Reinforcement Learning I:Theory

Quentin Huys

Translational Neuromodeling Unit, ETH and University of Zurich University Hospital of Psychiatry Zurich

Advanced Course in Computational Neuroscience, Bedlewo, Poland, August 2013

Overview

- Reinforcement learning: rough overview
- mainly following Sutton \& Barto 1998
- Learning theory
- classical \& instrumental conditioning
- Dopamine
- prediction errors and more
- Fitting behaviour with RL models
- some applied tips \& tricks

Types of learning

- Supervised
- Unsupervised
- Reinforcement learning

Setup

After Sutton and Barto 1998

State space

A Markov Decision Problem

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

									A

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

MDP

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

Actions

Action left

Action right

$$
T^{\text {left }}=\left[\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad T^{\text {right }}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Actions

Action left

Action right

$$
T^{\mathrm{left}}=\left[\begin{array}{ccccccc}
.8 & .8 & 0 & 0 & 0 & 0 & 0 \\
.2 & .2 & .8 & 0 & 0 & 0 & 0 \\
0 & 0 & .2 & .8 & 0 & 0 & 0 \\
0 & 0 & 0 & .2 & .8 & 0 & 0 \\
0 & 0 & 0 & 0 & .2 & .8 & 0 \\
0 & 0 & 0 & 0 & 0 & .2 & .8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad T^{\mathrm{right}}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Noisy: plants, environments, agent

Actions

Action left

Noisy: plants, environments, agent
Absorbing state -> max eigenvalue < 1

Markovian dynamics

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

Markovian dynamics

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

Markovian dynamics

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

$$
s^{\prime}=[\text { position }] \rightarrow s^{\prime}=\left[\begin{array}{l}
\text { position } \\
\text { velocity }
\end{array}\right]
$$

MP

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

MP

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

				A					
								\uparrow	
				\downarrow					\rightarrow
									\uparrow
				\downarrow					
									\checkmark

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

Tall orders

- Aim: maximise total future reward

- i.e. we have to sum over paths through the future and weigh each by its probability
- Best policy achieves best long-term reward

Exhaustive tree search

Exhaustive tree search

Decision tree

$$
\sum_{t=1}^{\infty} r_{t}
$$

Decision tree

$$
\sum_{t=1}^{\infty} r_{t}
$$

8

				rach					

Decision tree

$$
\sum_{t=1}^{\infty} r_{t}
$$

Decision tree

Policy for this talk

- Pose the problem mathematically
- Policy evaluation
- Policy iteration
- Monte Carlo techniques: experience samples
- TD learning

Policy

Evaluate \rightleftarrows Update

Evaluating a policy

- Aim: maximise total future reward

$$
\sum_{t=1}^{\infty} r_{t}
$$

- To know which is best, evaluate it first
- The policy determines the expected reward from each state

$$
\mathcal{V}^{\pi}\left(s_{1}\right)=\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s_{1}=1, a_{t} \sim \pi\right]
$$

Discounting

- Given a policy, each state has an expected value

$$
\mathcal{V}^{\pi}\left(s_{1}\right)=\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s_{1}=1, a_{t} \sim \pi\right]
$$

- But: $\sum_{t=0}^{\infty} r_{t}=\infty$
- Episodic

$$
\sum_{t=0}^{T} r_{t}<\infty
$$

- Discounted
- infinite horizons

$$
\sum_{t=0}^{\infty} \gamma^{t} r_{t}<\infty
$$

- finite, exponentially distributed horizons

$$
\sum_{t=0}^{T} \gamma^{t} r_{t} \quad T \sim \frac{1}{\tau} e^{t / \tau}
$$

Discounting

- Given a policy, each state has an expected value

$$
\mathcal{V}^{\pi}\left(s_{1}\right)=\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s_{1}=1, a_{t} \sim \pi\right]
$$

- But: $\sum_{t=0}^{\infty} r_{t}=\infty$
- Episodic

$$
\sum_{t=0}^{T} r_{t}<\infty
$$

- Discounted
- infinite horizons

$$
\sum_{t=0}^{\infty} \gamma^{t} r_{t}<\infty
$$

- finite, exponentially distributed horizons

$$
\sum_{t=0}^{T} \gamma^{t} r_{t} \quad T \sim \frac{1}{\tau} e^{t / \tau}
$$

Discounting

- Given a policy, each state has an expected value

$$
\mathcal{V}^{\pi}\left(s_{1}\right)=\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s_{1}=1, a_{t} \sim \pi\right]
$$

