed mouth is long or short. Unbeknownst to them, one
option is more frequently rewarded than the other, leading to a bias in reporting that option
amongst healthy subjects. However, this bias could arise from either changes in the sensitivity
to rewards, or changes in the ability to learn from rewarding events. B: Across multiple
studies using this task, anhedonia was related to reward sensitivity, but not to learning rate.
C: Requiring subjects to learn about multiple stimuli at the same time slows down learning
both in controls (top) and patients with schizophrenia (bottom). D: Including a working-
memory component in the model accounts for the pattern of data in controls (top); and
its impairment for the pattern in patients (bottom). E: A model without a working memory
component is not able to account for the observed patterns. Panels A,B reproduced from
Huys et al. (2013) and Panels C-E from Collins et al. (2014).



where ρ scales the size of the received reward while α is the learning rate. However, as alluded to above,
this can be rewritten as:

Qt+1(at, st) = (1− α)tQ0(at, st) + αρ

t∑

t′=0

(1− α)t′rt−t′ .

Due to the product αρ, the two parameters are partially negatively correlated and specific statements
about them require substantial data. Nevertheless, when pooling across multiple experiments, it appears
that anhedonia is in fact related to a significant reduction in reward sensitivity but does not impact
learning rate (Figure 7B; Huys et al. 2013). Additional credence to this finding was given by the fact that
a dopaminergic manipulation mostly affected the learning rate. This is consistent with a multiplicative
change in the prediction error putatively reported by dopamine (Schultz et al., 1997). However, while
an impact of anhedonia on the learning rate might have implied dopaminergic mechanisms, the origins
of changes to reward sensitivity in depression remains uncertain (Treadway and Zald, 2011; Huys et al.,
2015a).

The ability to learn from rewards is also thought to be affected in schizophrenia. The prominent involve-
ment of dopamine suggested that this impairment may either arise through an impairment of striatal
reward learning mechanisms, or alternatively also through impairment of prefrontal working memory
mechanisms where dopamine also plays a key role (Durstewitz and Seamans, 2008). Collins et al. (2014)
exploited a standard operant conditioning task which is nevertheless sensitive to both working memory
and striatal prediction-error learning mechanisms: when subjects are presented with increasing numbers
of stimuli to learn about concurrently, a slowing of learning is observed (Figure 7C). This pattern is not
well accounted for by a simple change in learning rate and instead requires a working memory compo-
nent to be postulated (Figure 7D,E). Specifically, they consider a combination of two learners. The first
is the reward learning module and is as in Equation 11. The second, the working memory module, has a
learning rate α set to 1. This means that the resulting Qwm values store the previous event, and discard
anything before that. After the choice, the Qwm values are decayed to mimic forgetting. Strikingly, the
impairment seen in schizophrenia was due mostly to the working memory component, rather than to the
reward learning component.

4.2 PAVLOVIAN INFLUENCES

We next turn to the distinction between two types of values: Pavlovian values of state V(s) and instrumen-
tal or operant values of state-action pairsQ(s, a). The former designate desirable states, but imply a policy
or behavioural preference only via additional mechanisms, for instance evolutionarily pre-programmed
approach responses to appetitive states (Dayan et al., 2006). In contrast, the Q values measure the good-
ness of actions and hence can theoretically be used directly to motivate arbitrarily specific behaviours.
There is a rich literature distinguishing these (see Dayan and Berridge 2014 and Huys et al. 2014 for
reviews).

