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‣ Fitting models	

‣ Validating & comparing models	

‣ Model comparison issues in psychiatry
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Think of it as four separate two-armed bandit tasks
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Analysing behaviour

‣ Standard approach: 	

• Decide which feature of the data you care about	

• Run descriptive statistical tests, e.g. ANOVA	


!
!
!
!
!

‣ Many strengths	

‣ Weakness	


• Piecemeal, not holistic / global	

• Descriptive, not generative	

• No internal variables
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Models

‣ Holistic	

• Aim to model the process by which the data came about 

in its “entirety”	


‣ Generative	

• They can be run on the task to generate data as if a 

subject had done the task	


‣ Inference process	

• Capture the inference process subjects have to make to 

perform the task. 	

• Do this in sufficient detail to replicate the data.	


‣ Parameters	

• replace test statistics	

• their meaning is explicit in the model	

• their contribution to the data is assessed in a holistic 

manner
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‣ Q values	

!

!

!

!

!

!

!

‣ Key points: 	

• Q is the key part of the hypothesis	

• formally states the learning process in quantitative detail	

• formalizes internal quantities that are used in the task

A simple Rescorla-Wagner model

Qt(at, st) = Qt�1(at, st) + ✏(rt �Qt�1(at, st))

at action on trial t; can be either ’go’ or ’logo’

st stimulus presented on trial t
✏ learning rate
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‣ Q values	

!

‣ Action probabilities: “softmax” of Q value	

!

!

!

‣ Features:	

!

!

‣ links learning process and observations 	

• choices, RTs, or any other data	

• link function in GLMs	

• man other forms

Actions

Qt(at, st) = Qt�1(at, st) + ✏(rt �Qt�1(at, st))

p(at|st, ht,�) = p(at|Q(at, st),�)

=
e�Q(at,st)

P
a0 e�Q(a0,st)

p(at|st) / Q(at, st)

0  p(a)  1
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‣ Maximum likelihood (ML) parameters	

!

!

‣ where the likelihood of all choices is: 

Fitting models I

�̂ = argmax
�

L(�)

L(✓) = log p({at}Tt=1|{st}Tt=1, {rt}Tt=1, ✓|{z}
�,✏

)

= log p({at}Tt=1|{Q(st, at; ✏)}Tt=1,�)

= log

TY

t=1

p(at|Q(st, at; ✏),�)

=

TX

t=1

log p(at|Q(st, at; ✏),�)
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Fitting models II

‣ No closed form	

‣ Use your favourite method	


• gradients	

• fminunc / fmincon...	


‣ Gradients for RW model

dL(✓)
d✓

=

d

d✓

X

t

log p(at|Qt(at, st; ✏),�)

=

X

t

d

d✓
�Qt(at, st; ✏)�

X

a0

p(a0|Qt(a
0, st; ✏),�)

d

d✓
�Qt(a

0, st; ✏)

dQt(at, st; ✏)

d✏
= (1� ✏)

dQt�1(at, st; ✏)

d✏
+ (rt �Qt�1(at, st; ✏))
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‣ Transform your variables	

!

!

!

!

!

‣ Avoid over/underflow

Little tricks

d logL(��)
d��

� = e�
�

⇥ �⇥ = log(�)

⇥ =
1

1 + e�⇥�

⇥ ⇥⇥ = log

�
⇥

1� ⇥

⇥

y(a) = �Q(a)

ym = max

a
y(a)

p =

ey(a)P
b e

y(b)
=

ey(a)�ym

P
b e

y(b)�ym
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ML characteristics
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‣ ML is asymptotically consistent, but variance high	

• 10-armed bandit, infer beta and epsilon
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‣ ML is asymptotically consistent, but variance high	

• 10-armed bandit, infer beta and epsilon
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REWARD/PUNISHMENT REVERSAL LEARNING IN OLDER SUICIDE ATTEMPTERS

704       ajp.psychiatryonline.org Am J Psychiatry 167:6, June 2010

Time and Decision Making in Suicidal Behavior

Our results extend earlier findings of impaired decision 
making in younger suicide attempters with affective dis-
orders (11, 34) to a group of depressed elders with a his-
tory of suicide attempt. Suicide attempters in our study 
showed unstable decision making, which has been de-
scribed in midlife depression (15, 16) but was evident to 
a more extreme degree in our study participants. Further-
more, decreased reliance on past history was dissociated 
from abnormal sensitivity to rewards or punishments. 
Thus, in counterpoint to the prevailing view that suicidal 
individuals’ representations of reality are distorted in the 
valence domain (negative cognitive biases; see reference 
35, for example), our findings indicate distortions in the 
time domain. This notion is supported by early empirical 
findings of altered time perception (36–39) and by self-re-

Discussion

We found that in depressed elders, a deficit in probabi-
listic reversal learning, a component of decision making, 
is associated with attempted suicide but not with suicidal 
ideation. Suicide attempters discounted their reinforce-
ment history to a high degree relative to nondepressed 
comparison subjects, basing their choices largely on the 
reward or punishment received in the last trial. Some sui-
cide attempters also made multiple perseverative errors. 
This impairment was not explained by lower global cogni-
tive function, effects of lifetime substance use disorders, 
or possible brain injury from suicide attempts. Further-
more, it was dissociated from cognitive abilities engaged 
outside the context of punishment and reward—forward 
planning and working memory.

FIGURE 3. Model-Based Analyses of Probabilistic Reversal Learning: Reliance on Past Reinforcement History (Memory) and 
Learning From Punishmentsa
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a Panel A shows that suicide attempters had lower memory compared to nondepressed comparison subjects (omnibus analysis of variance, 
F=2.77, df=3, 61, p=0.049; Tukey’s honestly significant difference post hoc analysis: suicide attempters < nondepressed comparison sub-
jects, p=0.039). That is, suicide attempters relied less on their previous reinforcement history in making their decisions and more on feed-
back on the last trial compared to nondepressed comparison subjects. As expected, memory was negatively correlated with the total num-
ber of switches in participant choices (panel B) and with the number of probabilistic switches (switches following noncontingent negative 
feedback, panel C). Panel D shows that while the three depressed groups, particularly suicide ideators, tended to have a lower learning rate 
from punishments, group differences were not significant: F=2.52, df=3, 61, p=0.066; suicide ideators < nondepressed comparison subjects, 
p=0.087. This was due to perseverative errors in the three depressed groups (mean values listed in Table 2): learning rate from punishments 
was negatively correlated with the number of perseverative errors (panel E). Learning rate from punishments was positively correlated with 
the proportion of switches in response to noncontingent punishment (probabilistic switches) among all switches (panel F).

Dombrovski et al. 2010
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Maximum a posteriori estimate

P(�) = p(�|a1...T ) =
p(a1...T |�)p(�)�
d�p(�|a1...T )p(�)

logP(�) =
T⇥

t=1

log p(at|�) + log p(�) + const.

logP(⇥)
d�

=
logL(⇥)

d�
+

d p(⇥)
d⇥

!

!

!

!

!

!

!

!

