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Overview

» Reinforcement learning: rough overview
* mainly following Sutton & Barto 1998

» Learning theory
e classical & instrumental conditioning

» Dopamine
e prediction errors and more

» Fitting behaviour with RL models
 some applied tips & tricks
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Types of learning

» Supervised
» Unsupervised

» Reinforcement learning
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ENVIFONMENT
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After Sutton and Barto 1998
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State space

Electric

shocks
- |
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A Markov Decision Problem
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Actions

Action left

ololelolololo

Action right
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Actions

Action left
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Action right

Noisy: plants, environments, agent
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Actions

Action left
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Action right

0

Noisy: plants, environments, agent

Absorbing state -> max eigenvalue < |
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Markovian dynamics

p(5t+1|at7 StyAt—1,5t—1,At—2,5¢t—-2, """ ) — p(3t+1|ata St)

N

Velocity
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Markovian dynamics
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Velocity
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Markovian dynamics

p(st—|—1|at7 StyAt—1,5t—1,At—2,5¢t—-2, """ ) — p(3t+1|at> St)

Velocity

s’ = [position] — s" = [

position
velocity
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Tall orders

» Aim: maximise total future reward

O
>

t=1

» i.e. we have to sum over paths through the future
and weigh each by its probability

» Best policy achieves best long-term reward
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Exhaustive tree search

decision 1 =

decision 2 =
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Exhaustive tree search

decision 1 =

decision 2 =
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Decision tree

O
2T

t=1
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Decision tree
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Decision tree

O
2T

t=1
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Policy for this talk

» Pose the problem mathematically

» Policy evaluation

» Policy iteration

» Monte Carlo techniques: experience samples
» ID learning

Evaluate
<
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Evaluating a policy

» Aim: maximise total future reward
o0

DTt
t=1
» To know which is best, evaluate it first

» The policy determines the expected reward from
each state

O

Vi(s1) = E Zrt]slzl,atwﬂ

=1
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Discounting

» Given a policy, each state has an expected value

o

E rils1 =1,a; ~

t=1

» Discounted -
* infinite horizons D Alry < oo
t=0

* finite, exponentially distributed horizons
T
>
t=0

Reinforcement learning Advanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013 Quentin Huys, ETHZ | PUK
Thursday, 15 August 13




Discounting

» Given a policy, each state has an expected value

o

E rils1 =1,a; ~

t=1

» But:

» Discounted -
* infinite horizons D Alry < oo
t=0

* finite, exponentially distributed horizons
T
>
t=0

Reinforcement learning Advanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013 Quentin Huys, ETHZ | PUK
Thursday, 15 August 13




Discounting

» Given a policy, each state has an expected value
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Markov Decision Problems

L t'=1

O

L[] s¢ ‘ ZTHSt:SﬂT

=2

, [7“1|St [VW(St+1)‘8t :8,7'(']

This dynamic consistency is key to many solution approaches.
It states that the value of a state s is related to
the values of its successor states s’.
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Markov Decision Problems

E|ri|s; = s, 7||+E|[V(s¢r1), 7
R(827a1781)

Z p St+1 ‘St, at (St+1, at, St)

3t+1

Z P(St+1|5¢, at)R(St41, A, 5t)

St+1

At
Z 7<—9tst—|—1 St‘|‘17 at? St)

St+1
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Bellman equation
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Bellman Equation
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Bellman Equation

All future
Immediate reward

reward from

All future
reward

from state s ,
next state s

Vi(s) = ) mlals) | ) T [R(s'a,s)
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Bellman Equation

Vi(s) = ) _ml(als)

All future
Immediate reward

reward from

All future
reward

from state s ,
next state s
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Q values = state-action values

Vi(s) = ) m(als)

» so we can define state-action values as:
Q(s,a) = » TLI[R(s a,8) + V(s

©. @)

E ZH’S,&

=1

» and state values are average state-action values:

V(s) = )Y m(als)Q(s,a)
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Bellman Equation

Vi(s) = ) mlals) | ) T [R(s'a,s)

» to evaluate a policy, we need to solve the above
equation, i.e. find the self-consistent state values

» options for policy evaluation
e exhaustive tree search - outwards, inwards, depth-first
* linear solution in | step
* value iteration: iterative updates
experience sampling
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Solving the Bellman Equation

Option |: turn it into update equation

Option 2: linear solution (w/ absorbing states)

V(s) > m(a,s) T2 R(s',a,s) + V(s

R"+T"v
(I . T7T)—1R7T
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Solving the Bellman Equation

Option |: turn it into update equation

Vkﬂ 277 a, St) Z’Z;‘;, [R(S’,a,s) + Vk(s')}

Option 2: linear solution (w/ absorbing states)

Vi(s) (a,5¢) | )T [R(s',a,8) + V(s')]

= v
= v
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Policy update

Given the value function for a policy, say via linear solution

Vi(s) = Y mlals) | ) T [R(s' a,s) + V7 (s')]

Q7 (s,a)
Given the valuesV for the policy, we can improve the policy by always
choosing the best action:

lifa = argmax, Q7 (s, a
™ (als) :{ 0 else ° =

It is guaranteed to improve:

/_\ for deterministic policy
Q" (s, m'(s)) = max Q"(s,a) > Q7(s,m(s)) = V" (s)

a
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Policy iteration

Policy evaluation

vio= (I-T7)'R”

lita = argmax, Zs’ ,Z;C}S’ [Rgs T sz(sl)]

0 else

7(als) = {
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Policy iteration

Reinforcement learning
Thursday, 15 August 13

Policy evaluation

v = (I— T7T)—1R7T

greedy policy improvement

Lifa = argmax, 32, T35 [R{, + VP (s')]

0 else
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Policy iteration

Policy evaluation

v = (I— T7T)—1R7T

Value iteration

Res + V(5]

ss’/

greedy policy improvement

Lifa = argmax, 32, T35 [R{, + VP (s')]
0 else

7(als) = {
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Model-free solutions

» So far we have assumed knowledge of R and T

e R andT are the ‘model’ of the world, so we assume full
knowledge of the dynamics and rewards in the
environment

» What if we don’t know them!?
» We can still learn from state-action-reward samples

e we can learn R and T from them, and use our estimates to
solve as above

* alternatively, we can directly estimateV or Q
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Solving the Bellman Equation

Option 3: sampling

Z m(a, s¢) 7% [R(s',a,s)+ V(s

So we can just draw some samples from the policy and the transitions and
average over them:
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Solving the Bellman Equation

Option 3: sampling

So we can just draw some samples from the policy and the transitions and
average over them:
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Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

So we can just draw some samples from the policy and the transitions and
average over them:
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Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

So we can just draw some samples from the policy and the transitions and

average over them:
E S(@k)p Cli‘k)

) Np(ﬂ?) = Zf )

more about this later...
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Learning from samples

A new problem: exploration versus exploitation
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Monte Carlo

» First visit MC

 randomly start in all states, generate paths, average for

starting state only
T )

V(s) = %Z< Zr,@]sozs

\t'=1 J

» More efficient use of samples "~

e Every visit MC
 Bootstrap: TD
e Dyna

» Better samples

e on policy versus off policy
e Stochastic search, UCT...
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Update equation: towards 1D

Bellman equation

V(s) = » m(a,s) T2 R(s,a,s) + V(s

S/

Not yet converged, so it doesn’t hold:

dV (s) = =V (s) + Zﬂ(a, s) ZTS@, R(s",a,s)+ V(s

S/

And then use this to update

Viti(s) = V(s) + dV(s)
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1D learning

dV(s) ==V (s)+» m(a,s)
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1D learning

dV (s) = =V (s) + ZT&'(CL, s)  R(s",a,s)+ V(s

L} m(als;)
Sample T Ot

St,St+1

R(St-l-l? g, St)
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1D learning

dV (s) = =V (s) + ZT&'(CL, s)  R(s",a,s)+ V(s

/&) m(als;)
Sample St41 T ot

St,St+1

( — Tt R(St_|_1,(lt, St)

