Modelling behavioural data

Translational Neuromodeling Unit, ETH Zürich Psychiatrische Universitätsklinik Zürich

Outline

- Why build models? What is a model
- Fitting models
- Validating & comparing models
- Model comparison issues in psychiatry

Guitart-Masip, Huys et al. 2012

Example task

Guitart-Masip, Huys et al. 2012

Example task

Guitart-Masip, Huys et al. 2012

Example task

Think of it as four separate two-armed bandit tasks

Guitart-Masip, Huys et al. 2012

Go

Analysing behaviour

Standard approach:

- Decide which feature of the data you care about
- Run descriptive statistical tests, e.g. ANOVA

- Many strengths
- Weakness
 - Piecemeal, not holistic / global
 - Descriptive, not generative
 - No internal variables

Analysing behaviour

- Standard approach:
 - Decide which feature of the data you care about
 - Run descriptive statistical tests, e.g. ANOVA

- Many strengths
- Weakness
 - Piecemeal, not holistic / global
 - Descriptive, not generative
 - No internal variables

Models

Holistic

• Aim to model the process by which the data came about in its "entirety"

Generative

They can be run on the task to generate data as if a subject had done the task

Inference process

- Capture the inference process subjects have to make to perform the task.
- Do this in sufficient detail to replicate the data.

Parameters

- replace test statistics
- their meaning is explicit in the model
- their contribution to the data is assessed in a holistic manner

- Q is the key part of the hypothesis
- formally states the learning process in quantitative detail
- formalizes internal quantities that are used in the task

Actions

Q values

$$\mathcal{Q}_t(a_t, s_t) = \mathcal{Q}_{t-1}(a_t, s_t) + \epsilon(r_t - \mathcal{Q}_{t-1}(a_t, s_t))$$

Action probabilities: "softmax" of Q value

$$p(a_t|s_t, h_t, \beta) = p(a_t|\mathcal{Q}(a_t, s_t), \beta)$$
$$= \frac{e^{\beta \mathcal{Q}(a_t, s_t)}}{\sum_{a'} e^{\beta \mathcal{Q}(a', s_t)}}$$

Features:

$$p(a_t|s_t) \propto \mathcal{Q}(a_t, s_t)$$
$$0 \le p(a) \le 1$$

- Inks learning process and observations
 - choices, RTs, or any other data
 - link function in GLMs
 - man other forms

Fitting models I

Maximum likelihood (ML) parameters

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \mathcal{L}(\theta)$$

where the likelihood of all choices is:

$$\mathcal{L}(\theta) = \log p(\{a_t\}_{t=1}^T | \{s_t\}_{t=1}^T, \{r_t\}_{t=1}^T, \underbrace{\theta}_{\beta, \epsilon})$$

$$= \log p(\{a_t\}_{t=1}^T | \{\mathcal{Q}(s_t, a_t; \epsilon)\}_{t=1}^T, \beta)$$

$$= \log \prod_{t=1}^T p(a_t | \mathcal{Q}(s_t, a_t; \epsilon), \beta)$$

$$= \sum_{t=1}^T \log p(a_t | \mathcal{Q}(s_t, a_t; \epsilon), \beta)$$

Fitting models II

No closed form

Use your favourite method

- gradients
- fminunc / fmincon...
- Gradients for RW model

$$\begin{aligned} \frac{d\mathcal{L}(\theta)}{d\theta} &= \frac{d}{d\theta} \sum_{t} \log p(a_t | \mathcal{Q}_t(a_t, s_t; \epsilon), \beta) \\ &= \sum_{t} \frac{d}{d\theta} \beta \mathcal{Q}_t(a_t, s_t; \epsilon) - \sum_{a'} p(a' | \mathcal{Q}_t(a', s_t; \epsilon), \beta) \frac{d}{d\theta} \beta \mathcal{Q}_t(a', s_t; \epsilon) \\ \frac{d\mathcal{Q}_t(a_t, s_t; \epsilon)}{d\epsilon} &= (1 - \epsilon) \frac{d\mathcal{Q}_{t-1}(a_t, s_t; \epsilon)}{d\epsilon} + (r_t - \mathcal{Q}_{t-1}(a_t, s_t; \epsilon)) \end{aligned}$$