- But: $\sum_{t=0}^{\infty} r_{t}=\infty$
- Episodic

$$
\sum_{t=0}^{T} r_{t}<\infty
$$

- Discounted
- infinite horizons

$$
\sum_{t=0}^{\infty} \gamma^{t} r_{t}<\infty
$$

- finite, exponentially distributed horizons

$$
\sum_{t=0}^{T} \gamma^{t} r_{t} \quad T \sim \frac{1}{\tau} e^{t / \tau}
$$

Markov Decision Problems

$$
\begin{aligned}
V^{\pi}\left(s_{t}\right) & =\mathbb{E}\left[\sum_{t^{\prime}=1}^{\infty} r_{t^{\prime}} \mid s_{t}=s, \pi\right] \\
& =\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right]+\mathbb{E}\left[\sum_{t=2}^{\infty} r_{t} \mid s_{t}=s, \pi\right] \\
& =\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right]+\mathbb{E}\left[V^{\pi}\left(s_{t+1}\right) \mid s_{t}=s, \pi\right]
\end{aligned}
$$

This dynamic consistency is key to many solution approaches. It states that the value of a state s is related to the values of its successor states s'.

Markov Decision Problems

$$
\begin{aligned}
V^{\pi}\left(s_{t}\right) & =\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right]+\mathbb{E}\left[V\left(s_{t+1}\right), \pi\right] \\
r_{1} & \sim \mathcal{R}\left(s_{2}, a_{1}, s_{1}\right) \\
\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right] & =\mathbb{E}\left[\sum_{s_{t+1}} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{a_{t}} p\left(a_{t} \mid s_{t}\right)\left[\sum_{s_{t+1}} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right] \\
& =\sum_{a_{t}} \pi\left(a_{t}, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a_{t}} \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right]
\end{aligned}
$$

Bellman equation

$$
V^{\pi}\left(s_{t}\right)=\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right]+\mathbb{E}\left[V\left(s_{t+1}\right), \pi\right]
$$

$\mathbb{E}\left[r_{1} \mid s_{t}, \pi\right]=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a} \mathcal{R}\left(s_{t+1}, a, s_{t}\right)\right]$
$\mathbb{E}\left[V^{\pi}\left(s_{t+1}\right), \pi, s_{t}\right]=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a} V^{\pi}\left(s_{t+1}\right)\right]$

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]
$$

Bellman Equation

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]
$$

Bellman Equation

Bellman Equation

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]
$$

$\left.\left.\begin{array}{c}\text { All future } \\ \begin{array}{c}\text { reward } \\ \text { from state s }\end{array} \\ \end{array}\right] \begin{array}{c}\text { All future } \\ \text { reward } \\ \text { from } \\ \text { Immediate } \\ \text { reward } \\ \text { next state s }\end{array}\right]$

Q values = state-action values

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s) \underbrace{\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]}_{\mathcal{Q}^{\pi}(s, a)}
$$

- so we can define state-action values as:

$$
\begin{aligned}
\mathcal{Q}(s, a) & =\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s, a\right]
\end{aligned}
$$

- and state values are average state-action values:

$$
V(s)=\sum_{a} \pi(a \mid s) \mathcal{Q}(s, a)
$$

Bellman Equation

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]
$$

- to evaluate a policy, we need to solve the above equation, i.e. find the self-consistent state values
- options for policy evaluation
- exhaustive tree search - outwards, inwards, depth-first
- linear solution in I step
- value iteration: iterative updates
- experience sampling

Solving the Bellman Equation

Option I: turn it into update equation

Option 2: linear solution (w/ absorbing states)

$$
\begin{aligned}
V(s) & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
\Rightarrow \mathbf{v} & =\mathbf{R}^{\pi}+\mathbf{T}^{\pi} \mathbf{v} \\
\Rightarrow \mathbf{v}^{\pi} & =\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi} \quad \mathcal{O}\left(|\mathcal{S}|^{3}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option I: turn it into update equation

$$
V^{k+1}(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{k}\left(s^{\prime}\right)\right]\right]
$$

Option 2: linear solution (w/ absorbing states)

$$
\begin{aligned}
V(s) & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
\Rightarrow \mathbf{v} & =\mathbf{R}^{\pi}+\mathbf{T}^{\pi} \mathbf{v} \\
\Rightarrow \mathbf{v}^{\pi} & =\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi} \quad \mathcal{O}\left(|\mathcal{S}|^{3}\right)
\end{aligned}
$$

