
Reinforcement Learning
I: Theory

Quentin Huys

Translational Neuromodeling Unit, ETH and University of Zurich
University Hospital of Psychiatry Zurich

Advanced Course in Computational Neuroscience, Bedlewo, Poland, August 2013

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Overview

‣ Reinforcement learning: rough overview
• mainly following Sutton & Barto 1998

‣ Learning theory
• classical & instrumental conditioning

‣ Dopamine
• prediction errors and more

‣ Fitting behaviour with RL models
• some applied tips & tricks

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Types of learning

‣ Supervised

‣ Unsupervised

‣ Reinforcement learning

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Setup

Environment

Agent

at rtst

After Sutton and Barto 1998

{at}� argmax
{at}

��

t=1

rt

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

State space

Gold
+1

Electric
shocks

-1

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

A Markov Decision Problem

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Noisy: plants, environments, agent

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Absorbing state -> max eigenvalue < 1

abs

Noisy: plants, environments, agent

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Markovian dynamics

p(st+1|at, st, at�1, st�1, at�2, st�2, · · ·) = p(st+1|at, st)

Velocity

at�2, st�2 � at�1, st�1 � at, st

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Markovian dynamics

p(st+1|at, st, at�1, st�1, at�2, st�2, · · ·) = p(st+1|at, st)

Velocity

at�2, st�2 � at�1, st�1 � at, st

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Markovian dynamics

p(st+1|at, st, at�1, st�1, at�2, st�2, · · ·) = p(st+1|at, st)

Velocity

s� = [position]� s� =
�

position
velocity

⇥

at�2, st�2 � at�1, st�1 � at, st

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

-1 +10

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Tall orders

‣ Aim: maximise total future reward

‣ i.e. we have to sum over paths through the future
and weigh each by its probability

‣ Best policy achieves best long-term reward

1X

t=1

rt

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Exhaustive tree search

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Exhaustive tree search

wd

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Decision tree

1X

t=1

rt

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Decision tree

1X

t=1

rt

8

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Decision tree

1X

t=1

rt

8

64

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Decision tree

1X

t=1

rt

8

64

512

...

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Policy for this talk

‣ Pose the problem mathematically
‣ Policy evaluation
‣ Policy iteration
‣ Monte Carlo techniques: experience samples
‣ TD learning

Policy

UpdateEvaluate

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Evaluating a policy

‣ Aim: maximise total future reward

‣ To know which is best, evaluate it first
‣ The policy determines the expected reward from

each state

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

1X

t=1

rt

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Discounting

‣ Given a policy, each state has an expected value

‣ But:

‣ Episodic

‣ Discounted
• infinite horizons

• finite, exponentially distributed horizons

��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�

t=0

�trt

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

TX

t=0

rt < 1

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Discounting

‣ Given a policy, each state has an expected value

‣ But:

‣ Episodic

‣ Discounted
• infinite horizons

• finite, exponentially distributed horizons

��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�

t=0

�trt

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

TX

t=0

rt < 1

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Discounting

‣ Given a policy, each state has an expected value

‣ But:

‣ Episodic

‣ Discounted
• infinite horizons

• finite, exponentially distributed horizons

��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�

t=0

�trt

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

TX

t=0

rt < 1

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Markov Decision Problems

This dynamic consistency is key to many solution approaches.
It states that the value of a state s is related to

the values of its successor states s’.

V ⇡(st) = E
" 1X

t0=1

rt0 |st = s,⇡

#

= E [r1| st = s,⇡] + E
" 1X

t=2

rt|st = s,⇡

#

= E [r1| st = s,⇡] + E [V ⇡(st+1)|st = s,⇡]

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Markov Decision Problems

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

r1 ⇠ R(s2, a1, s1)

E [r1|st = s,⇡] = E

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

p(at|st)

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

⇡(at, st)

2

4
X

st+1

T at
stst+1

R(st+1, at, st)

3

5

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Bellman equation

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

E [r1|st,⇡] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

R(st+1, a, st)

3

5

E [V ⇡(st+1),⇡, st] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

V ⇡(st+1)

3

5

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Bellman Equation

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Bellman Equation

All future
reward

from state s

Immediate
reward

= E

All future
reward
from

next state s’

+

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Bellman Equation

All future
reward

from state s

Immediate
reward

= E

All future
reward
from

next state s’

+

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

‣ so we can define state-action values as:

‣ and state values are average state-action values:

Q values = state-action values

Q(s, a) =
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

= E
� ⇥⇤

t=1

rt|s, a
⇥

V (s) =
�

a

�(a|s)Q(s, a)

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

‣ to evaluate a policy, we need to solve the above
equation, i.e. find the self-consistent state values

‣ options for policy evaluation
• exhaustive tree search - outwards, inwards, depth-first
• linear solution in 1 step
• value iteration: iterative updates
• experience sampling

Bellman Equation

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Solving the Bellman Equation

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Solving the Bellman Equation

V k+1(s) =
⇧

a

�(a, st)

⇤
⇧

s�

T a
ss�

�
R(s�, a, s) + V k(s�)

⇥
⌅

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Policy update

Given the value function for a policy, say via linear solution

Given the values V for the policy, we can improve the policy by always
choosing the best action:

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)

It is guaranteed to improve:

Q⇡
(s,⇡0

(s)) = max

a
Q⇡

(s, a) � Q⇡
(s,⇡(s)) = V⇡

(s)
for deterministic policy

⇡0
(a|s) =

⇢
1 if a = argmaxa Q⇡

(s, a)
0 else

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Policy iteration

v� = (I�T�)�1R�

Policy evaluation

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Policy iteration

v� = (I�T�)�1R�

Policy evaluation

greedy policy improvement

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Policy iteration

v� = (I�T�)�1R�

V �(s) = max
a

�

s�

T a
ss� [Ra

ss + V �(s⇥)]

Policy evaluation

greedy policy improvement

Value iteration

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Model-free solutions

‣ So far we have assumed knowledge of R and T
• R and T are the ‘model’ of the world, so we assume full

knowledge of the dynamics and rewards in the
environment

‣ What if we don’t know them?
‣ We can still learn from state-action-reward samples
• we can learn R and T from them, and use our estimates to

solve as above
• alternatively, we can directly estimate V or Q

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Solving the Bellman Equation

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
Option 3: sampling

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and
average over them:

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Solving the Bellman Equation

Option 3: sampling

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and
average over them:

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and
average over them:

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and
average over them:

more about this later...

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Learning from samples

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

A new problem: exploration versus exploitation

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Monte Carlo

‣ First visit MC
• randomly start in all states, generate paths, average for

starting state only

‣ More efficient use of samples
• Every visit MC
• Bootstrap: TD
• Dyna

‣ Better samples
• on policy versus off policy
• Stochastic search, UCT...

V(s) = 1

N

X

i

(
TX

t0=1

rit0 |s0 = s

)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Update equation: towards TD

Bellman equation

V (s) =
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Not yet converged, so it doesn’t hold:

And then use this to update

V i+1(s) = V i(s) + dV (s)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

TD learning

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

TD learning

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

TD learning

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

�t = �Vt�1(st) + rt + Vt�1(st+1)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

TD learning

V i+1(s) = V i(s) + dV (s)

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Vt(st) = Vt�1(st) + �⇥t

�t = �Vt�1(st) + rt + Vt�1(st+1)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

TD learning

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

�t = �Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + �⇥t

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Aside: what makes a TD error?

‣ unpredicted reward expectation change
‣ disappears with learning
‣ stays with probabilistic reinforcement
‣ sequentiality
• TD error vs prediction error

‣ see Niv and Schoenbaum 2008

Schultz et al.

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

The effect of bootstrapping

B1
B1
B1
B1
B1
B1
B0
A0 B0

Markov (every visit)
V(B)=3/4
V(A)=0

TD
V(B)=3/4
V(A)=~3/4

after Sutton and Barto 1998

‣ Average over various bootstrappings: TD()�

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

‣ policy and value separately parameterised

Actor-critic

⇥t = rt+1 + �V (st+1)� V (st)

w(s, a)� w(s, a) + �⇥t

w(s, a)⇥ w(s, a) + �⇥t(1� ⇤(s, a))

⇡(a|s) = ew(s,a)

P
a0 ew(s,a0)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

‣ Do TD for state-action values instead:

‣ convergence guarantees - will estimate

SARSA

Q(st, at)⇥ Q(st, at) + �[rt + ⇥Q(st+1, at+1)�Q(st, at)]

st, at, rt, st+1, at+1

Q⇡(s, a)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

‣ Learn off-policy
• draw from some policy
• “only” require extensive sampling

‣ will estimate

Q learning: off-policy

Q(st, at)⇥ Q(st, at) + �

�

⇤rt + ⇥ max
a
Q(st+1, a)

⌥ ⌃⇧ �
�Q(st, at)

⇥

⌅

update towards
optimum

Q⇤(s, a)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

‣ states=distance from
goal

‣ state-space choice
crucial
• too big -> curse of

dimensionality
• too small -> can’t

express good policies
• unsolved problem

‣ humans in tasks have
to infer state-space

Learning in the wrong state space

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

‣ So far: look-up tables

‣ Parametric value functions

‣ Humans and animals generalize

Neural network approximations

st
at

es

actions

s

a
Q(s, a;�)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Hierarchical decompositions

‣ Subtasks stay the same
• Learn subtasks
• Learn how to use

subtasks

‣ Macroactions
• ‘go to door’
• search goal

‣ Humans establish
subgoals on-line
• how is not yet known

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Learning a model

‣ So far we’ve concentrated on model-free learning
‣ What if we want to build some model of the

environment?

‣ Count transitions

‣ Average rewards

V (s) =
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

T̂ a
ss� =

�
t 1(st = s, at = a, st+1 = s�)�

t 1(st = s, at = a)

R̂a
ss� =

�
t rt1(st = s, at = a, st+1 = s�)�
t 1(st = s, at = a, st+1 = s�)

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Dyna

‣ Combine model estimation with TD learning

Vt+1(st) = Vt(st) + �⇥t

Generate extra
experience samples

from estimated model

Sutton & Barto 1998, Figure 9.5

Thursday, 15 August 13

Reinforcement learning Quentin Huys, ETHZ / PUKAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2013

Conclusion I

‣ Long-term rewards have internal consistency
‣ This can be exploited for solution
‣ Exploration and exploitation trade off when

sampling
‣ Clever use of samples can produce fast learning
• Brain most likely does something like this

Thursday, 15 August 13