‣ If likelihood is strong, prior will have little effect	

• mainly has influence on poorly constrained parameters	

• if a parameter is strongly constrained to be outside the 

typical range of the prior, then it will win over the prior
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Maximum a posteriori estimate
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200 trials, 1 stimulus, 10 actions, learning rate = .05, beta=2	

mbeta=0, meps=-3, n=1
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But

What prior parameters should I use? 
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Hierarchical estimation - “random” effects

‣ Fixed effect	

• conflates within- and between- subject variability

A. A. A.

✓

Ai



Behavioural data modelling Quentin Huys, TNU/PUKSchloss Ringberg 8.9.2014

Hierarchical estimation - “random” effects

‣ Fixed effect	

• conflates within- and between- subject variability

‣ Average behaviour	

• disregards between-subject variability	

• need to adapt model

A. A. A.

✓

Ai



Behavioural data modelling Quentin Huys, TNU/PUKSchloss Ringberg 8.9.2014

Hierarchical estimation - “random” effects

‣ Fixed effect	

• conflates within- and between- subject variability

‣ Average behaviour	

• disregards between-subject variability	
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• treat parameters as random variable, one for each subject	

• overestimates group variance as ML estimates noisy
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‣ MAP	

!

!

!

‣ Empirical Bayes: set them to ML estimate	

!

!

‣ where we use all the actions by all the k subjects

Estimating the hyperparameters

logP(�) = L(�) + log p(�)⇤⇥�⌅
=p(⇥|�)

+const.

�̂ = argmax
�

p(A|�)

A = {ak
1...T }K

k=1
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ML estimate of top-level parameters
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‣ Effectively we now want to do gradient ascent on:	

!

!

‣ But this contains an integral over individual 
parameters:	

!

!

‣ So we need to: 

Estimating the hyperparameters

�̂ = argmax
�

p(A|�)

= argmax
�

�
d ⇥p(A|⇥) p(⇥|�)

d

d�
p(A|�)

p(A|�) =
�

d⇥p(A|⇥) p(⇥|�)



Behavioural data modelling Quentin Huys, TNU/PUKSchloss Ringberg 8.9.2014

Integrating the integral

‣ analytical - rare	

‣ brute force - for simple problems	

‣ Expectation Maximisation - approximate, easy	

‣ Variational Bayes	

‣ Sampling / MCMC

�̂ = argmax
�

p(A|�)

= argmax
�

�
d ⇥p(A|⇥) p(⇥|�)
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‣ Next update the prior	

!

!

!

!

!

!

!

!

!

‣ And now iterate until convergence

EM with Laplace approximation

Prior mean = mean of MAP estimates

Prior variance depends on inverse Hessian S and variance 
of MAP estimates

M step: �(i+1)
µ =

1

K

⇤

k

mk

�(i+1)
⇥2 =

1

N

⇤

i

�
(mk)

2 + Sk

⇥
� (�(i+1)

µ )2

Take uncertainty of estimates	

into account
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Model comparison

‣ A fit by itself is not meaningful	

‣ Generative test	


• qualitative	


‣ Comparisons	

• vs random 	

• vs other model -> test specific hypotheses and isolate 

particular effects in a generative setting



Behavioural data modelling Quentin Huys, TNU/PUKSchloss Ringberg 8.9.2014

Generative test

‣ Model: probability(actions)	

• simply draw from this distribution, and see what happens	

!

!

!

!

!

!

!

‣ Critical sanity test: is the model meaningful?	

‣ Caveat: overfitting
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Overfitting

X

Y
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Model comparison 

‣ Averaged over its parameter settings, how well does 
the model fit the data?	

!

!

‣ Model comparison: Bayes factors	

!

!

!

‣ Problem: 	

• integral rarely solvable 	

• approximation: Laplace, sampling, variational...

p(A|M) =

Z
d✓ p(A|✓) p(✓|M)

BF =
p(A|M1)

p(A|M2)
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Why integrals? The God Almighty test
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N
(p(X|�1) + p(X|�2) + · · · )

These two factors fight it out	

Model complexity vs model fit
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‣ Laplace’s approximation (saddle-point method)

Bayesian Information Criterion
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‣ Laplace’s approximation (saddle-point method)

Bayesian Information Criterion
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X
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Just a Gaussian�
dx f(x) � f�(x0)

⇥
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p(A|M) =

Z
d✓ p(A|✓,M) p(✓|M)

⇡ p(A|✓ML,M)p(✓ML|M)⇥
q

(2⇡)N |⌃|

log p(A|M) ⇡ log p(A|✓ML,M) +

1

2

log(|⌃|) + N

2

log(2⇡)

Bayesian Information Criterion: one subject
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Group data

‣ Multiple subjects	

‣ Multiple models	


• do they use the same model? If not parameters are not 
comparable	


• which model best accounts for all of them?	


‣ Multiple groups	

• difference in models?	

• difference in parameters?	

• 2k possible model comparisons	


‣ Multiple parameters	

• 2k possible correlations with any one psychometric 

measure
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Group data - approaches

‣ Summary statistic	

• Treat individual model comparison measure as summary 

statistics, do ANOVA or t-test	


‣ Fixed effect analysis	

• Subject data independent	

!

!

‣ Random effects analyses	

• Hierarchical prior on group parameters	


!
• Hierarchical prior on models	


!
• Hierarchical prior on models and parameters…

log p(A|M) =

X

i

log p(Ai|M)

=

X

i

log

Z
d✓i p(Ai|✓i)p(✓i|Mi) ⇡ �1

2

X

i

BICi

p(A|M) =

Z
d⇣

Z
d✓ p(A|✓) p(✓|⇣) p(⇣|M)

p(A,Mk, r|↵) = p(A|Mk) p(Mk|r) p(r|↵)
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�

�

K

A
T

Group-level likelihood

‣ Contains two integrals: 	

• subject parameters	

• prior parameters

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

M
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Evaluating p(A|M)

‣ Two integrals	

• tricky	


‣ Step by step: approximating levels separately	

• Approximate at the top level

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)
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�
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⇥
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Evaluating p(A|M)

‣ Two integrals	

• tricky	


‣ Step by step: approximating levels separately	

• Approximate at the top level

p(A|M) =

�
d⇥ p(A|⇥,M)

�
d� p(⇥|�) p(�|M)

p(A|�,M) p(�|M)
is propto Gaussian

Model doesn’t prefer	

particular �

just as before, top-level BIC

p(A|M) =

�
d� p(A|�,M) p(�|M)

⇥ p(A|�ML,M)p(�ML|M)�
⇥

(2⇥)N |�|

log p(A|M) ⇥ log p(A|�ML,M) +
1

2
log(|�|) + N

2
log(2⇥)
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Is this reasonable? 

-  Fitting empirical Bayes‘ models of reinforcement learning using Expectation 
Maximization (EM) [1] exhibits desirable normative properties 

-  Our new Variational Bayes method suggests that we can and should understand 
the heterogeneity and homogeneity observed in group studies of decision-making 
by investigating contributions of both, the underlying mechanisms and their 
parameters 

-  We find increased accuracy in Bayesian model comparison for our new VB method 
compared to previous approaches [1, 2] 

-  We expect that this new mixed-effects method will prove useful for a wide range of 
computational modeling approches in group studies of cognition and biology 

Bayesian!model!selec-on!and!es-ma-on:!
Simultaneous1mixed1effects1for1models1and1parameters1
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Conclusions1

Introduc-on1
Bayesian model selection and estimation (BMSE):  
Powerful methods for determining the most likely among sets of 
competing hypotheses about the mechanisms and parameters that 
generated observed data, e.g., from experiments on decision-making. 
 
