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Overview

‣ Reinforcement learning: rough overview
• mainly following Sutton & Barto 1998

‣ Dopamine
• prediction errors and more

‣ Fitting behaviour with RL models
• hierarchical approaches
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Setup

Environment

Agent

at rtst

After Sutton and Barto 1998

{at}� argmax
{at}

��

t=1

rt
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State space

Gold
+1

Electric 
shocks

-1
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A Markov Decision Problem

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)
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A Markov Decision Problem

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)
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Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Absorbing state -> max eigenvalue < 1

abs

Noisy: plants, environments, agent
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Markovian dynamics

p(st+1|at, st, at�1, st�1, at�2, st�2, · · · ) = p(st+1|at, st)

Velocity

s� = [position]� s� =
�

position
velocity

⇥

at�2, st�2 � at�1, st�1 � at, st
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A Markov Decision Problem

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)
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A Markov Decision Problem

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

-1 +10
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Tall orders

‣ Aim: maximise total future reward

‣ i.e. we have to sum over paths through the future 
and weigh each by its probability

‣ Best policy achieves best long-term reward

1X

t=1

rt
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Exhaustive tree search

wd
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Decision tree

1X

t=1

rt

8

64

512

...
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Policy for this talk

‣ Pose the problem mathematically
‣ Policy evaluation 
‣ Policy iteration
‣ Monte Carlo techniques: experience samples
‣ TD learning

Policy

UpdateEvaluate
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Evaluating a policy

‣ Aim: maximise total future reward

‣ To know which is best, evaluate it first
‣ The policy determines the expected reward from 

each state

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

1X

t=1

rt
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Discounting

‣ Given a policy, each state has an expected value

‣ But:

‣ Episodic

‣ Discounted
• infinite horizons

• finite, exponentially distributed horizons

��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�

t=0

�trt

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

TX

t=0

rt < 1
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Markov Decision Problems

This dynamic consistency is key to many solution approaches. 
It states that the value of a state s is related to 

the values of its successor states s’.

V ⇡(st) = E
" 1X

t0=1

rt0 |st = s,⇡

#

= E [r1| st = s,⇡] + E
" 1X

t=2

rt|st = s,⇡

#

= E [r1| st = s,⇡] + E [V ⇡(st+1)|st = s,⇡]
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Markov Decision Problems

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

r1 ⇠ R(s2, a1, s1)

E [r1|st = s,⇡] = E

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

p(at|st)

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

⇡(at, st)

2

4
X

st+1

T at
stst+1

R(st+1, at, st)

3

5
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Bellman equation

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

E [r1|st,⇡] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

R(st+1, a, st)

3

5

E [V ⇡(st+1),⇡, st] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

V ⇡(st+1)

3

5

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Bellman Equation 

All future
reward 

from state s

Immediate 
reward

= E

All future 
reward
from 

next state s’

+

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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‣ so we can define state-action values as:

‣ and state values are average state-action values:

Q values = state-action values

Q(s, a) =
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

= E
� ⇥⇤

t=1

rt|s, a
⇥

V (s) =
�

a

�(a|s)Q(s, a)

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)
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‣ to evaluate a policy, we need to solve the above 
equation, i.e. find the self-consistent state values

‣ options for policy evaluation 
• exhaustive tree search - outwards, inwards, depth-first
• value iteration: iterative updates
• linear solution in 1 step
• experience sampling

Bellman Equation 

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Solving the Bellman Equation 

V k+1(s) =
⇧

a

�(a, st)

⇤
⇧

s�

T a
ss�

�
R(s�, a, s) + V k(s�)

⇥
⌅

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)
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Policy update

Given the value function for a policy, say via linear solution

Given the values V for the policy, we can improve the policy by always
choosing the best action:

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)

It is guaranteed to improve:

Q⇡
(s,⇡0

(s)) = max

a
Q⇡

(s, a) � Q⇡
(s,⇡(s)) = V⇡

(s)
for deterministic policy

⇡0
(a|s) =

⇢
1 if a = argmaxa Q⇡

(s, a)
0 else
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Policy iteration

v� = (I�T�)�1R�

V �(s) = max
a

�

s�

T a
ss� [Ra

ss + V �(s⇥)]