Policy update

Given the value function for a policy, say via linear solution

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s) \underbrace{\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]}_{\mathcal{Q}^{\pi}(s, a)}
$$

Given the values V for the policy, we can improve the policy by always choosing the best action:

$$
\pi^{\prime}(a \mid s)=\left\{\begin{array}{l}
1 \text { if } a=\operatorname{argmax}_{a} \mathcal{Q}^{\pi}(s, a) \\
0 \text { else }
\end{array}\right.
$$

It is guaranteed to improve:

$$
\mathcal{Q}^{\pi}\left(s, \pi^{\prime}(s)\right)=\max _{a} \mathcal{Q}^{\pi}(s, a) \geq \mathcal{Q}^{\pi}(s, \pi(s))=\mathcal{V}^{\pi}(s)
$$

Policy iteration

Policy evaluation

$$
\mathbf{v}^{\pi}=\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi}
$$

$$
\pi(a \mid s)=\left\{\begin{array}{l}
1 \text { if } a=\operatorname{argmax}_{a} \sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s}^{a}+V^{p i}\left(s^{\prime}\right)\right] \\
0 \text { else }
\end{array}\right.
$$

Policy iteration

Policy iteration

Policy evaluation

$$
\mathbf{v}^{\pi}=\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi}
$$

Value iteration

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s}^{a}+V^{*}\left(s^{\prime}\right)\right]
$$

greedy policy improvement

$$
\pi(a \mid s)=\left\{\begin{array}{l}
1 \text { if } a=\operatorname{argmax}_{a} \sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s}^{a}+V^{p i}\left(s^{\prime}\right)\right] \\
0 \text { else }
\end{array}\right.
$$

Model-free solutions

- So far we have assumed knowledge of R and T
- R and T are the 'model' of the world, so we assume full knowledge of the dynamics and rewards in the environment
- What if we don't know them?
- We can still learn from state-action-reward samples
- we can learn R and T from them, and use our estimates to solve as above
- alternatively, we can directly estimate V or Q

Solving the Bellman Equation

Option 3: sampling

$$
V(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

So we can just draw some samples from the policy and the transitions and average over them:

$$
\begin{aligned}
a & =\sum_{k} f\left(x_{k}\right) p\left(x_{k}\right) \\
x^{(i)} & \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x^{(i)}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option 3: sampling

So we can just draw some samples from the policy and the transitions and average over them:

$$
\begin{aligned}
a & =\sum_{k} f\left(x_{k}\right) p\left(x_{k}\right) \\
x^{(i)} & \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x^{(i)}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

So we can just draw some samples from the policy and the transitions and average over them:

$$
\begin{aligned}
a & =\sum_{k} f\left(x_{k}\right) p\left(x_{k}\right) \\
x^{(i)} & \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x^{(i)}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

So we can just draw some samples from the policy and the transitions and average over them:

$$
\begin{aligned}
a & =\sum_{k} f\left(x_{k}\right) p\left(x_{k}\right) \\
x^{(i)} & \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x^{(i)}\right)
\end{aligned}
$$

more about this later...

Learning from samples

A new problem: exploration versus exploitation

Monte Carlo

First visit MC

- randomly start in all states, generate paths, average for starting state only

$$
\mathcal{V}(s)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s\right\}
$$

- More efficient use of samples
- Every visit MC
- Bootstrap:TD
- Dyna
- Better samples
- on policy versus off policy
- Stochastic search, UCT...

Update equation: towards TD

Bellman equation

$$
V(s)=\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Not yet converged, so it doesn't hold:

$$
d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

And then use this to update

$$
V^{i+1}(s)=V^{i}(s)+d V(s)
$$

TD learning

$$
d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

TD learning

$$
\begin{aligned}
& d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
& a_{t} \sim \pi\left(a \mid s_{t}\right) \\
& s_{t+1} \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
& r_{t}=\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)
\end{aligned}
$$

TD learning

$$
\begin{aligned}
& d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
& a_{t} \sim \pi\left(a \mid s_{t}\right) \\
& s_{t+1} \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
& r_{t}=\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
& \text { Sample }
\end{aligned}
$$

TD learning

$$
\begin{aligned}
& d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\right. {\left.\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] } \\
& a_{t} \sim \pi\left(a \mid s_{t}\right) \\
& s_{t+1} \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
& r_{t}=\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
& \delta_{t}=-V_{t-1}\left(s_{t}\right)+r_{t}+V_{t-1}\left(s_{t+1}\right) \\
& V^{i+1}(s)=V^{i}(s)+d V(s) \quad V_{t}\left(s_{t}\right)=V_{t-1}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

TD learning

$$
\begin{aligned}
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}}^{a_{t}}, s_{t+1} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\delta_{t} & =-V_{t}\left(s_{t}\right)+r_{t}+V_{t}\left(s_{t+1}\right) \\
V_{t+1}\left(s_{t}\right) & =V_{t}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

Aside: what makes a TD error?

