Modelling behavioural data

Quentin Huys
MA PhD MBBS MBPsS

Translational Neuromodeling Unit, ETH Zürich
Psychiatrische Universitätsklinik Zürich

Outline

- Why build models? What is a model
- Fitting models
- Validating \& comparing models
- Model comparison issues in psychiatry

Example task

Example task

Guitart-Masip, Huys et al. 2012

Example task

Guitart-Masip, Huys et al. 2012

Example task

Think of it as four separate two-armed bandit tasks

Analysing behaviour

- Standard approach:
- Decide which feature of the data you care about
- Run descriptive statistical tests, e.g.ANOVA
- Many strengths
- Weakness
- Piecemeal, not holistic / global
- Descriptive, not generative
- No internal variables

Analysing behaviour

- Standard approach:
- Decide which feature of the data you care about
- Run descriptive statistical tests, e.g.ANOVA

- Many strengths
- Weakness
- Piecemeal, not holistic / global
- Descriptive, not generative
- No internal variables

Models

- Holistic
- Aim to model the process by which the data came about in its "entirety"
- Generative
- They can be run on the task to generate data as if a subject had done the task
- Inference process
- Capture the inference process subjects have to make to perform the task.
- Do this in sufficient detail to replicate the data.
- Parameters
- replace test statistics
- their meaning is explicit in the model
- their contribution to the data is assessed in a holistic manner

A simple Rescorla-Wagner model

- Q values

$$
\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)=\mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)+\epsilon\left(r_{t}-\mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)\right)
$$

a_{t} action on trial t; can be either 'go' or 'logo'
$s_{t} \quad$ stimulus presented on trial t
$\epsilon \quad$ learning rate

- Key points:

- Q is the key part of the hypothesis
- formally states the learning process in quantitative detail
- formalizes internal quantities that are used in the task

Actions

- Q values

$$
\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)=\mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)+\epsilon\left(r_{t}-\mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)\right)
$$

- Action probabilities:"softmax" of Q value

$$
\begin{aligned}
p\left(a_{t} \mid s_{t}, h_{t}, \beta\right) & =p\left(a_{t} \mid \mathcal{Q}\left(a_{t}, s_{t}\right), \beta\right) \\
& =\frac{e^{\beta \mathcal{Q}\left(a_{t}, s_{t}\right)}}{\sum_{a^{\prime}} e^{\beta \mathcal{Q}\left(a^{\prime}, s_{t}\right)}}
\end{aligned}
$$

- Features:

$$
\begin{aligned}
p\left(a_{t} \mid s_{t}\right) & \propto \mathcal{Q}\left(a_{t}, s_{t}\right) \\
0 & \leq p(a) \leq 1
\end{aligned}
$$

- links learning process and observations
- choices, RTs, or any other data
- link function in GLMs
- man other forms

Fitting models I

- Maximum likelihood (ML) parameters

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}(\theta)
$$

- where the likelihood of all choices is:

$$
\begin{aligned}
\mathcal{L}(\theta) & =\log p(\left\{a_{t}\right\}_{t=1}^{T} \mid\left\{s_{t}\right\}_{t=1}^{T},\left\{r_{t}\right\}_{t=1}^{T}, \underbrace{\theta}_{\beta, \epsilon}) \\
& =\log p\left(\left\{a_{t}\right\}_{t=1}^{T} \mid\left\{\mathcal{Q}\left(s_{t}, a_{t} ; \epsilon\right)\right\}_{t=1}^{T}, \beta\right) \\
& =\log \prod_{t=1}^{\beta} p\left(a_{t} \mid \mathcal{Q}\left(s_{t}, a_{t} ; \epsilon\right), \beta\right) \\
& =\sum_{t=1}^{T} \log p\left(a_{t} \mid \mathcal{Q}\left(s_{t}, a_{t} ; \epsilon\right), \beta\right)
\end{aligned}
$$

Fitting models II

- No closed form
- Use your favourite method
- gradients
- fminunc / fmincon...
- Gradients for RW model

$$
\begin{aligned}
\frac{d \mathcal{L}(\theta)}{d \theta} & =\frac{d}{d \theta} \sum_{t} \log p\left(a_{t} \mid \mathcal{Q}_{t}\left(a_{t}, s_{t} ; \epsilon\right), \beta\right) \\
& =\sum_{t} \frac{d}{d \theta} \beta \mathcal{Q}_{t}\left(a_{t}, s_{t} ; \epsilon\right)-\sum_{a^{\prime}} p\left(a^{\prime} \mid \mathcal{Q}_{t}\left(a^{\prime}, s_{t} ; \epsilon\right), \beta\right) \frac{d}{d \theta} \beta \mathcal{Q}_{t}\left(a^{\prime}, s_{t} ; \epsilon\right) \\
\frac{d \mathcal{Q}_{t}\left(a_{t}, s_{t} ; \epsilon\right)}{d \epsilon} & =(1-\epsilon) \frac{d \mathcal{Q}_{t-1}\left(a_{t}, s_{t} ; \epsilon\right)}{d \epsilon}+\left(r_{t}-\mathcal{Q}_{t-1}\left(a_{t}, s_{t} ; \epsilon\right)\right)
\end{aligned}
$$