Policy evaluation

greedy policy improvement

Value iteration

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else
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Model-free solutions

‣ So far we have assumed knowledge of R and T
• R and T are the ‘model’ of the world, so we assume full 

knowledge of the dynamics and rewards in the 
environment

‣ What if we don’t know them? 
‣ We can still learn from state-action-reward 

samples
• we can learn R and T from them, and use our estimates 

to solve as above
• alternatively, we can directly estimate V or Q
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Solving the Bellman Equation 

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and 
average over them:

more about this later...
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Learning from samples

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

A new problem: exploration versus exploitation
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Monte Carlo

‣ First visit MC
• randomly start in all states, generate paths, average for 

starting state only

‣ More efficient use of samples
• Every visit MC
• Bootstrap: TD
• Dyna

‣ Better samples
• on policy versus off policy
• Stochastic search, UCT...

V(s) = 1

N

X

i

(
TX

t0=1

rit0 |s0 = s

)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
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Update equation: towards TD

Bellman equation

V (s) =
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Not yet converged, so it doesn’t hold:

And then use this to update

V i+1(s) = V i(s) + dV (s)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
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TD learning

V i+1(s) = V i(s) + dV (s)

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Vt(st) = Vt�1(st) + �⇥t

�t = �Vt�1(st) + rt + Vt�1(st+1)
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TD learning

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

�t = �Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + �⇥t
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‣ Do TD for state-action values instead:

‣ convergence guarantees - will estimate 

SARSA

Q(st, at)⇥ Q(st, at) + �[rt + ⇥Q(st+1, at+1)�Q(st, at)]

st, at, rt, st+1, at+1

Q⇡(s, a)
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‣ Learn off-policy
• draw from some policy
• “only” require extensive sampling

‣ will estimate 

Q learning: off-policy 

Q(st, at)⇥ Q(st, at) + �

�

⇤rt + ⇥ max
a
Q(st+1, a)

⌥ ⌃⇧ �
�Q(st, at)

⇥

⌅

update towards
optimum

Q⇤(s, a)
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The effect of bootstrapping

B1
B1
B1
B1
B1
B1
B0
A0   B0

Markov (every visit) 
V(B)=3/4
V(A)=0

TD
V(B)=3/4
V(A)=~3/4

after Sutton and Barto 1998

‣ Average over various bootstrappings: TD(  )�
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Conclusion

‣ Long-term rewards have internal consistency
‣ This can be exploited for solution
‣ Exploration and exploitation trade off when 

sampling
‣ Clever use of samples can produce fast learning

• Brain most likely does something like this



Fitting models to behaviour

Quentin Huys

Translational Neuromodeling Unit, University of Zurich and ETH Zurich
University Hospital of Psychiatry Zurich

Computational Psychiatry Course
Zurich, 1.9.2016
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Go Nogo

Rewarded

Avoids loss

                                               

Example task

Go rewarded
Go to win

Pr
ob

ab
ilit

y(
G

o)

20 40 60
0

0.5

1

Nogo punished
Go to avoid

20 40 60
0

0.5

1

Nogo rewarded
Nogo to win

20 40 60
0

0.5

1

Go punished
Nogo to avoid

20 40 60
0

0.5

1

Guitart-Masip, Huys et al. 2012

0

0.5

1

Go to Go to Nogo to Nogo to
Win Avoid Win Avoid

Pr
ob

ab
ilit

y
co

rre
ct

Think of it as four separate two-armed bandit tasks
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Analysing behaviour

‣ Standard approach: 
• Decide which feature of the data you care about
• Run descriptive statistical tests, e.g. ANOVA

‣ Many strengths
‣ Weakness

• Piecemeal, not holistic / global
• Descriptive, not generative
• No internal variables

0

0.5

1

Go to Go to Nogo to Nogo to
Win Avoid Win Avoid

Pr
ob

ab
ilit

y
co

rre
ct
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Models

‣ Holistic
• Aim to model the process by which the data came about 

in its “entirety”

‣ Generative
• They can be run on the task to generate data as if a 

subject had done the task

‣ Inference process
• Capture the inference process subjects have to make to 

perform the task. 
• Do this in sufficient detail to replicate the data.