Figure 8A shows a very simple task which shows these components concurrently at work during learning
in humans: when subjects have to go and are rewarded, or when they have to withhold going and are in
a punishment context, they perform well, whereas performing go responses to avoid losses or nogo re-
sponses for reward is far more difficult (Figure 8B). Looking at the learning curves (Figure 8C), it appears
clear that learning is slower in the two difficult scenarios. A simple model (blue) that only incorporates
instrumental learning of stimulus-action values cannot account for this pattern. Incorporating a bias to-
wards or away from performing go responses also fails to capture the data (green lines). It is only when a
second, Pavlovian, learning mechanism is added to the instrumental learner that the performance across
the four contexts can be matched, and then does so in sufficiently great detail to merit the increase in
complexity (Figure 8D). This Pavlovian influence simply promotes the active go choice in proportion to
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for each participant; black lines show averages over subjects; and coloured lines are data
generated from different models. D: Model comparison, with the most parsimonious model
having the lowest score (indicated with a red star). Figures from Guitart-Masip et al. (2012).



the average reward experienced for each stimulus

Vt+1(s) = Vt(s) + α(ρrt − Vt(s))

w(a, s) =

{
Q(a, s) + εV(s) if a is go action
Q(a, s) else

p(at|st) =
exp(w(at, st))∑
a′ exp(w(a

′, st))

that is when the stimulus leads to rewards, go is promoted, and when the stimulus tends to lead to losses,
go is inhibited proportionally to the value of the stimulus. This is another instance where each individual
appears to be influenced by multiple learning systems akin to Figure 6E.

Though not examined with this particular task, the influence of Pavlovian stimulus-bound values on
instrumental choices has been found to be aberrant in a variety of conditions ranging from alcoholism
to depression. In alcoholism, for instance, Pavlovian influences are stronger, and the extent to which this
involves the ventral striatum appears to predict relapse after detoxification (Garbusow et al., 2016).

4.3 MODEL-BASED AND MODEL-FREE DECISION-MAKING

A third example concerns the distinction between model-based and model-free decision-making. In model-
based decision-making, the agent is assumed to know the consequences of actions and knows where re-
wards are located. This implies knowledge of transition matrices T and reward functions R. At choice
time, evaluations of different behavioural options are performed by searching the tree defined by T ,R
(Daw et al. 2005, though see Daw and Dayan 2014). In model-free decision-making the values V are
accumulated over time through experience. At choice time, no further computation is required. The two
types of decision-making thus trade computational costs for experiential costs. Daw et al. (2011) designed
a task to measure the trade-off between the two types of learning within an individual.

Motivated by the suggestion that addictive and compulsive disorders might involve a shift from model-
based towards model-free decision-making (Robbins et al., 2012), this task has since been examined
extensively, with some supporting (Voon et al., 2015; Gillan et al., 2016), but also complicating evidence
(Nebe et al., 2016). The difficulties stem particularly from the fact that the model-free component appears
both poorly measured and unresponsive to any intervention (c.f. Huys et al. 2016).

4.4 COMPLEX PLANNING

We finally turn to a fourth example that uses RL techniques to examine how more complex planning
tasks are solved (Huys et al., 2012, 2015c). The motivation for doing so is that many daily tasks involve
planning problems that are extremely complex and easily overwhelm even powerful computers. They
therefore cannot be solved fully, but most be approximated and simplified. Figure 9A,B shows an example
task that has to be solved by planning, but which is difficult. Figure 9C,E show two possible strategies to
approximate the task. The first, pruning, involves reflexively stopping the consideration of a plan if the
plan requires transitioning through a salient loss (here, -70 points; c.f. panel B). This means that large
gains hiding behind the large losses are also missed. Indeed, subjects nearly never chose to transition
through the path involving a large loss when there was another equally good path (Figure 9D). Strikingly,
when comparing the inferred tendency to stop thoughts at salient loss points, this effect appeared nearly
independent of the size of the salient loss (Figure 9E). If pruning were an adaptive response to the large
loss, then this should have varied with loss size. This instead suggests a very simple, reflexive reaction
to stop thoughts when salient losses are encountered. Further models examined how subjects subdivided
the task (Figure 9F). Strikingly, they subdivided the task in a manner that nearly optimally reduced the
computational load (Figure 9G).
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vastly outperformed a habitual model of choice (SARSA; [19]) in
which subjects are assumed to update action propensities in a
model-free, iterative manner (BICint improvement of 314).