Little tricks

- Transform your variables

$$
\begin{aligned}
\beta & =e^{\beta^{\prime}} \\
& \Rightarrow \beta^{\prime}=\log (\beta) \\
\epsilon & =\frac{1}{1+e^{-\epsilon^{\prime}}} \\
& \Rightarrow \epsilon^{\prime}=\log \left(\frac{\epsilon}{1-\epsilon}\right)
\end{aligned}
$$

$$
\frac{d \log \mathcal{L}\left(\theta^{\prime}\right)}{d \theta^{\prime}}
$$

- Avoid over/underflow

$$
\begin{aligned}
y(a) & =\beta \mathcal{Q}(a) \\
y_{m} & =\max _{a} y(a) \\
p & =\frac{e^{y(a)}}{\sum_{b} e^{y(b)}}=\frac{e^{y(a)-y_{m}}}{\sum_{b} e^{y(b)-y_{m}}}
\end{aligned}
$$

ML characteristics

ML characteristics

- ML is asymptotically consistent, but variance high - I0-armed bandit, infer beta and epsilon

ML characteristics

- ML is asymptotically consistent, but variance high
- I0-armed bandit, infer beta and epsilon

Priors

Not so smooth

Smooth

Priors

Not so smooth

Smooth

Priors

Not so smooth

Smooth

Maximum a posteriori estimate

$$
\begin{aligned}
& \mathcal{P}(\theta)=p\left(\theta \mid a_{1 \ldots T}\right)=\frac{p\left(a_{1 \ldots T} \mid \theta\right) p(\theta)}{\int d \theta p\left(\theta \mid a_{1 \ldots T}\right) p(\theta)} \\
& \log \mathcal{P}(\theta)=\sum_{t=1}^{T} \log p\left(a_{t} \mid \theta\right)+\log p(\theta)+\text { const. } \\
& \frac{\log \mathcal{P}(\theta)}{d \alpha}=\frac{\log \mathcal{L}(\theta)}{d \alpha}+\frac{d p(\theta)}{d \theta}
\end{aligned}
$$

- If likelihood is strong, prior will have little effect
- mainly has influence on poorly constrained parameters
- if a parameter is strongly constrained to be outside the typical range of the prior, then it will win over the prior

Maximum a posteriori estimate

200 trials, I stimulus, 10 actions, learning rate $=.05$, beta $=2$

$$
m_{\text {beta }}=0, m_{\text {eps }}=-3, n=1
$$

What prior parameters should I use?

Hierarchical estimation -"random" effects

(®)
$\stackrel{1}{4}$

Hierarchical estimation -"random" effects

Hierarchical estimation -"random" effects

- Fixed effect
- conflates within- and between- subject variability

Hierarchical estimation - "random" effects

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model

Hierarchical estimation - "random" effects

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy

Hierarchical estimation - "random" effects

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
- prior mean = group mean

Hierarchical estimation - "random" effects

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
- prior mean = group mean

$$
p\left(\mathcal{A}_{i} \mid \mu_{\theta}, \sigma_{\theta}\right)=\int d \theta_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mu_{\theta}, \sigma_{\theta}\right)
$$

Hierarchical estimation - "random" effects

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
- prior mean = group mean

$$
p\left(\mathcal{A}_{i} \mid \mu_{\theta}, \sigma_{\theta}\right)=\int d \theta_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p(\theta_{i} \mid \underbrace{\mu_{\theta}, \sigma_{\theta}}_{\zeta})
$$

Hierarchical estimation - "random" effects

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
- prior mean = group mean

$$
p\left(\mathcal{A}_{i} \mid \mu_{\theta}, \sigma_{\theta}\right)=\int d \theta_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p(\theta_{i} \mid \underbrace{\mu_{\theta}, \sigma_{\theta}}_{\zeta})
$$

Estimating the hyperparameters

- MAP

$$
\log \mathcal{P}(\theta)=\mathcal{L}(\theta)+\log \underbrace{p(\theta)}_{=p(\theta \mid \zeta)}+\text { const. }
$$