- unpredicted reward expectation change
- disappears with learning
- stays with probabilistic reinforcement
- sequentiality
- TD error vs prediction error
- see Niv and Schoenbaum 2008

The effect of bootstrapping

$B \mathrm{BI}$	
BI	
BO	
AO	BO

$$
\begin{aligned}
& \text { Markov (every visit) } \\
& V(B)=3 / 4 \\
& V(A)=0 \\
& \\
& \text { TD } \\
& \operatorname{V}(B)=3 / 4 \\
& V(A)=\sim 3 / 4
\end{aligned}
$$

- Average over various bootstrappings:TD (λ)

Actor-critic

- policy and value separately parameterised

$$
\begin{aligned}
& \delta_{t}=r_{t+1}+\gamma V\left(s_{t+1}\right)-V\left(s_{t}\right) \\
& w(s, a) \leftarrow w(s, a)+\beta \delta_{t} \\
& w(s, a) \leftarrow w(s, a)+\beta \delta_{t}(1-\pi(s, a))
\end{aligned}
$$

$$
\pi(a \mid s)=\frac{e^{w(s, a)}}{\sum_{a^{\prime}} e^{w\left(s, a^{\prime}\right)}}
$$

SARSA

- Do TD for state-action values instead:

$$
\begin{gathered}
\mathcal{Q}\left(s_{t}, a_{t}\right) \leftarrow \mathcal{Q}\left(s_{t}, a_{t}\right)+\alpha\left[r_{t}+\gamma \mathcal{Q}\left(s_{t+1}, a_{t+1}\right)-\mathcal{Q}\left(s_{t}, a_{t}\right)\right] \\
s_{t}, a_{t}, r_{t}, s_{t+1}, a_{t+1}
\end{gathered}
$$

- convergence guarantees - will estimate $\mathcal{Q}^{\pi}(s, a)$

Q learning: off-policy

- Learn off-policy
- draw from some policy
- "only" require extensive sampling

$$
\mathcal{Q}\left(s_{t}, a_{t}\right) \leftarrow \mathcal{Q}\left(s_{t}, a_{t}\right)+\alpha[\underbrace{r_{t}+\gamma \max _{a} \mathcal{Q}\left(s_{t+1}, a\right)}_{\begin{array}{c}
\text { update towards } \\
\text { optimum }
\end{array}}-\mathcal{Q}\left(s_{t}, a_{t}\right)]
$$

- will estimate $\mathcal{Q}^{*}(s, a)$

Learning in the wrong state space

- states=distance from goal
- state-space choice crucial
- too big -> curse of dimensionality
- too small -> can't express good policies

- unsolved problem
- humans in tasks have to infer state-space

Neural network approximations

- So far: look-up tables
- Parametric value functions

- Humans and animals generalize

Hierarchical decompositions

- Subtasks stay the same
- Learn subtasks
- Learn how to use subtasks
- Macroactions
- 'go to door'
- search goal
- Humans establish subgoals on-line
- how is not yet known

Learning a model

- So far we've concentrated on model-free learning
- What if we want to build some model of the environment?

$$
\left.V(s)=\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a} \mid \mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

- Count transitions

$$
\hat{\mathcal{T}}_{s s^{\prime}}^{a}=\frac{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a\right)}
$$

- Average rewards

$$
\hat{\mathcal{R}}_{s s^{\prime}}^{a}=\frac{\sum_{t} r_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}
$$

- Combine model estimation with TD learning

$$
V_{t+1}\left(s_{t}\right)=V_{t}\left(s_{t}\right)+\alpha \delta_{t}
$$

Generate extra experience samples from estimated model

actions

Episodes Sutton \& Barto 1998, Figure 9.5

Conclusion I

- Long-term rewards have internal consistency
- This can be exploited for solution
- Exploration and exploitation trade off when sampling
- Clever use of samples can produce fast learning - Brain most likely does something like this