The third model, ‘Pruning’, is central to the hypothesis we seek
to test here. This model separated subjects’ global tendency to
curtail the tree search (captured by the c parameter of model
‘discount’) into two separate quantities captured by independent
parameters: a general pruning parameter cG , and a specific
pruning parameter cS . The latter applied to transitions immedi-
ately after large punishments (red ‘2X’ in Figure 2B), while the
former applied to all other transitions. If subjects were indeed
more likely to terminate their tree search after transitions resulting
in large punishments, then a model that separates discounting into
two separate pruning parameters should provide a better account
of the data. Again, we applied Bayesian model comparison and
found strong evidence for such a separation (Figure 4C).

The fourth model added an immediate Pavlovian influence on
choice. The need for this can be seen by comparing the observed
and predicted transition (action) probabilities at a key stage in the
task. Figure 4D shows the probability that subjects moved from

state 6 to state 1 when they had two or more choices left. Through
this move, subjects would have the opportunity to reap the large
reward of z140 (see Figure 2B), by first suffering the small loss of
220. Subjects duly chose to move to state 1 on w90% of these
occasions in all three groups. This was well matched by the model
‘Pruning’. However, when subjects only had a single choice left in
state 6, it would no longer be optimal to move to state 1, since
there would be no opportunity to gain the large reward afterwards.
Instead, the optimal choice would be to move to state 3, at a gain
of 20. Despite this, on about 40% of such trials, subjects were
attracted to state 1 (Figure 4E). This was not predicted by the
pruning model: paired t-tests showed significant differences
between empirical and predicted choice probabilities for each of
the three groups: p~0:026, t11~{2:57; p~0:040, t14~{2:27;
and p~0:0005, t14~{3:10, for groups 270, 2100 and 2140
respectively. Three subjects in group 270 and one subject in
group 2100 were never exposed to depth 1 sequences in state 6.

To accommodate this characteristic of the behavior, we added a
further, ‘Learned Pavlovian’ component to the model, accounting
for the conditioned attraction (or repulsion) to states that accrues

Figure 3. Choice sequences. Example decision trees of varying depth starting from states 1 or 3. The widths of the solid lines are proportional to
the frequencies with which particular paths were chosen (aggregated across all subjects). Yellow backgrounds denote optimal paths (note that there
can be multiple optimal paths). Colours red, black, green and blue denote transitions with reinforcements of {X ,{20,z20 and z140 respectively.
Dashed lines denote parts of the decision tree that were never visited. Visited states are shown in small gray numbers where space allows. A: Subjects
avoid transitions through large losses. In the {140 condition, this is not associated with an overall loss. B: In the {70 condition, where large rewards
lurk behind the {70 losses, subjects can overcome their reluctance to transition through large losses and can follow the optimal path through an
early large loss. C: However, they do this only if the tree is small and thus does not require pruning. Subjects fail to follow the optimal path through
the same subtree as in B (indicated by a black box) if it occurs deeper in the tree, i.e. in a situation where computational demands are high. D,E,F
Fraction of times subjects in each group chose the optimal sequence, deduced by looking all the way to the end of the tree. Green shows subjects’
choices when the optimal sequence did not contain a large loss; blue shows subjects’ choices when the optimal sequence did contain a large loss.
Coloured areas show 95% confidence intervals, and dashed lines predictions from the model ‘Pruning & Learned’ (see below).
doi:10.1371/journal.pcbi.1002410.g003

Pavlovian Pruning of Goal-Directed Decisions

PLoS Computational Biology | www.ploscompbiol.org 4 March 2012 | Volume 8 | Issue 3 | e1002410

2 1

3

4 5

6

-70 +20
-20

+140

R

L
3 moves

9

--/-

--/-

--/-+/-

-/+

+/+++

A B C D
-70

-20

+140 +20 -20 -70 -20 -70 -70 -20

+20 -20 +20

-20} } }
}

Fragm
ent 1

Fragm
ent 2

Not evaluated evaluated

*
R

L

-70

-20

++140 +20 -20 -70 -20 -70 -70 -20

+20 -20 +20

-20
Pruning

} }
Not evaluated evaluated

RL

Hierarchical fragmentationPruning

A B D
(Figure 2C). The fact that pruning continues even when
disadvantageous is evidence for a simple and inflexible pruning
strategy which neglects events occurring after large losses when
computational demands are high. Figure 6C shows the cost of
pruning in terms of the loss of income during episodes when the
optimal choice sequence would have involved a transition through
a large punishment. These results suggest that pruning is a
Pavlovian response in the sense that it is not goal-directed and not
adaptive to the task demands, but is rather an inflexible strategy
reflexively applied upon encountering punishments.