Mixed-effects (or empirical / hierarchical Bayes‘) models: 
Provide full inference in group-studies – with repeated observations for 
each individual – by adequatly capturing: 
-  Individual differences (random effects / posteriors) 
-  Mechanisms & parameters common to all individuals (fixed effects / 

priors) 

Previous models: have assumed mixed-effects   
-  either for model parameters: Huys et al. [1] applied empirical Bayes‘ 

via Expectation Maximization (EM) to reinforcement learning models 
-  or for the model identity: Stephan et al. [2] developed a Variational 

Bayes‘ (VB) method for treating models as random-effects 
 
Here:  
A) We evaluate the empirical Bayes‘ method assuming mixed-effects 

for parameters for reinforcement learning models [1] 
B) We present a novel Variational Bayes' (VB) model which considers 

mixed-effects for models and parameters simultaneously 
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Table.!Δ!BIC!scores!(model9BIC!minus!BIC!for!the!best!model!for!the!dataset)!for!six!
different!models!for!six!different!datasets!generated!from!these!same!models.!The!
highlighted!diagonal!shows!that!for!all!simulated!data!sets!the!generating!model!was!
also!recovered!from!the!data.!
Generating"
Model"

Fitted"model"
"

" m2b2alr" mr" 2b2alr" m2b2al" m" 2b2al"
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2b2al" 16" 1391" 5" 18" 2271" 0"
!

-  Generating prior parameters can be 
recovered from simulated data 

-  The precision scales with number of 
data points as theoretically expected 

The likelihood for the prior is approximately 
Gaussian, providing a basis for a Laplace-
Approximation to derive error bars, with 
normative alpha errors 

BICint extracts the true generating model from the data 
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0.2 Parameter Estimation: Empirical Bayes

In an empirical Bayes’ approach the prior is inferred from the group information by inte-
grating over the vector of individual subject-parameters, ✓,

P (X | µ✓,�✓) /
Z 1

�1
d✓P (X,✓ | µ✓,�✓) (4)

and prior parameters are set to their ML estimates

µ̂✓,�̂✓ = argmax
µ
✓

,�
✓

P (X | µ✓,�✓) = argmax
µ
✓

,�
✓

Z 1

�1
d✓ P (X | ✓)P (✓ | µ✓,�✓) (5)

0.2.1 Expectation Maximization with Laplace approximation

To estimate model parameters we use Expectation Maximization (EM), where we iterate
between an expectation step, where we approximate the distribution of latent subject-
parameters, and a maximization step, where we search for maximum likelihood estimates
(MLE) for the prior parameters. In this procedure, each parameter update is obtained
conditional on the currently best estimates for the other parameters.

To ease computations with the likelihood of the prior parameters we take its logarithm (see
Equantion 6). As the distribution of individual subject parameters cannot in general be
solved analytically and directly, we introduce the distribution q(✓) ⌘ Normal(✓; ✓0, S) to
approximate the distribution over ✓ via a normal distribution (i.e., Laplace approximation).
In the E-step, we approximate this distribution based on the prior parameters and the data.
In the M-step, we can subsequently update our estimates for the other (prior) parameters
given this approximation to ✓. To solve equation (7) we utilize Jensen’s inequality and
move the logarithm into the integral in (8).

log p (X | µ✓,�✓) = log

Z 1

�1
d✓ p (X, ✓ | µ✓,�✓) (6)

= log

Z 1

�1
d✓ q(✓)

p (X, ✓ | µ✓,�✓)

q(✓)
(7)

�
Z 1

�1
d✓ q(✓) log

p (X, ✓ | µ✓,�✓)

q(✓)
(8)
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Figure 21: Bayesian dependency graphs for our random e↵ects generative model for
multi-subject data. Rectangles denote deterministic parameters and shaded circles rep-
resent observed values. ↵ = parameters of the Dirichlet distribution (number of model
”occurrences”); r = parameters of the multinomial distribution (probabilities of the mod-
els); m = model labels; ✓ = individual subject parameters; µ = prior group mean; �2 =
prior group variance; µ0, ⌫ = hyper-priors for the µ parameter; a0, b0 = hyper-priors for
the �2 parameter; y = observed data; y | m = probability of the data given model k; k =
model index; K = number of models; n = subject index; N = number of subjects.
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Simple RL + 200 trials 
With sufficient data, the correct model 
can be identified for all subjects and 
for both methods with high certainty 

Simple RL + 20 trials 
With scarce data per subject, the full 
VB method improves model 
comparison compared to the 
sufficient statistics approach 

2step + 201 trials 
Using three similar 
models with differing 
model parameters in 
the 2step task also 
yields posterior 
uncertainty, and the 
full VB performs best 

Simple RL: ab = simple RL model, assuming 1 state, 2 actions, learning rate (a) 
inverse noisiness (b) parameters (N=60) 
Rep = repetition model (N = 30) 

2step: Hybrid = model-based + model-free; model-free; non-learner [3] 

2step + 201 trials + 
parameters based 
on real data [4] 
The advantage for 
the full VB is visible 
also for parameters 
obtained from real 
(observed) data 
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Group level errors

-  Fitting empirical Bayes‘ models of reinforcement learning using Expectation 
Maximization (EM) [1] exhibits desirable normative properties 

-  Our new Variational Bayes method suggests that we can and should understand 
the heterogeneity and homogeneity observed in group studies of decision-making 
by investigating contributions of both, the underlying mechanisms and their 
parameters 

-  We find increased accuracy in Bayesian model comparison for our new VB method 
compared to previous approaches [1, 2] 

-  We expect that this new mixed-effects method will prove useful for a wide range of 
computational modeling approches in group studies of cognition and biology 

Bayesian!model!selec-on!and!es-ma-on:!
Simultaneous1mixed1effects1for1models1and1parameters1
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Conclusions1

Introduc-on1
Bayesian model selection and estimation (BMSE):  
Powerful methods for determining the most likely among sets of 
competing hypotheses about the mechanisms and parameters that 
generated observed data, e.g., from experiments on decision-making. 
 
Mixed-effects (or empirical / hierarchical Bayes‘) models: 
Provide full inference in group-studies – with repeated observations for 
each individual – by adequatly capturing: 
-  Individual differences (random effects / posteriors) 
-  Mechanisms & parameters common to all individuals (fixed effects / 

priors) 

Previous models: have assumed mixed-effects   
-  either for model parameters: Huys et al. [1] applied empirical Bayes‘ 

via Expectation Maximization (EM) to reinforcement learning models 
-  or for the model identity: Stephan et al. [2] developed a Variational 

Bayes‘ (VB) method for treating models as random-effects 
 
Here:  
A) We evaluate the empirical Bayes‘ method assuming mixed-effects 

for parameters for reinforcement learning models [1] 
B) We present a novel Variational Bayes' (VB) model which considers 

mixed-effects for models and parameters simultaneously 
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Table.!Δ!BIC!scores!(model9BIC!minus!BIC!for!the!best!model!for!the!dataset)!for!six!
different!models!for!six!different!datasets!generated!from!these!same!models.!The!
highlighted!diagonal!shows!that!for!all!simulated!data!sets!the!generating!model!was!
also!recovered!from!the!data.!
Generating"
Model"

Fitted"model"
"

" m2b2alr" mr" 2b2alr" m2b2al" m" 2b2al"
m2b2alr" 0" 337" 49" 441" 1297" 531"
mr" 42" 0" 428" 800" 801" 1490"
2b2alr" 12" 841" 0" 280" 2678" 271"
m2b2al" 6" 452" 95" 0" 514" 83"
m" 40" 21" 408" 45" 0" 436"
2b2al" 16" 1391" 5" 18" 2271" 0"
!