- Empirical Bayes: set them to ML estimate

$$
\hat{\zeta}=\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta)
$$

- where we use all the actions by all the k subjects

$$
\mathcal{A}=\left\{a_{1 \ldots T}^{k}\right\}_{k=1}^{K}
$$

ML estimate of top-level parameters

$$
\hat{\zeta}=\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta)
$$

Estimating the hyperparameters

- Effectively we now want to do gradient ascent on:

$$
\frac{d}{d \zeta} p(\mathcal{A} \mid \zeta)
$$

- But this contains an integral over individual parameters:

$$
p(\mathcal{A} \mid \zeta)=\int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta)
$$

- So we need to:

$$
\begin{aligned}
\hat{\zeta} & =\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta) \\
& =\underset{\zeta}{\operatorname{argmax}} \int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta)
\end{aligned}
$$

Integrating the integral

$$
\begin{aligned}
\hat{\zeta} & =\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta) \\
& =\underset{\zeta}{\operatorname{argmax}} \int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta)
\end{aligned}
$$

- analytical - rare
- brute force - for simple problems
- Expectation Maximisation - approximate, easy
- Variational Bayes
- Sampling / MCMC

EM with Laplace approximation

- Next update the prior

$$
\text { Prior mean }=\text { mean of MAP estimates }
$$

M step: $\quad \zeta_{\mu}^{(i+1)}=\frac{1}{K} \sum_{k} \mathbf{m}_{k}$

$$
\zeta_{\nu^{2}}^{(i+1)}=\frac{1}{N} \sum_{i}\left[\left(\mathbf{m}_{k}\right)^{2}+\mathbf{S}_{k}\right]-\left(\zeta_{\mu}^{(i+1)}\right)^{2}
$$

- And now iterate until convergence

Model comparison

- A fit by itself is not meaningful
- Generative test
- qualitative
- Comparisons
- vs random
- vs other model -> test specific hypotheses and isolate particular effects in a generative setting

Generative test

- Model: probability(actions)

- simply draw from this distribution, and see what happens

- Critical sanity test: is the model meaningful?
- Caveat: overfitting

Overfitting

Model comparison

- Averaged over its parameter settings, how well does the model fit the data?

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M})
$$

- Model comparison: Bayes factors

$$
B F=\frac{p\left(\mathcal{A} \mid \mathcal{M}_{1}\right)}{p\left(\mathcal{A} \mid \mathcal{M}_{2}\right)}
$$

- Problem:
- integral rarely solvable
- approximation: Laplace, sampling, variational...

Why integrals? The God Almighty test

Why integrals? The God Almighty test

Why integrals? The God Almighty test

$\frac{1}{N_{r}}\left(\mathrm{p}\left(\mathbf{X} \mid \theta_{1}\right)+p\left(X \mid \theta_{2}\right)+\cdots\right)$
These two factors fight it out Model complexity vs model fit

Bayesian Information Criterion

- Laplace's approximation (saddle-point method)

Bayesian Information Criterion

- Laplace's approximation (saddle-point method)

Bayesian Information Criterion

- Laplace's approximation (saddle-point method)

Bayesian Information Criterion

- Laplace's approximation (saddle-point method)

Bayesian Information Criterion: one subject

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M})
$$

Bayesian Information Criterion: one subject

$$
\begin{align*}
& p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M})
\end{align*}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \prod^{\substack{p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M}) \\
\text { is propto Gausian }}} \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|}
\end{aligned}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \underbrace{p(\theta \mid \mathcal{M})=\text { const. }}_{\substack{p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M}) \\
\text { is propto Gaussian }}} \begin{array}{l}
\text { Model doesn't prefer } \\
\text { particular }
\end{array}
\end{aligned}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \overbrace{}^{\substack{p(\mathcal{A} \mid \theta) \\
\text { is propto Gaussian }}}\left(\begin{array}{l}
p(\mathcal{M})
\end{array}\right. \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
\log p(\mathcal{A} \mid \mathcal{M}) & \approx \log p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi)
\end{aligned}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
& p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
& \log p(\mathcal{A} \mid \mathcal{M}) \approx \log p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi) \\
& \text { Laplacian approximation }
\end{aligned}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
& p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M}) \\
& p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
& \log p(\mathcal{A} \mid \mathcal{M}) \approx \log p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi) \\
& \text { Laplacian approximation } \\
& \Sigma_{i i} \propto \frac{1}{T} \Rightarrow \frac{1}{2} \log (|\Sigma|) \approx-\frac{N}{2} \log (T) \quad \text { Bayesian Information Criterion (BIC) } \\
& \approx \quad-N \quad \text { Akaike Information Criterion (AIC) }
\end{aligned}
$$