Psychometric correlates
We next tested two a priori predictions that relate the model

parameters to psychometric measurements. Based on prior
modelling work [17], we hypothesized that the tendency to
employ the simple pruning strategy should correlate with
psychometric measures related to depression and anxiety, i.e.
with the BDI score and NEO neuroticism. We also expected to
replicate prior findings whereby the reward sensitivity parameter b
should be negatively correlated with BDI and NEO neuroticism
[21–24]. Because parameters for different subjects were estimated

Figure 5. Pruning exists above and beyond any loss aversion. A: Loss aversion model comparison BICint scores. Red star indicates most
parsimonious model. The numbers by the bars show model likelihood ratios of interest at the group level, and below them at the mean individual
level. Pruning adds parsimony to the model even after accounting for loss aversion (cf. ‘Discount & Loss’ vs ‘Pruning & Loss’), while loss aversion does
not increase parsimony when added to the best previous model (‘Pruning & Learned’ vs ‘Loss & Prune & Learned’). B: Separate inference of all
reinforcement sensitivities from best loss aversion model. C: Absolute ratio of inferred sensitivity to maximal punishment (270, 2100 or 2140) and
inferred sensitivity to maximal reward (always +140). Subjects are 1.4 times more sensitive to punishments than to rewards.
doi:10.1371/journal.pcbi.1002410.g005

Figure 6. Pruning parameters. A: Pruning parameter estimates – specific and general pruning parameters are shown separately for each group.
Specific pruning exceeded general pruning across subjects, but there was no main effect of group and no interaction. The difference between
parameter types was significant in all three groups, with specific exceeding general pruning for 14/15, 12/16 and 14/15 subjects in the 270, 2100
and 2140 groups respectively. Blue bars show specific pruning parameters (cS) and red bars general pruning parameters (cG). Black dots show the
estimates for each subject. Gray lines show the uncertainty (square root of second moment around the parameter) for each estimate. B: Equivalent
parametrization of the most parsimonious model to infer differences between pruning and discount factors directly. For all three groups, the
difference is significantly positive. C: Income lost due to pruning. On trials on which the optimal sequence led through large punishments, subjects
lost more income the more counterproductive pruning was (loss in group 270wloss in group 2100wloss in group 2140). Each bar shows the total
income subjects lost because they avoided transitions through large losses. Throughout, the bars show the group means, with one standard error of
the mean in red and the 95% confidence interval in green.
doi:10.1371/journal.pcbi.1002410.g006
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fragmentation.” Fig. 3D shows that the frequency of the most
commonly used fragment increased gradually over time. In marked
contrast, the frequency with which all other choice fragments were
chosen decayed over time. Fig. 3E shows that this results in the
entropy over the fragment distribution decaying steeply.
Precisely because the task is too hard to solve perfectly, how-

ever, subjects cannot be sure that their previously computed choice
sequence really represents the best option. Stochastic memoization
refers to probabilistic, as opposed to deterministic, reuse. It is more
appropriate when the result of the computation might change if it
were recomputed, for instance due to incomplete or error-prone
computation. One formalization of such a process is inspired
by a method invented in computational linguistics (14, 16) that
employs a distribution known as the “Chinese restaurant process”
(CRP) (18). A CRP defines a probability distribution consisting of
two terms. The first term is proportional to the frequency of past
samples, whereas the second is the “base distribution” from which
samples are drawn in the first place. Applied to the current prob-
lem, this model assumes that the probability of emitting a particular
fragment is a weighted sum of two probabilities: the frequency of
that particular fragment in the collection of previous choices and
the probability that the fragment would be chosen anew if the so-
lution to the problem were recomputed (i.e., the probability under
the model baseline + restricted fragmentation). One critical feature
of the CRP statistical model is a gradual change, with the choice
probability being initially mainly driven by the base model (implying
recomputation), and later by subjects’ past choices (implying
stronger reuse later; see Eq. 2). This transfer from flexible but
costly computation to inflexible reliance on past experience is
reminiscent of arguments about the transfer from goal-directed
to habitual controllers (3, 19). However, by relying only on
which choice was emitted rather than on how good it was, it also
differs from certain formalizations of habits (3).
Fig. 3C and Fig. S5 show that the CRP addition in the aug-