-  Generating prior parameters can be 
recovered from simulated data 

-  The precision scales with number of 
data points as theoretically expected 

The likelihood for the prior is approximately 
Gaussian, providing a basis for a Laplace-
Approximation to derive error bars, with 
normative alpha errors 

BICint extracts the true generating model from the data 
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0.2 Parameter Estimation: Empirical Bayes

In an empirical Bayes’ approach the prior is inferred from the group information by inte-
grating over the vector of individual subject-parameters, ✓,

P (X | µ✓,�✓) /
Z 1

�1
d✓P (X,✓ | µ✓,�✓) (4)

and prior parameters are set to their ML estimates

µ̂✓,�̂✓ = argmax
µ
✓

,�
✓

P (X | µ✓,�✓) = argmax
µ
✓

,�
✓

Z 1

�1
d✓ P (X | ✓)P (✓ | µ✓,�✓) (5)

0.2.1 Expectation Maximization with Laplace approximation

To estimate model parameters we use Expectation Maximization (EM), where we iterate
between an expectation step, where we approximate the distribution of latent subject-
parameters, and a maximization step, where we search for maximum likelihood estimates
(MLE) for the prior parameters. In this procedure, each parameter update is obtained
conditional on the currently best estimates for the other parameters.

To ease computations with the likelihood of the prior parameters we take its logarithm (see
Equantion 6). As the distribution of individual subject parameters cannot in general be
solved analytically and directly, we introduce the distribution q(✓) ⌘ Normal(✓; ✓0, S) to
approximate the distribution over ✓ via a normal distribution (i.e., Laplace approximation).
In the E-step, we approximate this distribution based on the prior parameters and the data.
In the M-step, we can subsequently update our estimates for the other (prior) parameters
given this approximation to ✓. To solve equation (7) we utilize Jensen’s inequality and
move the logarithm into the integral in (8).

log p (X | µ✓,�✓) = log

Z 1

�1
d✓ p (X, ✓ | µ✓,�✓) (6)

= log

Z 1

�1
d✓ q(✓)

p (X, ✓ | µ✓,�✓)

q(✓)
(7)

�
Z 1

�1
d✓ q(✓) log

p (X, ✓ | µ✓,�✓)

q(✓)
(8)
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Figure 21: Bayesian dependency graphs for our random e↵ects generative model for
multi-subject data. Rectangles denote deterministic parameters and shaded circles rep-
resent observed values. ↵ = parameters of the Dirichlet distribution (number of model
”occurrences”); r = parameters of the multinomial distribution (probabilities of the mod-
els); m = model labels; ✓ = individual subject parameters; µ = prior group mean; �2 =
prior group variance; µ0, ⌫ = hyper-priors for the µ parameter; a0, b0 = hyper-priors for
the �2 parameter; y = observed data; y | m = probability of the data given model k; k =
model index; K = number of models; n = subject index; N = number of subjects.
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Simple RL + 200 trials 
With sufficient data, the correct model 
can be identified for all subjects and 
for both methods with high certainty 

Simple RL + 20 trials 
With scarce data per subject, the full 
VB method improves model 
comparison compared to the 
sufficient statistics approach 

2step + 201 trials 
Using three similar 
models with differing 
model parameters in 
the 2step task also 
yields posterior 
uncertainty, and the 
full VB performs best 

Simple RL: ab = simple RL model, assuming 1 state, 2 actions, learning rate (a) 
inverse noisiness (b) parameters (N=60) 
Rep = repetition model (N = 30) 

2step: Hybrid = model-based + model-free; model-free; non-learner [3] 

2step + 201 trials + 
parameters based 
on real data [4] 
The advantage for 
the full VB is visible 
also for parameters 
obtained from real 
(observed) data 
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Group level errors

-  Fitting empirical Bayes‘ models of reinforcement learning using Expectation 
Maximization (EM) [1] exhibits desirable normative properties 

-  Our new Variational Bayes method suggests that we can and should understand 
the heterogeneity and homogeneity observed in group studies of decision-making 
by investigating contributions of both, the underlying mechanisms and their 
parameters 

-  We find increased accuracy in Bayesian model comparison for our new VB method 
compared to previous approaches [1, 2] 

-  We expect that this new mixed-effects method will prove useful for a wide range of 
computational modeling approches in group studies of cognition and biology 

Bayesian!model!selec-on!and!es-ma-on:!
Simultaneous1mixed1effects1for1models1and1parameters1
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Conclusions1

Introduc-on1
Bayesian model selection and estimation (BMSE):  
Powerful methods for determining the most likely among sets of 
competing hypotheses about the mechanisms and parameters that 
generated observed data, e.g., from experiments on decision-making. 
 
Mixed-effects (or empirical / hierarchical Bayes‘) models: 
Provide full inference in group-studies – with repeated observations for 
each individual – by adequatly capturing: 
-  Individual differences (random effects / posteriors) 
-  Mechanisms & parameters common to all individuals (fixed effects / 

priors) 

Previous models: have assumed mixed-effects   
-  either for model parameters: Huys et al. [1] applied empirical Bayes‘ 

via Expectation Maximization (EM) to reinforcement learning models 
-  or for the model identity: Stephan et al. [2] developed a Variational 

Bayes‘ (VB) method for treating models as random-effects 
 
Here:  
A) We evaluate the empirical Bayes‘ method assuming mixed-effects 

for parameters for reinforcement learning models [1] 
B) We present a novel Variational Bayes' (VB) model which considers 

mixed-effects for models and parameters simultaneously 
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Table.!Δ!BIC!scores!(model9BIC!minus!BIC!for!the!best!model!for!the!dataset)!for!six!
different!models!for!six!different!datasets!generated!from!these!same!models.!The!
highlighted!diagonal!shows!that!for!all!simulated!data!sets!the!generating!model!was!
also!recovered!from!the!data.!
Generating"
Model"

Fitted"model"
"

" m2b2alr" mr" 2b2alr" m2b2al" m" 2b2al"
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m" 40" 21" 408" 45" 0" 436"
2b2al" 16" 1391" 5" 18" 2271" 0"
!