‣ Parameters
• replace test statistics
• their meaning is explicit in the model
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Actions

‣ Q values “the process”

‣ Probabilities “link function”

‣ Features:

‣ links learning process and observations 
• choices, RTs, or any other data

Qt(at, st) = Qt�1(at, st) + ✏(rt �Qt�1(at, st))

p(at|st, ht,�) = p(at|Q(at, st),�)

=
e�Q(at,st)

P
a0 e�Q(a0,st)

p(at|st) / Q(at, st)

0  p(a)  1
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Fitting models I

‣ Maximum likelihood (ML) parameters

‣ where the likelihood of all choices is: 

�̂ = argmax
�

L(�)

L(✓) = log p({at}Tt=1|{st}Tt=1, {rt}Tt=1, ✓|{z}
�,✏

)

= log p({at}Tt=1|{Q(st, at; ✏)}Tt=1,�)

= log

TY

t=1

p(at|Q(st, at; ✏),�)

=

TX

t=1

log p(at|Q(st, at; ✏),�)
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Fitting models II

‣ No closed form
‣ Use your favourite method

• gradients
• fminunc / fmincon...

‣ Gradients for RW model

dL(✓)
d✓

=

d

d✓

X

t

log p(at|Qt(at, st; ✏),�)

=

X

t

d

d✓
�Qt(at, st; ✏)�

X

a0

p(a0|Qt(a
0, st; ✏),�)

d

d✓
�Qt(a

0, st; ✏)

dQt(at, st; ✏)

d✏
= (1� ✏)

dQt�1(at, st; ✏)

d✏
+ (rt �Qt�1(at, st; ✏))
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Little tricks

‣ Transform your variables

‣ Avoid over/underflow

d logL(��)
d��

� = e�
�

⇥ �⇥ = log(�)

⇥ =
1

1 + e�⇥�

⇥ ⇥⇥ = log

�
⇥

1� ⇥

⇥

y(a) = �Q(a)

ym = max

a
y(a)

p =

ey(a)P
b e

y(b)
=

ey(a)�ym

P
b e

y(b)�ym
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ML characteristics

‣ ML is asymptotically consistent, but variance high
• 10-armed bandit, infer beta and epsilon

0 500 1000 1500 2000
−20

−10

0

10

20

Run

E
s
ti
m
a
te

200 trials, 1 stimulus, 10 actions, learning rate = .05, beta=2

L(� = 10) � L(� = 100)
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REWARD/PUNISHMENT REVERSAL LEARNING IN OLDER SUICIDE ATTEMPTERS

704       ajp.psychiatryonline.org Am J Psychiatry 167:6, June 2010

Time and Decision Making in Suicidal Behavior

Our results extend earlier findings of impaired decision 
making in younger suicide attempters with affective dis-
orders (11, 34) to a group of depressed elders with a his-
tory of suicide attempt. Suicide attempters in our study 
showed unstable decision making, which has been de-
scribed in midlife depression (15, 16) but was evident to 
a more extreme degree in our study participants. Further-
more, decreased reliance on past history was dissociated 
from abnormal sensitivity to rewards or punishments. 
Thus, in counterpoint to the prevailing view that suicidal 
individuals’ representations of reality are distorted in the 
valence domain (negative cognitive biases; see reference 
35, for example), our findings indicate distortions in the 
time domain. This notion is supported by early empirical 
findings of altered time perception (36–39) and by self-re-

Discussion

We found that in depressed elders, a deficit in probabi-
listic reversal learning, a component of decision making, 
is associated with attempted suicide but not with suicidal 
ideation. Suicide attempters discounted their reinforce-
ment history to a high degree relative to nondepressed 
comparison subjects, basing their choices largely on the 
reward or punishment received in the last trial. Some sui-
cide attempters also made multiple perseverative errors. 
This impairment was not explained by lower global cogni-
tive function, effects of lifetime substance use disorders, 
or possible brain injury from suicide attempts. Further-
more, it was dissociated from cognitive abilities engaged 
outside the context of punishment and reward—forward 
planning and working memory.