mented model “baseline + restricted fragmentation + stochastic
memoization” outperformed the other models. Fitted reward sen-
sitivity parameters correlated closely with the true reward sizes
(mean of 0.994), and the target structure of the fragments was
again not substantially altered by the inclusion of stochastic
memoization (Fig. S4C). Adding stochastic memoization to the
model with unrestricted fragmentation also improved all measures
of model fit drastically (log likelihood improved for every subject
by 43 ± 22; 14% more variance explained; ΔiBIC = 4,162). The

same was true when controlling for an increase in the scaling of
the reward sensitivities [i.e., an increase in exploitation (20)] over
time (ΔiBIC = 86), and the model was also clearly identifiable
on surrogate datasets (Supporting Information, Robustness of In-
ference and Table S1). Finally, corresponding parameters were
highly correlated between all models tested (0.81 ± 0.06), suggesting
that parameters captured similar variability in different models.

Pruning. Finally, we considered whether the pruning that we had
previously seen using a similar task (4) might have been an artifact
of the incomplete analysis of fragmentation and memoization. The
baseline model that we fit included two pruning parameters: one
that discounted outcomes distal to large losses ðγSÞ and another
ðγGÞ that discounted distal outcomes in a value-independent
manner (Supporting Information, Pruning). However, the relation-
ship between these two parameters was not constrained by the
models. We examined the pruning parameters in the (overfitting)
model “baseline + unrestricted fragmentation + stochastic
memoization” because this model captured 78% of the variance,
and hence controlled most strongly for all other processes. Fig. 3F
shows that the continuation rate after outcomes other than large
losses was indistinguishable from 1 (and hence γG from zero), ar-
guing that the apparent general discounting factor whereby subjects
do not always look to the end of a tree is actually an epiphenom-
enon of hierarchical decomposition. However, every subject dis-
counted outcomes distant to large losses more steeply than other
distant outcomes (1− γS < 1− γG for 37/37 subjects). That is,
pruning remained a powerful effect even when controlling for
fragmentation and reuse as much as possible. Given that most
fragments were short enough to be computed fully (Fig. 3B;
however, note that owing to the length of the fragments the actual
number of choices being part of longer fragments is higher), this
also underscores our previous contention that pruning is a Pav-
lovian and reflexive response to aversive outcomes (4).

Intelligence Quotient. It has been suggested that subjects’ ability to
decompose problems into larger chunks is a key ingredient of
intelligence (21). The correlation between mean fragment length
and verbal intelligence quotient (IQ) measured by a reading test
was not significant (ρ = 0.08, P = 0.64).