-  Generating prior parameters can be 
recovered from simulated data 

-  The precision scales with number of 
data points as theoretically expected 

The likelihood for the prior is approximately 
Gaussian, providing a basis for a Laplace-
Approximation to derive error bars, with 
normative alpha errors 

BICint extracts the true generating model from the data 
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0.2 Parameter Estimation: Empirical Bayes

In an empirical Bayes’ approach the prior is inferred from the group information by inte-
grating over the vector of individual subject-parameters, ✓,

P (X | µ✓,�✓) /
Z 1

�1
d✓P (X,✓ | µ✓,�✓) (4)

and prior parameters are set to their ML estimates

µ̂✓,�̂✓ = argmax
µ
✓

,�
✓

P (X | µ✓,�✓) = argmax
µ
✓

,�
✓

Z 1

�1
d✓ P (X | ✓)P (✓ | µ✓,�✓) (5)

0.2.1 Expectation Maximization with Laplace approximation

To estimate model parameters we use Expectation Maximization (EM), where we iterate
between an expectation step, where we approximate the distribution of latent subject-
parameters, and a maximization step, where we search for maximum likelihood estimates
(MLE) for the prior parameters. In this procedure, each parameter update is obtained
conditional on the currently best estimates for the other parameters.

To ease computations with the likelihood of the prior parameters we take its logarithm (see
Equantion 6). As the distribution of individual subject parameters cannot in general be
solved analytically and directly, we introduce the distribution q(✓) ⌘ Normal(✓; ✓0, S) to
approximate the distribution over ✓ via a normal distribution (i.e., Laplace approximation).
In the E-step, we approximate this distribution based on the prior parameters and the data.
In the M-step, we can subsequently update our estimates for the other (prior) parameters
given this approximation to ✓. To solve equation (7) we utilize Jensen’s inequality and
move the logarithm into the integral in (8).

log p (X | µ✓,�✓) = log

Z 1

�1
d✓ p (X, ✓ | µ✓,�✓) (6)

= log

Z 1

�1
d✓ q(✓)

p (X, ✓ | µ✓,�✓)

q(✓)
(7)

�
Z 1

�1
d✓ q(✓) log

p (X, ✓ | µ✓,�✓)

q(✓)
(8)
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Figure 21: Bayesian dependency graphs for our random e↵ects generative model for
multi-subject data. Rectangles denote deterministic parameters and shaded circles rep-
resent observed values. ↵ = parameters of the Dirichlet distribution (number of model
”occurrences”); r = parameters of the multinomial distribution (probabilities of the mod-
els); m = model labels; ✓ = individual subject parameters; µ = prior group mean; �2 =
prior group variance; µ0, ⌫ = hyper-priors for the µ parameter; a0, b0 = hyper-priors for
the �2 parameter; y = observed data; y | m = probability of the data given model k; k =
model index; K = number of models; n = subject index; N = number of subjects.

Rep ab
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Computational Model

A
ve

ra
g

e
 C

o
rr

e
ct

 P
ro

b
a

b
ili

ty
 M

a
ss

 

 

rep
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Model: Rep

Model Parameters

P
a

ra
m

e
te

r 
V

a
lu

e
s

Full Variational Bayes
Sufficient Statistics

b a
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Model: ab

Model Parameters

 

 

EM

Sufficient Statistics

Full Variational Bayes

True

Sufficient statistics approach:  combine empirical Bayes [1] with  
         random effects for models [2] 

Full random effects inference:  Variational Bayes 

Rep ab
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Computational Model

A
ve

ra
g
e
 C

o
rr

e
ct

 P
ro

b
a
b
ili

ty
 M

a
ss

 

 

rep
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Model: Rep

Model Parameters

P
a
ra

m
e
te

r 
V

a
lu

e
s

b a
0

0.5

1

1.5
Model: ab

Model Parameters

 

 

Sufficient Statistics
Full Variational Bayes

EM

Sufficient Statistics

Full Variational Bayes

True

Simulations from known decision processes with N = 90 simulated subjects 

Simple RL + 200 trials 
With sufficient data, the correct model 
can be identified for all subjects and 
for both methods with high certainty 

Simple RL + 20 trials 
With scarce data per subject, the full 
VB method improves model 
comparison compared to the 
sufficient statistics approach 

2step + 201 trials 
Using three similar 
models with differing 
model parameters in 
the 2step task also 
yields posterior 
uncertainty, and the 
full VB performs best 

Simple RL: ab = simple RL model, assuming 1 state, 2 actions, learning rate (a) 
inverse noisiness (b) parameters (N=60) 
Rep = repetition model (N = 30) 

2step: Hybrid = model-based + model-free; model-free; non-learner [3] 

2step + 201 trials + 
parameters based 
on real data [4] 
The advantage for 
the full VB is visible 
also for parameters 
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(observed) data 
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Group-level BIC

!

!

!

!

!

!

‣ Very simple	

• 1) EM to estimate group prior mean & variance	


• simply done using fminunc, which provides Hessians	

• 2) Sample from estimated priors	

• 3) Average

log p(A|M) =

�
d� p(A|�) p(�|M)

⇥ �1

2
BICint

= log p̂(A|�̂ML)� 1

2
|M| log(|A|)
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How does it do? 
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Fitted by EM...	

too nice?
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iBIC in simulation 2

-  Fitting empirical Bayes‘ models of reinforcement learning using Expectation 
Maximization (EM) [1] exhibits desirable normative properties 

-  Our new Variational Bayes method suggests that we can and should understand 
the heterogeneity and homogeneity observed in group studies of decision-making 
by investigating contributions of both, the underlying mechanisms and their 
parameters 

-  We find increased accuracy in Bayesian model comparison for our new VB method 
compared to previous approaches [1, 2] 

-  We expect that this new mixed-effects method will prove useful for a wide range of 
computational modeling approches in group studies of cognition and biology 

Bayesian!model!selec-on!and!es-ma-on:!
Simultaneous1mixed1effects1for1models1and1parameters1

Daniel1J.1Schada*,1Michael1A.1Rappa,b,1Quen-n1J.M.1Huysc1
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Conclusions1

Introduc-on1
Bayesian model selection and estimation (BMSE):  
Powerful methods for determining the most likely among sets of 
competing hypotheses about the mechanisms and parameters that 
generated observed data, e.g., from experiments on decision-making. 
 
Mixed-effects (or empirical / hierarchical Bayes‘) models: 
Provide full inference in group-studies – with repeated observations for 
each individual – by adequatly capturing: 
-  Individual differences (random effects / posteriors) 
-  Mechanisms & parameters common to all individuals (fixed effects / 

priors) 

Previous models: have assumed mixed-effects   
-  either for model parameters: Huys et al. [1] applied empirical Bayes‘ 

via Expectation Maximization (EM) to reinforcement learning models 
-  or for the model identity: Stephan et al. [2] developed a Variational 

Bayes‘ (VB) method for treating models as random-effects 
 
Here:  
A) We evaluate the empirical Bayes‘ method assuming mixed-effects 

for parameters for reinforcement learning models [1] 
B) We present a novel Variational Bayes' (VB) model which considers 

mixed-effects for models and parameters simultaneously 
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-  Generating prior parameters can be 
recovered from simulated data 

-  The precision scales with number of 
data points as theoretically expected 

The likelihood for the prior is approximately 
Gaussian, providing a basis for a Laplace-
Approximation to derive error bars, with 
normative alpha errors 

BICint extracts the true generating model from the data 
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0.2 Parameter Estimation: Empirical Bayes

In an empirical Bayes’ approach the prior is inferred from the group information by inte-
grating over the vector of individual subject-parameters, ✓,

P (X | µ✓,�✓) /
Z 1

�1
d✓P (X,✓ | µ✓,�✓) (4)

and prior parameters are set to their ML estimates

µ̂✓,�̂✓ = argmax
µ
✓

,�
✓

P (X | µ✓,�✓) = argmax
µ
✓

,�
✓

Z 1

�1
d✓ P (X | ✓)P (✓ | µ✓,�✓) (5)

0.2.1 Expectation Maximization with Laplace approximation

To estimate model parameters we use Expectation Maximization (EM), where we iterate
between an expectation step, where we approximate the distribution of latent subject-
parameters, and a maximization step, where we search for maximum likelihood estimates
(MLE) for the prior parameters. In this procedure, each parameter update is obtained
conditional on the currently best estimates for the other parameters.