FIGURE 3. Model-Based Analyses of Probabilistic Reversal Learning: Reliance on Past Reinforcement History (Memory) and 
Learning From Punishmentsa
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a Panel A shows that suicide attempters had lower memory compared to nondepressed comparison subjects (omnibus analysis of variance, 
F=2.77, df=3, 61, p=0.049; Tukey’s honestly significant difference post hoc analysis: suicide attempters < nondepressed comparison sub-
jects, p=0.039). That is, suicide attempters relied less on their previous reinforcement history in making their decisions and more on feed-
back on the last trial compared to nondepressed comparison subjects. As expected, memory was negatively correlated with the total num-
ber of switches in participant choices (panel B) and with the number of probabilistic switches (switches following noncontingent negative 
feedback, panel C). Panel D shows that while the three depressed groups, particularly suicide ideators, tended to have a lower learning rate 
from punishments, group differences were not significant: F=2.52, df=3, 61, p=0.066; suicide ideators < nondepressed comparison subjects, 
p=0.087. This was due to perseverative errors in the three depressed groups (mean values listed in Table 2): learning rate from punishments 
was negatively correlated with the number of perseverative errors (panel E). Learning rate from punishments was positively correlated with 
the proportion of switches in response to noncontingent punishment (probabilistic switches) among all switches (panel F).

Dombrovski et al. 2010
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Maximum a posteriori estimate

P(�) = p(�|a1...T ) =
p(a1...T |�)p(�)�
d�p(�|a1...T )p(�)

logP(�) =
T⇥

t=1

log p(at|�) + log p(�) + const.

logP(⇥)
d�

=
logL(⇥)

d�
+

d p(⇥)
d⇥

‣ If likelihood is strong, prior will have little effect
• mainly has influence on poorly constrained parameters
• if a parameter is strongly constrained to be outside the 

typical range of the prior, then it will win over the prior
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Maximum a posteriori estimate

! "!! #!!! #"!! $!!!
!%

!$

!

$

&'(

)
*
+,
-
.
+/

200 trials, 1 stimulus, 10 actions, learning rate = .05, beta=2
mbeta=0, meps=-3, n=1
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But

What prior parameters should I use? 
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Hierarchical estimation - “random” effects

‣ Fixed effect
• conflates within- and between- subject variability

‣ Average behaviour
• disregards between-subject variability
• need to adapt model

‣ Summary statistic
• treat parameters as random variable, one for each subject
• overestimates group variance as ML estimates noisy

‣ Random effects
• prior mean = group mean

A. A. A.

✓

Ai Ai A. A. A.

✓i ✓· ✓· ✓·

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·

p(Ai|µ✓,�✓) =

Z
d✓i p(Ai|✓i) p(✓i|µ✓,�✓)p(Ai|µ✓,�✓) =

Z
d✓i p(Ai|✓i) p(✓i|µ✓,�✓| {z }

⇣

)

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·
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Random effects

‣ See subjects as drawn from group

‣ Fixed models
• all the same: fixed effect wrt model
• parametrically nested

• assumes within-subject mixture, rather than a group 
mixture of perfect types

‣ Random effects in models

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·

Q(a, s) = !1Q1(a, s) + !2Q2(a, s) �

�

K

A
T

M

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·
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Estimating the hyperparameters

‣ Effectively we now want to do gradient ascent on:

‣ But this contains an integral over individual 
parameters:

‣ So we need to: 

�̂ = argmax
�

p(A|�)