Little tricks

Transform your variables

$$\beta = e^{\beta'}$$

$$\Rightarrow \beta' = \log(\beta)$$

$$\epsilon = \frac{1}{1 + e^{-\epsilon'}}$$

$$\Rightarrow \epsilon' = \log\left(\frac{\epsilon}{1 - \epsilon}\right)$$

$$\frac{d\log \mathcal{L}(\theta')}{d\theta'}$$

Avoid over/underflow

$$y(a) = \beta Q(a)$$

$$y_m = \max_a y(a)$$

$$p = \frac{e^{y(a)}}{\sum_b e^{y(b)}} = \frac{e^{y(a) - y_m}}{\sum_b e^{y(b) - y_m}}$$

ML characteristics

ML characteristics

- ML is asymptotically consistent, but variance high
 - 10-armed bandit, infer beta and epsilon

ML characteristics

- ML is asymptotically consistent, but variance high
 - 10-armed bandit, infer beta and epsilon

Priors

Priors

Priors

Maximum a posteriori estimate

 $d\alpha$

$$\mathcal{P}(\theta) = p(\theta|a_{1...T}) = \frac{p(a_{1...T}|\theta)p(\theta)}{\int d\theta p(\theta|a_{1...T})p(\theta)}$$
$$\log \mathcal{P}(\theta) = \sum_{t=1}^{T} \log p(a_t|\theta) + \log p(\theta) + const.$$
$$\frac{\log \mathcal{P}(\theta)}{d\alpha} = \frac{\log \mathcal{L}(\theta)}{d\alpha} + \frac{d p(\theta)}{d\theta}$$

If likelihood is strong, prior will have little effect

mainly has influence on poorly constrained parameters

 $d\theta$

• if a parameter is strongly constrained to be outside the typical range of the prior, then it will win over the prior

Maximum a posteriori estimate

200 trials, I stimulus, I0 actions, learning rate = .05, beta=2 $m_{beta}=0$, $m_{eps}=-3$, n=1

What prior parameters should I use?

- Fixed effect
 - conflates within- and between- subject variability

- Fixed effect
 - conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model

- Fixed effect
 - conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model
- Summary statistic
 - treat parameters as random variable, one for each subject
 - overestimates group variance as ML estimates noisy

Fixed effect

- conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model
- Summary statistic
 - treat parameters as random variable, one for each subject
 - overestimates group variance as ML estimates noisy
- Random effects
 - prior mean = group mean

Fixed effect

- conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model

Summary statistic

- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
 - prior mean = group mean

$$p(\mathcal{A}_i|\mu_{\theta},\sigma_{\theta}) = \int d\theta_i \, p(\mathcal{A}_i|\theta_i) \, p(\theta_i|\mu_{\theta},\sigma_{\theta})$$

Fixed effect

- conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model

Summary statistic

- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
 - prior mean = group mean

$$p(\mathcal{A}_i|\mu_{\theta},\sigma_{\theta}) = \int d\theta_i \, p(\mathcal{A}_i|\theta_i) \, p(\theta_i|\underbrace{\mu_{\theta},\sigma_{\theta}})$$

Fixed effect

- conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model

Summary statistic

- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
 - prior mean = group mean

$$p(\mathcal{A}_i|\mu_{\theta},\sigma_{\theta}) = \int d\theta_i \, p(\mathcal{A}_i|\theta_i) \, p(\theta_i|\underbrace{\mu_{\theta},\sigma_{\theta}})$$

Estimating the hyperparameters

$$\log \mathcal{P}(\theta) = \mathcal{L}(\theta) + \log \underbrace{p(\theta)}_{=p(\theta|\zeta)} + const.$$

• Empirical Bayes: set them to ML estimate

$$\hat{\zeta} = \operatorname*{argmax}_{\zeta} p(\mathcal{A}|\zeta)$$

where we use all the actions by all the k subjects

$$\mathcal{A} = \{a_{1...T}^k\}_{k=1}^K$$

ML estimate of top-level parameters

Estimating the hyperparameters

• Effectively we now want to do gradient ascent on:

$$p(\mathcal{A}|\zeta) = \int d\theta p(\mathcal{A}|\theta) \, p(\theta|\zeta)$$

• So we need to:

$$\hat{\zeta} = \operatorname{argmax}_{\zeta} p(\mathcal{A}|\zeta)$$

$$= \operatorname{argmax}_{\zeta} \int d\,\theta p(\mathcal{A}|\theta) \, p(\theta|\zeta)$$