0r = —Vi_1(st) +re + Vic1(St41)
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1D learning

dV (s) = =V (s) + Zﬂ(a, s)  R(s",a,s)+ V(s

/L} m(als;)
Sample St41 T ot

St,St+1

( — Tt R(St_|_1,(lt, St)

0r = —Vi_1(st) +re + Vic1(St41)

Vi (s) = V'(s) +dV(s) \/V%(St) = Vi—1(s¢) + oy
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1D learning
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Aside: what makes a TD error?

A B
early reward

alig

late no reward
M5 He

0 1

t (s) t(s)

s’umulus reward

» unpredicted reward expectation change
» disappears with learning
» stays with probabilistic reinforcement

» sequentiality
 TD error vs prediction error

» see Niv and Schoenbaum 2008

Schultz et al.
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The effect of bootstrapping

Markov (every visit)
V(B)=3/4
V(A)=0

TD
V(B)=3/4
V(A)=~3/4

» Average over various bootstrappings: TD(\)

after Sutton and Barto 1998
Quentin Huys, ETHZ | PUK
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Actor-critic

» policy and value separately parameterised

0r = Tea1 + YV (ser1) — V(se)

w(s,a) «— w(s,a) + By
w(s,a) «— w(s,a) + B6:(1 —n(s,a))

6w(s,a)

Za/ ew(s,a’)

m(als) =
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SARSA

» Do TD for state-action values instead:

Q(St, at) — Q(St, at) + Oé["“t + ’YQ(St+1, Cbt+1) — Q(St, (Lt)]

Sty Aty Tty St4+15 At41

» convergence guarantees - will estimate Q" (s, a)
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Q learning: off-policy

» Learn off-policy

e draw from some policy
* “only” require extensive sampling

Q(St, CLt) — Q(St, at) + o |1+ WmélX Q(8t+1, CL) —Q(St, CLt)

%,_/
- update towards

optimum

» will estimate Q*(s, a)
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Learning in the wrong state space

p states=distance from
goal

p state-space choice
crucial

too big -> curse of
dimensionality

too small -> can’t
express good policies

unsolved problem

» humans in tasks have
to infer state-space
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Neural network approximations

» So far: look-up tables actions

» Parametric value functions

—> OJ(s,a;0)

» Humans and animals generalize
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Hierarchical decompositions

» Subtasks stay the same

e | earn subtasks

e | earn how to use
subtasks

» Macroactions

* ‘go to door’
e search goal

» Humans establish
subgoals on-line

* how is not yet known
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Learning a model

» So far we've concentrated on model-free learning

» What if we want to build some model of the
environment?

Z m(a, s) R(s',a,s)

» Count transitions
fa _ > (st =s,ar = a,5¢41 = 5)

>3 > . 1(st =s,a; = a)

» Average rewards
72“ :

D) Til(si =s,a; = a, 8441 = §)

N > (st =s,ar = a,Se41 = §)
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Dyna

» Combine model estimation with TD learning
Vig1(se) = Vi(se) + ady

Generate extra
experience samples
from estimated model

|
s00 'l

!

' | ! !
600+ l actions

Steps l 0 planning steps
per 400 ' (direct RL only)
epISOde 5 planning steps

50 planning steps
2004 —

20

Episodes Sutton & Barto 1998, Figure 9.5
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Conclusion |

» Long-term rewards have internal consistency
» This can be exploited for solution

» Exploration and exploitation trade off when
sampling

» Clever use of samples can produce fast learning

* Brain most likely does something like this
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