= argmax
�

�
d ⇥p(A|⇥) p(⇥|�)

d

d�
p(A|�)

p(A|�) =
�

d⇥p(A|⇥) p(⇥|�)
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Inference

‣ analytical - rare
‣ brute force - for simple problems
‣ Expectation Maximisation - approximate, easy
‣ Variational Bayes
‣ Sampling / MCMC

�̂ = argmax
�

p(A|�)

= argmax
�

�
d ⇥p(A|⇥) p(⇥|�)
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Expectation Maximisation

‣ Iterate between
• Estimating MAP parameters given prior parameters
• Estimating prior parameters from MAP parameters

log p(A|⇣) = log

Z
d✓ p(A, ✓|⇣)

= log

Z
d✓ q(✓)

p(A, ✓|⇣)
q(✓)

�
Z

d✓ q(✓) log
p(A, ✓|⇣)

q(✓)

kth E step: q(k+1)
(✓)  p(✓|A, ⇣(k))

kth M step: ⇣(k+1)  argmax

⇣

Z
d✓ q(✓) log p(A, ✓|⇣)

Jensen’s inequality
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Bayesian Information Criterion

‣ Laplace’s approximation (saddle-point method)

X

Y

X
lo
g(
Y)

Just a Gaussian�
dx f(x) � f�(x0)

⇥
2�⇥2
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EM with Laplace approximation

‣ E step: 
• only need sufficient statistics to perform M step
• Approximate
• and hence:

E step: qk(⇥) = N (mk,Sk)

mk � argmax
�

p(ak|⇥)p(⇥|�(i))

S�1
k � ⇤2p(ak|⇥)p(⇥|�(i))

⇤⇥2 �=mk

Just what we had before: MAP inference given some prior parameters

matlab: [m,L,,,S]=fminunc(…)

p(✓|A, ⇣(k)) ⇠ N (mk,Sk)

q(k+1)(✓) p(✓|A, ⇣(k))
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EM with Laplace approximation

‣ Updates

‣ And now iterate until convergence

Prior mean = mean of MAP estimates

Prior variance depends on inverse Hessian S and variance 
of MAP estimates

M step: �(i+1)
µ =

1

K

⇤

k

mk

�(i+1)
⇥2 =

1

N

⇤

i

�
(mk)

2 + Sk

⇥
� (�(i+1)

µ )2

Take uncertainty of estimates
into account
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Parameter recovery
Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 1: Accuracy. Each panel shows the correlation between the inferred parameters (ML,
MAP0and EM-MAP) with the true parameters used for generating the data. In the top row,
the parameters were correlated with ψ, in the bottom not. This has no influence here. The
accuracy grows with number of observations per subject (T), and with the number of subjects
(colours, Nsj), except for the ML estimation. Here, the higher number of subjects means a
higher chance of outliers. The gains of using EM-MAP over the other methods is more appar-
ent in the RW model than the 2-step model, though it differs between different parameters.
The ω parameter is particularly hard to estimate.
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FIGURE 2: Correlations. Inferred parameters are often correlated because they explain partially
overlapping features of the data. The correlations are very high for ML estimates in RW (A).
In the 2-step data, the correlation between β1 and ω is weak (B). The EM-MAP procedure
includes an estimate of the prior covariance matrix (E,F). Including this in the inference
effectively results in less correlated parameter estimates (C) in the RW data, but does not
harm estimates in the two-step model.
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Correlations

Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 1: Accuracy. Each panel shows the correlation between the inferred parameters (ML,
MAP0and EM-MAP) with the true parameters used for generating the data. In the top row,
the parameters were correlated with ψ, in the bottom not. This has no influence here. The
accuracy grows with number of observations per subject (T), and with the number of subjects
(colours, Nsj), except for the ML estimation. Here, the higher number of subjects means a
higher chance of outliers. The gains of using EM-MAP over the other methods is more appar-
ent in the RW model than the 2-step model, though it differs between different parameters.
The ω parameter is particularly hard to estimate.
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overlapping features of the data. The correlations are very high for ML estimates in RW (A).
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includes an estimate of the prior covariance matrix (E,F). Including this in the inference
effectively results in less correlated parameter estimates (C) in the RW data, but does not
harm estimates in the two-step model.
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Are parameters ok for correlations? 