To ease computations with the likelihood of the prior parameters we take its logarithm (see
Equantion 6). As the distribution of individual subject parameters cannot in general be
solved analytically and directly, we introduce the distribution q(✓) ⌘ Normal(✓; ✓0, S) to
approximate the distribution over ✓ via a normal distribution (i.e., Laplace approximation).
In the E-step, we approximate this distribution based on the prior parameters and the data.
In the M-step, we can subsequently update our estimates for the other (prior) parameters
given this approximation to ✓. To solve equation (7) we utilize Jensen’s inequality and
move the logarithm into the integral in (8).

log p (X | µ✓,�✓) = log

Z 1

�1
d✓ p (X, ✓ | µ✓,�✓) (6)

= log

Z 1

�1
d✓ q(✓)

p (X, ✓ | µ✓,�✓)

q(✓)
(7)

�
Z 1

�1
d✓ q(✓) log

p (X, ✓ | µ✓,�✓)

q(✓)
(8)
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Figure 21: Bayesian dependency graphs for our random e↵ects generative model for
multi-subject data. Rectangles denote deterministic parameters and shaded circles rep-
resent observed values. ↵ = parameters of the Dirichlet distribution (number of model
”occurrences”); r = parameters of the multinomial distribution (probabilities of the mod-
els); m = model labels; ✓ = individual subject parameters; µ = prior group mean; �2 =
prior group variance; µ0, ⌫ = hyper-priors for the µ parameter; a0, b0 = hyper-priors for
the �2 parameter; y = observed data; y | m = probability of the data given model k; k =
model index; K = number of models; n = subject index; N = number of subjects.
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Posterior distribution on models

‣ Generative model for models

density on model space itself, using a Bayesian approach as described
in the next section.

Bayesian inference on model space
Previously, we have suggested the use of a group Bayes factor (GBF)

that is simply the product of Bayes factors over N subjects (Stephan et
al., 2007b). This is equivalent to a fixed effects analysis that rests on
multiplying the marginal likelihoods over subjects to furnish the
probability of the multi-subject data, conditioned on each model:

GBFi; j =
YN

n=1
BF nð Þ

i; j : ð2Þ

Here, the subscripts i,j refer to the models being compared, and
the bracketed superscript refers to the n-th subject. The reason one
can simply multiply the probabilities (or add the log-evidences) is
that the measured data can be regarded as conditionally independent
samples over subjects. However, this does not represent a formal
evaluation of the conditional density of a particular model given data
from all subjects. Furthermore, it rests upon a very particular
generative model for group data: first, select one of K models from
a multinomial distribution and then generate data, under this model,
for each of the N subjects. This is fundamentally different from a
generative model which treats subjects as random effects: here we
would select a model for each subject by sampling from a
multinomial distribution, and then generate data under that
subject-specific model. The distinction between these two generative
models is illustrated graphically in Fig. 1.

In short, the GBF encodes the relative probability that the data
were generated by one model relative to another, assuming the data
were generated by the same model for all subjects. What we often
want, however, is the density from which models are sampled to
generate subject-specific data. In other words, we seek the conditional
estimates of the multinomial parameters, i.e. the model probabilities
r=[r1,…,rK], that generate switches or indicator variables, mn=
[mn1,…,mnK], where mnk∈{0,1} for any given subject n∈ {1,…,N}, and
only one of these switches is equal to one; i.e., PK

k=1
mnk = 1. These

indicator variables prescribe the model for the n-th subject; where p
(mnk=1)=rk. In the following, we describe a hierarchical Bayesian
model that can be inverted to obtain an estimate of the posterior
density over r.

A variational Bayesian approach for inferring model probabilities

Wewill deal with Kmodels with probabilities r=[r1,…,rK] that are
described by a Dirichlet distribution:

p r jαð Þ = Dir r;αð Þ = 1
Z αð Þ

Y

k

rαk − 1
k

Z αð Þ =
Q

k Γ αkð Þ
Γð
P

k
αkÞ

: ð3Þ

Here, α=[α1,…,αK] are related to the unobserved “occurrences” of
models in the population; i.e. αk−1 can be thought of as the effective
number of subjects in which model k generated the observed data.
Given the probabilities r, the distribution of themultinomial variablemn

describes the probability that model k generated the data of subject n:

p mn jrð Þ =
Y

k

rmnk
k : ð4Þ

For any given subject n, we can sample from this multinomial
distribution to obtain a particular model k. The marginal likelihood of
the data in the n-th subject, given this model k, is then obtained by
integrating over the parameters of the model selected:

p yn jmnkð Þ =
R
p y jϑð Þp ϑ jmnkð Þdϑ: ð5Þ

The graphical model summarising the dependencies among r, m
and y as described by Eqs. (3)–(5) is shown in Figs. 1B and C. Our goal
is to invert this hierarchical model and estimate the posterior
distribution over r.

Given the structure of the hierarchical model in Fig. 1, the joint
probability of the parameters and the data y can be written as:

p y;r;mð Þ = p y jmð Þp m jrð Þp r jα0ð Þ

= p r jα0ð Þ
Y

n
p yn jmnð Þp mn jrð Þ

" #

=
1

Z α0ð Þ
Y

k

rα0k − 1
k

" #
Y

n
p yn jmnð Þ

Y

k

rmnk
k

" #

=
1

Z α0ð Þ
Y

n

Y

k

p yn jmnkð Þrk½ $mnk rα0k − 1
k

" #
: ð6Þ

Fig. 1. Bayesian dependency graphs for fixed effects (A) and random effects generative models for multi-subject data (B, C). The graphical model in panels B and C are equivalent; we
show both because 1B is more intuitive for readers unfamiliar with graphical models whereas 1C uses a more compact notation where rectangles denote deterministic parameters
and shaded circles represent observed values. α=parameters of the Dirichlet distribution (number of model “occurrences”); r=parameters of the multinomial distribution
(probabilities of the models); m=model labels; y=observed data; k=model index; K=number of models; n=subject index; N=number of subjects.
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Bayesian model selection - equations

‣ Write down joint distribution of generative model	

‣ Variational approximations lead to set of very 

simple update equations	

• start with flat prior over model probabilities	


!
!