Integrating the integral

$$\hat{\zeta} = \operatorname{argmax}_{\zeta} p(\mathcal{A}|\zeta)$$

$$= \operatorname{argmax}_{\zeta} \int d\,\theta p(\mathcal{A}|\theta) \, p(\theta|\zeta)$$

- analytical rare
- brute force for simple problems
- Expectation Maximisation approximate, easy
- Variational Bayes
- Sampling / MCMC

EM with Laplace approximation

And now iterate until convergence

Model comparison

- A fit by itself is not meaningful
- Generative test
 - qualitative

Comparisons

- vs random
- vs other model -> test specific hypotheses and isolate particular effects in a generative setting

Generative test

Model: probability(actions)

• simply draw from this distribution, and see what happens

Critical sanity test: is the model meaningful?
Caveat: overfitting

Overfitting

Model comparison

Averaged over its parameter settings, how well does the model fit the data?

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta) \, p(\theta|\mathcal{M})$$

Model comparison: Bayes factors

$$BF = \frac{p(\mathcal{A}|\mathcal{M}_1)}{p(\mathcal{A}|\mathcal{M}_2)}$$

- Problem:
 - integral rarely solvable
 - approximation: Laplace, sampling, variational...

Why integrals? The God Almighty test

Why integrals? The God Almighty test

Why integrals? The God Almighty test

$$\frac{1}{N} \left(\mathbf{p}(\mathbf{X}|\boldsymbol{\theta}_1) + p(X|\boldsymbol{\theta}_2) + \cdots \right)$$

These two factors fight it out Model complexity vs model fit

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M})$$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \xrightarrow{p(\mathcal{A}|\theta) \, p(\theta|\mathcal{M})}$$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \xrightarrow{\text{is propto Gaussian}} p(\theta|\mathcal{M}) = \text{const.}$$

$$\approx p(\mathcal{A}|\theta^{ML}, \mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|} \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}} \text{Model doesn't prefer}$$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \xrightarrow{\text{is propto Gaussian}} p(\theta|\mathcal{M}) \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}}_{\text{Model doesn't prefer particular}} \\ \approx p(\mathcal{A}|\theta^{ML}, \mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|} \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}}_{\text{particular}} \xrightarrow{\text{posterior}}_{\text{particular}}$$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \xrightarrow{\text{is propto Gaussian}} p(\theta|\mathcal{M}) \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}}_{\text{Model doesn't prefer particular}} \\ \approx p(\mathcal{A}|\theta^{ML}, \mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|} \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}}_{\text{Model doesn't prefer particular}} \\ \log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\theta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

Laplacian approximation

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \xrightarrow{\text{is propto Gaussian}} p(\theta|\mathcal{M}) \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}}_{\text{Model doesn't prefer particular}} \\ \approx p(\mathcal{A}|\theta^{ML}, \mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|} \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}}_{\text{Model doesn't prefer particular}} \\ \log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\theta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

Laplacian approximation

$$\Sigma_{ii} \propto \frac{1}{T} \Rightarrow \frac{1}{2} \log(|\Sigma|) \approx -\frac{N}{2} \log(T)$$
 Bayesian Information Criterion (BIC)
 $\approx -N$ Akaike Information Criterion (AIC)

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M}) \xrightarrow{\text{is propto Gaussian}} p(\theta|\mathcal{M}) \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}}_{\text{Model doesn't prefer particular}} \\ \approx p(\mathcal{A}|\theta^{ML}, \mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|} \xrightarrow{p(\theta|\mathcal{M}) = \text{const.}}_{\text{Model doesn't prefer particular}} \\ \log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\theta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

Laplacian approximation

 $\Sigma_{ii} \propto \frac{1}{T} \Rightarrow \frac{1}{2} \log(|\Sigma|) \approx -\frac{N}{2} \log(T)$ Bayesian Information Criterion (BIC) $\approx -N$ Akaike Information Criterion (AIC)

Multiple subjects

Multiple models

- do they use the same model? If not parameters are not comparable
- which model best accounts for all of them?