‣ Individual subject parameter estimates NO 
LONGER INDEPENDENT!
• Change group -> change parameter estimates

‣ compare different params
• if different priors

‣ correlations, t-tests
• within same prior ok

Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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Hence all estimates can be used for regression analyses or t-tests.
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GLM

‣ So far 
• infer individual parameters
• apply standard tests

‣ Alternative
• View as variation across group
• Specific - more powerful?

A.

µ✓,�✓

A. A. A.

✓i ✓·✓· ✓·µi
✓ = µGroup

✓ + � i

Infer
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GLM

‣ Group-level regressor
Huys et al: LeAD Analysis guideline SUMMARY OF RESULTS
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FIGURE 5: GLM performance. A-D show the estimates of the regression coefficients when there
was no true correlation (A,C) and when there was a correlation of size 1 (B,D) in the RW
(A,B) and the 2-step models (C,D). Error bars are derived from the finite difference Hessians
around the estimates. E,F show the p value distribution obtained from the Hessians around
the regression coefficients for the case were the true parameters and ψ were uncorrelated.
For the RW model (E), this correctly yields a flat distribution. This is not the case for the ω
parameter of the 2-step model (F).

One drawback of using the parameter estimates as summary statistics and performing standard statistical
tests on them is that the certainty with which these parameter estimates were inferred is lost. Some sub-
jects might have performed poorly and their estimates should hence influence a regression less than those
of others. This can be taken into account in a GLM formulation, where we directly estimate regression
coefficients at the group level. The code provides error bars both for the group means and also for the
regression coefficients based on finite difference estimates of the Hessians.

Figure 5A-D shows that the regression coefficients could be estimated reasonably well both in the case
where there was and where there was no correlation present. We next asked whether the Hessians did
indeed provide a correct estimate of uncertainty. For the RW model this appears to be true: here, using
them to estimate t and hence p values yields a flat distribution of p values when there is no effect (Fig-
ure 5E). However, this is not true for the ω parameter of the 2-step model (Figure 5F). Hence, we cannot
generally use (at least this version of) the estimated errors around the GLM regression coefficients to
decide whether a correlation was significant or not.

An alternative is to perform model comparison, comparing a model without regressor (containing just the
group means for each parameter) to a model including the GLM regressor. This is probably the most ap-
propriate Bayesian approach. Estimating Bayes Factors is, however, difficult, and we hence examine how
an approximation to this, the integrated BIC (iBIC) performs. The lower this is, the more parsimonious
and hence “better” the model. For the RW data, model comparison using iBIC yields low false positive
rates (Figure 6A), but very high false negative rates (Figure 6B). For the 2-step model, false positive and
false negative rates appear to both be unacceptably high (Figure 6C,D).

Finally, the EM-MAP algorithm does provide approximate uncertainties for each individual parameter
estimate. These uncertainties can be used as weights in a regression analysis to attempt to achieve some-
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Fitting - how to

‣ Write your likelihood function
• matlab examples attached with emfit.m

• don’t do 20 ML fits!
• pass it into emfit.m or julia version

• www.quentinhuys.com/pub/emfit_151110.zip
• validate: generate data with fitted params

• compare, have a look, does it look right?
• re-fit - is it stable? 

• model comparison
• now: look at parameters, do correlations etc. 

‣ Future: 
• GLM
• full random effects over models and parameters jointly? 

• Daniel Schad 

Huys et al. Biology of Mood & Anxiety Disorders 2013, 3:12 Page 8 of 16
http://www.biolmoodanxietydisord.com/content/3/1/12
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datasets. A difference ≥ 10 in this measure is strong evidence for the model with the lower score. B: The parameter γ in the model largely captures
the probability with which participants made a correct choice. Note that, by design of the task, this explicitly captures the effect of symmetric
instructions and perceptual difficulties, rather than the asymmetric effect of rewards.

reverse orthogonalization did not yield any significant
correlations with ϵ.