• then update

The log joint probability is therefore given by:

lnp y;r;mð Þ = − ln Z α0ð Þ +
X

n

X

k

ð α0k − 1ð Þ ln rk

+ mnk ln p yn jmnkð Þ + ln rkð ÞÞ: ð7Þ

The inversion of our hierarchical model relies on the following
variational Bayesian (VB) approach in which we assume that an
approximate posterior density q can be described by the following
mean-field factorisation:

q r;mð Þ = q rð Þq mð Þ

q rð Þ~ exp I rð Þð Þ

q mð Þ~ exp I mð Þð Þ

I rð Þ = hln p y;r;mð Þiq mð Þ

I mð Þ = hln p y;r;mð Þiq rð Þ: ð8Þ

Here, I(r) and I(r) are variational energies for the mean-field
partition. Note that throughout the paper we use "log" and "ln"
interchangeably to refer to the natural logarithm. The mean-field
assumption in Eq. (8) means that the VB posterior will only be
approximate but, as we shall see, it provides a particularly simple and
intuitive algorithm (c.f. Eq. (14)). This algorithm provides precise
estimates of the parameters α defining the approximate Dirichlet
posterior q(r)≈p(r|y); this was verified by comparisons with a
sampling method which is described in Appendix B.

To obtain the approximate posterior q(m)≈p(m|y), we have to
do two things: first, compute I(m) and second, determine the
normalizing constant or partition function for exp(I(m)), which
renders q(m) a probability density. Making use of the log joint
probability in Eq. (7) and omitting terms that do not depend on m,
the variational energy is:

I mð Þ =
R
q rð Þ lnp y;r;mð Þdr

=
X

n

X

k

mnk lnp yn jmnkð Þ +
R
q rkð Þ ln rkdrk

! "

=
X

n

X

k

mnk lnp yn jmnkð Þ + W αkð Þ− W αSð Þð Þ: ð9Þ

Here, αS =
P
k
αk and Ψ is the digamma function.2

W αkð Þ = B ln C αkð Þ
Bαk

: ð10Þ

The next step is to obtain the approximate posterior, q(m): If gnk is
our (normalized) posterior belief that model k generated the data
from subject n, i.e. gnk=q(mnk=1), then Eq. (9) tells us that:

gnk =
unk

un

unk = exp lnp yn jmnkð Þ + W αkð Þ− W αSð Þð Þ

un =
X

k

unk ð11Þ

where unk is the equivalent (non-normalized) belief and un is the
partition function for exp(I(m)) that ensures that the posterior
probabilities sum to one.

We now repeat the above procedure but this time for the
approximate posterior over r. By substituting in the log joint
probability from Eq. (7) and omitting terms that do not depend on
r, we have:

I rð Þ =
R
q mð Þ ln p y; r;mð Þdm

=
X

k

α0k − 1ð Þ ln rk +
X

n
gnk ln rk

" #

=
X

k

α0k + βk − 1ð Þ ln rk: ð12Þ

Here, βk=Σgnk is the expected number of subjects whose data we
believewere generated bymodel k. Now, fromEq. (8)we have ln q(r)=
I(r)+… and from Eq. (3) we see that the log of a Dirichlet density is
given by lnDir r;að Þ =

P
k

αk − 1ð Þ ln rk + N . Hence, by comparing

terms we see that the approximate posterior q(r)=Dir(r; α) where:

α = α0 + β: ð13Þ

In short, Eq. (13) simply adds the ‘data counts’, β, to the ‘prior
counts’, α0. This is an example of a free-form VB approximation,
where the optimal form of the approximate posterior (in this case
a Dirichlet), has been derived rather than assumed before-hand
(c.f. fixed-form VB approximations; Friston et al., 2007). It should be
stressed, however, that due to the mean-field assumption used by our
VB approach (see Eq. (8)), q(r) is only an approximate posterior and
the true posterior distribution p(r|y) does not necessarily have the
exact form of a Dirichlet distribution.

The above equations can be implemented as an optimisation
algorithmwhich updates estimates of α iteratively until convergence.
By combining Eqs. (11), (12) and (13) we get the following pseudo-
code of a simple algorithm that gives us the parameters of the
conditional density we seek, i.e. q(r)=Dir(r; α):

α = α0:

Until convergence:

unk = exp lnp yn jmnkð Þ + W αkð Þ− W
X

k

αk

 ! !

βk =
X

n

unkP
k unk

α = α0 + β ð14Þ

end.

We make the usual assumption that, a priori; no models have been
“seen” (i.e. the Dirichlet prior is α0=[1,…,1]).3 Critically, this scheme
requires only the log-evidences over models and subjects (c.f.
Eq. (11)).

Using the Dirichlet density p(r|y; α) for model comparison

After the above optimisation of the Dirichlet parameters, α, the
Dirichlet density p(r|y; α) can be used for model comparisons at the
group level. There are several ways to report this comparison that

2 See Appendix B in Bishop (2006) concerning the use of the digamma function in
Eq. 10.

3 Note that this choice of Dirichlet prior is a “flat” prior, assigning uniform
probabilities to all models. In contrast, a Dirichlet prior with elements below unity
results in a highly concave probability density that concentrates the probability mass
around zero and one, respectively.
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Random effects model & parameter

Daniel Schad
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Group Model selection

Integrate out your parameters
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Questions in psychiatry I: regression

‣ Parametric relationship with other variables	

• do standard second level analyses	

• can use Hessians to determine weights	

• better: compare two models

Model 1:

Q
i p(Ai|✓i) p(✓i|µ0,�)

i.e. ✓i ⇠ N (µ0,�)

Model 2:

Q
i p(Ai|✓i) p(✓i|µ0, c,�, i)

i.e. ✓i ⇠ N (µ0 + c i,�)
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Regression

‣ Standard regression analysis: 	

!

!

‣ Including uncertainty about each subject’s inferred 
parameters	

!

!

!

‣ Careful: Finite difference estimates S can be noisy!	

• regularize... 

mi = Cri + �1/2� �i

mi = Cri + (�1/2 + S1/2
i )� �i
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GLMs for behaviour
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GLMs for behaviour

Intercept Slope
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Is there a correlation or not?

‣ GLM regression coefficients and Model comparison

0.4. A SIMPLE REINFORCEMENT LEARNING MODEL 21
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Figure 6: Monte Carlo simulations to evaluate ↵ error rate (i.e., p-values). Num-
ber of simulations: N = 1000. Upper panels: � parameter; Lower panels: ↵ parameter.
Left panels: Histograms of relative BIC values (�BIC = BICH0�BICH1). Middle panels:
Histograms of t-values; critical t-values (two-sided testing) are marked via red lines. Right
panels: Histograms of p-values; the significance threshold of p = .05 is marked with a red
line.
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Questions in psychiatry II: group differences
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‣ Compare parameters across different models with 
care	

• even very similar parameters can account for different 

effects, and thus ‘mean’ something else	

• Bayesian model averaging	


• Best if do full random effects inference	

• Dominated by few subjects? 

Questions in psychiatry II: group differences
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‣ Compare parameters across different models with 
care	

• even very similar parameters can account for different 

effects, and thus ‘mean’ something else	

• Bayesian model averaging	


• Best if do full random effects inference	

• Dominated by few subjects? 

‣ Within model - as model comparisons?	