Multiple groups

- difference in models?
- difference in parameters?
- 2^k possible model comparisons

Multiple parameters

2^k possible correlations with any one psychometric measure

Group data - approaches

- Summary statistic
 - Treat individual model comparison measure as summary statistics, do ANOVA or t-test
- Fixed effect analysis
 - Subject data independent

$$\log p(\mathcal{A}|\mathcal{M}) = \sum_{i} \log p(\mathcal{A}_{i}|\mathcal{M})$$
$$= \sum_{i} \log \int d\theta_{i} \, p(\mathcal{A}_{i}|\theta_{i}) p(\theta_{i}|\mathcal{M}_{i}) \approx -\frac{1}{2} \sum_{i} \mathsf{BIC}_{i}$$

- Random effects analyses
 - Hierarchical prior on group parameters $p(\mathcal{A}|\mathcal{M}) = \int d\zeta \int d\theta \, p(\mathcal{A}|\theta) \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$
 - Hierarchical prior on models $p(\mathcal{A}, \mathcal{M}_k, r | \alpha) = p(\mathcal{A} | \mathcal{M}_k) p(\mathcal{M}_k | r) p(r | \alpha)$
 - Hierarchical prior on models and parameters...

Group-level likelihood

Contains two integrals:

- subject parameters
- prior parameters

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

Evaluating p(A|M)

- Two integrals • tricky $p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$
- Step by step: approximating levels separately
 - Approximate at the top level

Evaluating p(A|M)

- Two integrals • tricky $p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$
- Step by step: approximating levels separately
 - Approximate at the top level

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M}) \stackrel{\text{is propto Gaussian}}{\longrightarrow} p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M}) \stackrel{\text{is propto Gaussian}}{\longrightarrow} p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|} \stackrel{\text{Model doesn't prefer}}{\longrightarrow} particular \zeta} \log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

Evaluating p(A|M)

- Two integrals • tricky $p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$
- Step by step: approximating levels separately
 - Approximate at the top level

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M}) \stackrel{\text{is propto Gaussian}}{\longrightarrow}$$
$$\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|} \stackrel{\text{Model doesn't prefer particular } \zeta}{\longrightarrow}$$
$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

just as before, top-level BIC

$P\left(\mathfrak{X} \mid \mu_{\theta}, \sigma_{\theta}\right) \propto \int_{-\infty} \mathrm{d}\underline{\theta} P\left(\mathfrak{X}, \underline{\theta} \mid \mu_{\theta}, \sigma_{\theta}\right)$ Is this reasonable? $\int_{-\infty} \mathrm{d}\underline{\theta} P\left(\mathfrak{X}, \underline{\theta} \mid \mu_{\theta}, \sigma_{\theta}\right)$

$P(\mathfrak{X} \mid \mu_{\theta}, \alpha)$

-30

.

-0.2

-0.1

Daniel Schad

Qı

0.0

Group level errors

$P(\mathfrak{X} \mid \mu_{\theta}, \alpha)$

Qı

Group level errors

Group-level BIC

$$\begin{split} \log p(\mathcal{A}|\mathcal{M}) &= \int d\boldsymbol{\zeta} \, p(\mathcal{A}|\boldsymbol{\zeta}) \, p(\boldsymbol{\zeta}|\mathcal{M}) \\ &\approx -\frac{1}{2} \mathsf{BIC}_{\mathsf{int}} \\ &= \log \hat{p}(\mathcal{A}|\hat{\boldsymbol{\zeta}}^{ML}) - \frac{1}{2} |\mathcal{M}| \log(|\mathcal{A}|) \end{split}$$

Very simple

- I) EM to estimate group prior mean & variance
 - simply done using fminunc, which provides Hessians
- 2) Sample from estimated priors
- 3) Average

How does it do?

How does it do?

iBIC in simulation 2

Generating Model		Fitted model					
	m2b2alr	mr	2b2alr	m2b2al	m	2b2al	
m2b2alr	0	337	49	441	1297	531	
mr	42	0	428	800	801	1490	
2b2alr	12	841	0	280	2678	271	
m2b2al	6	452	95	0	514	83	
m	40	21	408	45	0	436	
2b2al	16	1391	5	18	2271	0	

100

80

Posterior distribution on models

Generative model for models

Bayesian model selection - equations

- Write down joint distribution of generative model
- Variational approximations lead to set of very simple update equations
 - start with flat prior over model probabilities

 $\alpha = \alpha_0$

• then update

$$u_{k}^{i} = \left(\int d\theta_{i} p(\mathcal{A}_{i}, \theta_{i} | \mathcal{M}_{k}) \right) \exp \left(\Psi(\alpha_{k}) - \Psi\left(\sum_{k} \alpha_{k}\right) \right)$$

$$\alpha_{k} \leftarrow \alpha_{0,k} + \sum_{i} \frac{u_{k}^{i}}{\sum_{k} u_{k}^{i}}$$