Discussion
Our results suggest that humans naturally decompose problems in
a way that efficiently trades computational cost for performance;
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Fig. 3. Fragment characteristics. (A) Distribution
over inferred fragment lengths. (B) Overall distribu-
tion over fragment endpoints. State 2 is the most
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Nested model comparison. Each bar shows the
group-level iBIC score for one model, when adding
additional cognitive processes. (D) Over time, only
the most frequently used fragment increases in fre-
quency, whereas all others decay and are used less
frequently. (E) The entropy of the distribution over
fragments used falls nearly linearly over time. (F)
Discount factors (within fragments). An outcome ly-
ing x transitions ahead is multiplied by 1 − γ a total of
x − 1 times. For outcomes lying distant to large losses
(“specific pruning”) 1− γS is substantially smaller
than 1, implying robust discounting. In contrast, for
outcomes distant to non-large loss outcomes (“gen-
eral pruning”), 1− γG is indistinguishable from 1 for
every subject, meaning that these are not down-
weighted within fragments. Thus, subjects search to
the end of the fragment but show a strong tendency
to stop the search at large losses even within the
fragments ð1− γS < 1Þ.
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FIGURE 9: Task and approximations. A: Subjects were shown six boxes. The randomly chosen
starting location was indicated by the bright box and the number of moves to plan by the
number at the top. Subjects were given time to plan, and then had to enter the entire planned
sequence in terms of left/right button presses prior to seeing the chosen sequence and the
rewards earned. B: The task consisted of a maze, and subjects were placed in one of the six
boxes at the beginning of each trial. They planned how to traverse the maze such as to maxi-
mize the sum of deterministic outcomes earned along the path. Each state had two successor
states, which could be reached deterministically by right or left button presses. C: Decision-
tree starting from state 3 and for a depth of 3 moves to plan. Pruning involves cutting off
branches of the tree. A simple pruning strategy is to avoid transitions through large losses. In
this particular setup with -70 as large losses, this would lead to the even larger gains being
forfeited. D: The lines shows the fraction of optimal paths chosen for each depth of problem.
In this version of the task, there were always two optimal paths: one through a salient loss
(blue line), the other avoiding the salient loss (green line). When given the choice, subjects
thus nearly deterministically avoided transitions through the large loss even when this had no
impact on the outcome. E: A computational measure of the probably of stopping the evalua-
tion of a tree at a salient loss (blue) and at other points (red) for three groups with different
salient losses of -70, -100 and -140. Strikingly, the stopping probabilities are barely different,
suggesting that the inhibition of thoughts is reflexive rather than adaptively goal-directed it-
self. F: Hierarchical decomposition. The complexity of the problem can be drastically reduced
by approximating it with a subdivision of the task into smaller problems that are composed
greedily. Here, for instance first solving the depth-2 tree, and then solving whichever depth-1
tree this leads to. G: The blue line shows the distribution of thought fragment lengths that
would maximally reduce computational load without affecting performance. The grey lines
are inferred from the data and show a close match, suggesting that individuals spontaneously
near-optimally subdivided the task to minimize computational costs. Figures from Huys et al.
(2012, 2015c).



5 DISCUSSION

Learning and decision-making are closely related facets of human affect and cognition. Reinforcement
learning and dynamic programming provide principled approaches, which have been briefly reviewed
here. This was followed by a brief, tutorial-like overview over how to fit such models to actual data.
A point worth emphasizing is the importance of validating the model and of combining formal model
comparison with informal comparisons of data generated from the model with the real data. Finally, the
chapter covered a few prominent applications of the theory to psychiatric or neuroscience questions.

Taking a step back, one can ask what paths decision-theoretic accounts provide for psychiatric dysfunc-
tions. One categorization is into three such paths (Huys et al., 2015b):

• Solving the wrong problem. This features the use of the wrong model of the world: either max-
imising the wrong reward function (for instance judging a short-term drug reward more impor-
tant than long-term financial stability), or utilizing the wrong predictions about action conse-
quences (wrongly believing that one becomes more socially adept when high), or interpreting
events wrongly due to errors in the likelihood.

• Solving the correct problem, but poorly or wrongly. As most decision problems are too hard to
solve, some measure of approximation and error will naturally occur. The examples in the previous
section show that these features are actively being investigated.

• Solving the correct problem, correctly, but based on poor experience. Trauma and stress are strongly
associated with psychiatric ill-health. Behaviour following traumatic exposure may well represent
the ’correct’ solution even though it impairs well-being.

Finally, it should be mentioned that these techniques may well be useful in combination with other
techniques. For instance, the extraction of meaningful parameters in a generative model may provide a
very accurate and informationally efficient summary of complex, high-dimensional data. As such, these
models can function pre-processing to reduce the dimensionality of data prior to applying other analyses
(Wiecki et al., 2015b,a; Huys et al., 2016).
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