Bayesian Information Criterion: one subject

$$
\left.\begin{array}{rl}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
\log p(\mathcal{A} \mid \mathcal{M}) & \approx \log p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi) \\
\Sigma_{i i} \propto \frac{1}{T} \Rightarrow \frac{1}{2} \log (|\Sigma|) & \left.\left.\approx-\frac{N}{2} \log \right\rvert\, \theta\right) p(\theta \mid \mathcal{M}) \\
\text { is propto Gausian } \\
\text { Laplacian approximation } \\
\text { Model doessitt prefer } \\
\text { particur }
\end{array}\right) \text { Bayesian Information Criterion (BIC) }
$$

Group data

- Multiple subjects
- Multiple models
- do they use the same model? If not parameters are not comparable
- which model best accounts for all of them?
- Multiple groups
- difference in models?
- difference in parameters?
- 2^{k} possible model comparisons
- Multiple parameters
- 2^{k} possible correlations with any one psychometric measure

Group data - approaches

- Summary statistic
- Treat individual model comparison measure as summary statistics, do ANOVA or t-test

- Fixed effect analysis

- Subject data independent

$$
\begin{aligned}
\log p(\mathcal{A} \mid \mathcal{M}) & =\sum_{i} \log p\left(\mathcal{A}_{i} \mid \mathcal{M}\right) \\
& =\sum_{i} \log \int d \theta_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mathcal{M}_{i}\right) \approx-\frac{1}{2} \sum_{i} \mathrm{BIC}_{i}
\end{aligned}
$$

- Random effects analyses
- Hierarchical prior on group parameters

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \zeta \int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Hierarchical prior on models

$$
p\left(\mathcal{A}, \mathcal{M}_{k}, r \mid \alpha\right)=p\left(\mathcal{A} \mid \mathcal{M}_{k}\right) p\left(\mathcal{M}_{k} \mid r\right) p(r \mid \alpha)
$$

- Hierarchical prior on models and parameters...

Group-level likelihood

- Contains two integrals:
- subject parameters
- prior parameters

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

Evaluating p(A|M)

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level

Evaluating p(A|M)

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M}) \overbrace{2}^{p(A \mid \zeta, \mathcal{M}) p(\mid \mathcal{M})} \text { ispropto Cussian } \\
& \approx p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right) p\left(\zeta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N|\Sigma|}} \\
\log p(\mathcal{A} \mid \mathcal{M}) & \approx \log p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi)
\end{aligned}
$$

Evaluating p(A|M)

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M}) \\
& \approx p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right) p\left(\zeta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
\log p(\mathcal{A} \mid \mathcal{M}) & \approx \log p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi)
\end{aligned}
$$

just as before, top-level BIC

Is this reasonable?

Daniel Schad

Group level errors

Daniel Schad

Group level errors

Daniel Schad

Group-level BIC

$$
\begin{aligned}
\log p(\mathcal{A} \mid \mathcal{M}) & =\int d \boldsymbol{\zeta} p(\mathcal{A} \mid \boldsymbol{\zeta}) p(\boldsymbol{\zeta} \mid \mathcal{M}) \\
& \approx-\frac{1}{2} \mathrm{BIC}_{\mathrm{int}} \\
& =\log \hat{p}\left(\mathcal{A} \mid \hat{\boldsymbol{\zeta}}^{M L}\right)-\frac{1}{2}|\mathcal{M}| \log (|\mathcal{A}|)
\end{aligned}
$$

- Very simple
- I) EM to estimate group prior mean \& variance
- simply done using fminunc, which provides Hessians
- 2) Sample from estimated priors
- 3) Average

How does it do?

Int

How does it do?

iBIC in simulation 2

Generating Model	Fitted model					
	m2b2alr	mr	2b2alr	m 2 b 2 al	m	2b2al
m2b2alr	0	337	49	441	1297	531
mr	42	0	428	800	801	1490
2b2alr	12	841	0	280	2678	271
m2b2al	6	452	95	0	514	83
m	40	21	408	45	0	436
2b2al	16	1391	5	18	2271	0