Random effects model & parameter

Group Model selection

Integrate out your parameters

Questions in psychiatry I: regression

- Parametric relationship with other variables ψ
 - do standard second level analyses
 - can use Hessians to determine weights
 - better: compare two models

$$\begin{array}{ll} \text{Model 1:} & \prod_{i} p(\mathcal{A}_{i} | \theta_{i}) \, p(\theta_{i} | \mu_{0}, \sigma) \\ \text{i.e.} & \theta_{i} \sim \mathcal{N}(\mu_{0}, \sigma) \\ \text{Model 2:} & \prod_{i} p(\mathcal{A}_{i} | \theta_{i}) \, p(\theta_{i} | \mu_{0}, c, \sigma, \psi_{i}) \\ \text{i.e.} & \theta_{i} \sim \mathcal{N}(\mu_{0} + c \psi_{i}, \sigma) \end{array}$$

Standard regression analysis:

$$\mathbf{m}_i = \mathbf{C}\mathbf{r}_i + \Sigma^{1/2}\boldsymbol{\eta} \qquad \forall i$$

Including uncertainty about each subject's inferred parameters

$$\mathbf{m}_i = \mathbf{C}\mathbf{r}_i + (\Sigma^{1/2} + \mathbf{S}_i^{1/2})\boldsymbol{\eta} \qquad \forall i$$

Careful: Finite difference estimates S can be noisy!
regularize...

GLMs for behaviour

GLMs for behaviour

Is there a correlation or not?

GLM regression coefficients and Model comparison

- Compare parameters across different models with care
 - even very similar parameters can account for different effects, and thus 'mean' something else
 - Bayesian model averaging
 - Best if do full random effects inference
 - Dominated by few subjects?

- Compare parameters across different models with care
 - even very similar parameters can account for different effects, and thus 'mean' something else
 - Bayesian model averaging
 - Best if do full random effects inference
 - Dominated by few subjects?
- Within model as model comparisons?
 - Can't compare parameters estimated with different priors
 - Fit all with one and the same prior, do t-tests
 - But: only models the variance in parameters, not data
 - Compare models with separate priors
 - For models with k parameters, there are 2^k-1 possible comparisons
 - multiple comparisons?

Model 1	3	β
Model 2	ε	β

Within model - as model comparisons?

- Can't compare parameters estimated with different priors
 - Fit all with one and the same prior, do t-tests
 - But: only models the variance in parameters, not data
- Compare models with separate priors
 - For models with k parameters, there are 2^k-1 possible comparisons
 - multiple comparisons?

Questions in psychiatry III: Classification

- Who belongs to which of two groups?
- How many groups are there?

Model comparison again

What is 'significant'?

$$BF = \frac{p(\mathcal{A}|\mathcal{M}_1)}{p(\mathcal{A}|\mathcal{M}_2)} \qquad \begin{array}{c} \log_{10}(B_{10}) & B_{10} & \text{Evidence against } H_0 \\ 0 \text{ to } 1/2 & 1 \text{ to } 3.2 & \text{Not worth more than a bare} \\ & & \text{mention} \\ 1/2 \text{ to } 1 & 3.2 \text{ to } 10 & \text{Substantial} \\ 1 \text{ to } 2 & 10 \text{ to } 100 & \text{Strong} \\ & & & 2 & >100 & \text{Decisive} \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ \end{array}$$

- Fixed vs Random effects
- Spread of effect" in group comparisons
 - Better model does not mean a behavioural effect is concentrated in one parameter
 - Obvious raw differences spread between parameters

Behavioural data modelling

Are no panacea

- statistics about specific aspects of decision machinery
- only account for part of the variance
- Model needs to match experiment
 - ensure subjects actually do the task the way you wrote it in the model
 - model comparison

Model = Quantitative hypothesis

- strong test
- need to compare models, not parameters
- includes all consequences of a hypothesis for choice

Modelling in psychiatry

Hypothesis testing

- otherwise untestable hypotheses
- internal processes
- Limited by data quality
 - Look for strong behaviours, not noisy
- "Holistic" testing of hypotheses
- Marr's levels
 - physical
 - algorithm
 - computational