At least part of the correlation between ρ and ϵ arises
because the the two parameters can explain similar fea-
tures of the data, i.e. alterations in one parameter can

be compensated for by alterations in the other parameter
(see Figure 1). To establish whether the association
between AD and the reward sensitivity parameter was due
to real features in the data, rather than due to inference
issues, we asked whether the correlations with question-
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Figure 3 Correlates of anhedonia. A: Correlation coefficients for all pairwise correlations between questionnaire measures. All are highly
significant (p < .01), except for the correlation between anhedonic depression and anxious anxiety, denoted by a red dot. B: Hierarchical weighted
regression analysis across all datasets, involving all 255 participants with a full set of BDI, BDA and MASQ scores. The plots shows the linear
coefficients between anhedonic depression (AD) score and the reward sensitivity and learning rate parameters ρ and ϵ . Each bars shows one linear
coefficient; the red error bars indicate ± 1 standard error; and the green error bars indicate the 99.4% confidence interval (corresponding to a
Bonferroni corrected level p = .05/8). AD is significantly and negatively correlated with the reward sensitivity ρ , but not significantly correlated with
the learning rate ϵ . C: Scatter plot of anhedonic depression against reward sensitivity. Size of dots scale with weight (inference precision). D: Scatter
plot of reward sensitivity vs. learning rate. E: Significance of correlations across parameter estimates from 70 surrogate datasets. There is a consistent
and stably significant correlation between AD and reward sensitivity ρ , but not between AD and learning rate ϵ .



Reinforcement learning Quentin Huys, ETHZ / PUKCPC Zurich 1/9/16

Hierarchical / random effects models

‣ Advantages
• Accurate group-level mean and variance
• Outliers due to weak likelihood are regularised
• Strong outliers are not
• Useful for model selection

‣ Disadvantages
• Individual estimates    depend on other data, i.e. on         and 

therefore need to be careful in interpreting these as summary 
statistics

• More involved; less transparent

‣ Psychiatry
• Groups often not well defined, covariates better

‣ fMRI
• Shrink variance of ML estimates - fixed effects better still?

✓i Aj 6=i
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How does it do? 
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Overfitting

X

Y
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Model comparison

‣ A fit by itself is not meaningful
‣ Generative test

• qualitative

‣ Comparisons
• vs random 
• vs other model -> test specific hypotheses and isolate 

particular effects in a generative setting
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Model comparison 

‣ Averaged over its parameter settings, how well does 
the model fit the data?

‣ Model comparison: Bayes factors

‣ Problem: 
• integral rarely solvable 
• approximation: Laplace, sampling, variational...

p(A|M) =

Z
d✓ p(A|✓) p(✓|M)

BF =
p(A|M1)

p(A|M2)
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Why integrals? The God Almighty test
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Powerful model
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1

N
(p(X|�1) + p(X|�2) + · · · )

These two factors fight it out
Model complexity vs model fit
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Group-level BIC

‣ Very simple
• 1) EM to estimate group prior mean & variance

• simply done using fminunc, which provides Hessians
• 2) Sample from estimated priors
• 3) Average

log p(A|M) =

�
d� p(A|�) p(�|M)

⇥ �1

2
BICint

= log p̂(A|�̂ML)� 1

2
|M| log(|A|)
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How does it do? 
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Int

Fitted by EM...
too nice?
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Group Model selection

Integrate out your parameters
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Model comparison: overfitting?
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Avoids loss
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Behavioural data modelling

‣ Are no panacea
• statistics about specific aspects of decision machinery
• only account for part of the variance

‣ Model needs to match experiment
• ensure subjects actually do the task the way you wrote it 

in the model
• model comparison

‣ Model = Quantitative hypothesis
• strong test
• need to compare models, not parameters
• includes all consequences of a hypothesis for choice
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Thanks

‣ Peter Dayan
‣ Daniel Schad
‣ Nathaniel Daw

‣ SNSF
‣ DFG