• Can’t compare parameters estimated with different priors	


• Fit all with one and the same prior, do t-tests	

• But: only models the variance in parameters, not data	


• Compare models with separate priors	

• For models with k parameters, there are 2k-1 possible 

comparisons	

• multiple comparisons?

Questions in psychiatry II: group differences
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‣ Compare parameters across different models with 
care	

• even very similar parameters can account for different 

effects, and thus ‘mean’ something else	

• Bayesian model averaging	


• Best if do full random effects inference	

• Dominated by few subjects? 

‣ Within model - as model comparisons?	

• Can’t compare parameters estimated with different priors	


• Fit all with one and the same prior, do t-tests	

• But: only models the variance in parameters, not data	


• Compare models with separate priors	

• For models with k parameters, there are 2k-1 possible 

comparisons	

• multiple comparisons?

Questions in psychiatry II: group differences

Model 1 ε β

Model 2 ε β
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Questions in psychiatry III: Classification

‣ Who belongs to which of two groups?	

‣ How many groups are there?
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Model comparison again

‣ What is ‘significant’? 	

!

!

!

!

!

‣ Fixed vs Random effects	

‣ “Spread of effect” in group comparisons	


• Better model does not mean a behavioural effect is 
concentrated in one parameter	


• Obvious raw differences spread between parameters

Kassand Raftery: Bayes Factors 777

4. CALCULATING BAYES FACTORS

In some elementary cases the integral (2), which we will
rewrite in this section as

where d is the dimension of 8.
This is Laplace's method of approximation (de Bruijn

1970, sec. 4.4; Tierney and Kadane 1986). For many prob-
lems in which the sample size n is moderate, it produces
answers well within the accuracy required for drawing con-
clusions according to the scheme of Section 3.2. Formally,

H k ) = LSk • It follows that the log Bayes factor is log B10
= LSI - LSo; that is, the difference in predictive scores. Thus
the Bayes factor can be viewed as measuring the relative
success ofHI and Ho at predicting the data. This is related
to prequential analysis (Dawid 1984) and also to stochastic
complexity (Rissanen 1987); the connections were discussed
by Dawid ( 1992) and Hartigan ( 1992). Good ( 1985), and
in many other publications, has referred to the log Bayes
factor as the "weight of evidence."

(3)I = I pr(DIO, H)1r(OIH) dO,
may be evaluated analytically. More often, it is intractable
and thus must be computed by numerical methods. But most
available software developed by numerical analysts is gen-
erally so inefficient for these integrals that it is of little use.
One reason is that when sample sizes are moderate or large,
the integrand becomes highly peaked around its maximum,
which may be found by other techniques, and quadrature
methods that do not begin with knowledge ofthe maximum
are likely to have difficulty finding the region where the in-
tegrand mass is accumulating. A second reason is that some
problems are of high dimension. In this case Monte Carlo
methods may be used, but these too need to be adapted to
the statistical context. A review of various numerical inte-
gration strategies for evaluating the integral in (3) is provided
by Evans and Swartz ( 1995).
Exact analytic evaluation ofthe integral (3) is possible for

exponential family distributions with conjugate priors, in-
cluding normal linear models (DeGroot 1970, chap. 9; Zell-
ner 1971, chap. 10).

4.1 Asymptotic Approximation
4.1.1 Laplace's Method. A useful approximation to the

marginal density of the data as given by (3) is obtained by
assuming that the posterior density, which is proportional
to (pr(D 18,H)1r( 8IH)), is highly peaked about its maximum
8, which is the posterior mode. This will usually be the case
if the likelihood function pr(D 18, H) is highly peaked near
its maximum fJ, which will be the case for large samples. Let
[(8) = 10g(pr(D18, H)1r( 81H)). Expanding [(8) as a qua-
dratic about 8 and then exponentiating yields an approxi-
mation to (pr(DI8, H)1r(8IH)) that has the form of a
normal density with mean 8 and covariance matrix ±
= (- D2[(8))-1, where D2[(8) is the Hessian matrix of second
derivatives. Integrating this approximation yields

i = (21r)d/21±11/2pr(D 18,H)1r( 81H), (4)

IOglO(B1O) B10 Evidence against Ho

o to 1/2 1 to 3.2 Not worth more than a bare
mention

1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

210ge(B1o) (B1O) Evidence against Ho

oto 2 1 to 3 Not worth more than a bare
mention

2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

{3 and 1/; may be vectors. Although the expression ( 1) does
not require the models to be nested, the case of nested models
is of special interest in the Bayesian approach as well, and
we will refer to it frequently in what follows.

3.2 Interpretation

The Bayes factor is a summary of the evidence provided
by the data in favor of one scientific theory, represented by
a statistical model, as opposed to another. Jeffreys (1961,
app. B) suggested interpreting B10 in half-units on the 10glO
scale. Pooling two of his categories together for simplification,
we have:

From our own experience, these categories seem to furnish
appropriate guidelines.
The logarithm ofthe marginal probability ofthe data may

alsobeviewedas a predictive score. This is of interest, because
it leads to an interpretation ofthe Bayes factor that does not
depend on viewing one of the models as "true." Suppose
that D = {Yl' ... , Yn} and that for each i, we form a pre-
dictive distribution pri (·)of Yi given the already available
data {Yl' ... , Yi-l }. We use the logarithmic scoring rule,
log pri(Yi) (Good 1952), to assess performance. Then the
overall score of any rule that generates such predictive dis-
tributions is LS = Li log pri(Yi). In particular, if the pre-
diction rule is derived from the model H; (i.e., likelihood
and prior), then log pr(DIHk ) = Li log pr(Yi IYi-h ... ,Yl,

Probability itself provides a meaningful scale defined by bet-
ting, and so these categories are not a calibration of the Bayes
factor, but rather a rough descriptive statement about stan-
dards of evidence in scientific investigation. We speak here
in terms of B10, because weighing evidence against a null
hypothesis is more familiar, but Bayes factors can equally
well provide evidence in favor ofa null hypothesis. Ofcourse,
the interpretation may depend on the context. For example,
Evett ( 1991) has argued that for forensic evidence alone to
beconclusive in a criminal trial, one would require posterior
odds for HI (guilt) against Ho (innocence) of at least 1,000
rather than the 100 suggested by Jeffreys.
It can be useful to consider twice the natural logarithm of

the Bayes factor, which is on the same scale as the familiar
deviance and likelihood ratio test statistics. Rounding and
using 20 rather than 10 as the requirement for strong evi-
dence, we then obtain a slight modification:

Kaas and Raftery 95

BF =
p(A|M1)

p(A|M2)

p(⇤ < ⌘)
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Behavioural data modelling

‣ Are no panacea	

• statistics about specific aspects of decision machinery	

• only account for part of the variance	

!

‣ Model needs to match experiment	

• ensure subjects actually do the task the way you wrote it 

in the model	

• model comparison	


!

‣ Model = Quantitative hypothesis	

• strong test	

• need to compare models, not parameters	

• includes all consequences of a hypothesis for choice
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Modelling in psychiatry

‣ Hypothesis testing	

• otherwise untestable hypotheses	

• internal processes	


‣ Limited by data quality	

• Look for strong behaviours, not noisy	


‣ “Holistic” testing of hypotheses	

‣ Marr’s levels	


• physical	

• algorithm	

• computational