Daniel Schad

Posterior distribution on models

- Generative model for models

Bayesian model selection - equations

- Write down joint distribution of generative model
- Variational approximations lead to set of very simple update equations
- start with flat prior over model probabilities

$$
\alpha=\alpha_{0}
$$

- then update

$$
\begin{aligned}
u_{k}^{i} & =\left(\int d \theta_{i} p\left(\mathcal{A}_{i}, \theta_{i} \mid \mathcal{M}_{k}\right)\right) \exp \left(\Psi\left(\alpha_{k}\right)-\Psi\left(\sum_{k} \alpha_{k}\right)\right) \\
\alpha_{k} & \leftarrow \alpha_{0, k}+\sum_{i} \frac{u_{k}^{i}}{\sum_{k} u_{k}^{i}}
\end{aligned}
$$

Random effects model \& parameter

Daniel Schad

Group Model selection

Integrate out your parameters

Questions in psychiatry l: regression

- Parametric relationship with other variables ψ
- do standard second level analyses
- can use Hessians to determine weights
- better: compare two models

$$
\begin{array}{rc}
\text { Model 1: } & \prod_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mu_{0}, \sigma\right) \\
\text { i.e. } & \theta_{i} \sim \mathcal{N}\left(\mu_{0}, \sigma\right) \\
\text { Model 2: } & \prod_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mu_{0}, c, \sigma, \psi_{i}\right) \\
\text { i.e. } & \theta_{i} \sim \mathcal{N}\left(\mu_{0}+c \psi_{i}, \sigma\right)
\end{array}
$$

Regression

- Standard regression analysis:

$$
\mathbf{m}_{i}=\mathbf{C r}_{i}+\Sigma^{1 / 2} \boldsymbol{\eta} \quad \forall i
$$

- Including uncertainty about each subject's inferred parameters

$$
\mathbf{m}_{i}=\mathbf{C r}_{i}+\left(\Sigma^{1 / 2}+\mathbf{S}_{i}^{1 / 2}\right) \boldsymbol{\eta} \quad \forall i
$$

- Careful: Finite difference estimates S can be noisy!
- regularize...

GLMs for behaviour

GLMs for behaviour

Is there a correlation or not?

- GLM regression coefficients and Model comparison

Questions in psychiatry II: group differences

Questions in psychiatry II: group differences

- Compare parameters across different models with care
- even very similar parameters can account for different effects, and thus 'mean' something else
- Bayesian model averaging
- Best if do full random effects inference
- Dominated by few subjects?

Questions in psychiatry II: group differences

- Compare parameters across different models with care
- even very similar parameters can account for different effects, and thus 'mean' something else
- Bayesian model averaging
- Best if do full random effects inference
- Dominated by few subjects?
- Within model - as model comparisons?
- Can't compare parameters estimated with different priors
- Fit all with one and the same prior, do t-tests
- But: only models the variance in parameters, not data
- Compare models with separate priors
- For models with k parameters, there are 2^{k} - I possible comparisons
- multiple comparisons?

Questions in psychiatry II: group differences

Model 1	ε	β
Model 2	ε	β

- Within model - as model comparisons?
- Can't compare parameters estimated with different priors
- Fit all with one and the same prior, do t-tests
- But: only models the variance in parameters, not data
- Compare models with separate priors
- For models with k parameters, there are 2^{k} - I possible comparisons
- multiple comparisons?

Questions in psychiatry III: Classification

- Who belongs to which of two groups?
- How many groups are there?

Model comparison again

- What is 'significant'?

$$
\begin{array}{r}
B F=\frac{p\left(\mathcal{A} \mid \mathcal{M}_{1}\right)}{p\left(\mathcal{A} \mid \mathcal{M}_{2}\right)} \\
p(\Lambda<\eta)
\end{array}
$$

$\log _{10}\left(B_{10}\right)$	B_{10}
0 to $1 / 2$	1 to 3.2
$1 / 2$ to 1	3.2 to 10
1 to 2	10 to 100
>2	>100

Evidence against H_{0}
Not worth more than a bare
mention
Substantial
Strong
Decisive
Kaas and Raftery 95

- Fixed vs Random effects
- "Spread of effect" in group comparisons
- Better model does not mean a behavioural effect is concentrated in one parameter
- Obvious raw differences spread between parameters

Behavioural data modelling

- Are no panacea
- statistics about specific aspects of decision machinery
- only account for part of the variance
- Model needs to match experiment
- ensure subjects actually do the task the way you wrote it in the model
- model comparison
- Model = Quantitative hypothesis
- strong test
- need to compare models, not parameters
- includes all consequences of a hypothesis for choice

Modelling in psychiatry

- Hypothesis testing
- otherwise untestable hypotheses
- internal processes
- Limited by data quality
- Look for strong behaviours, not noisy
- "Holistic" testing of hypotheses
- Marr's levels
- physical
- algorithm
- computational

