Modelling behavioural data

Quentin Huys
 MA PhD MBBS MBPsS

Translational Neuromodeling Unit, ETH Zürich
Psychiatrische Universitätsklinik Zürich

Outline

- An example task
- Why build models? What is a model
- Fitting models
- Validating \& comparing models
- Model comparison issues in psychiatry

Example task

Example task

Guitart-Masip, Huys et al. Submitted

Example task

Guitart-Masip, Huys et al. Submitted

Example task

Analysing behaviour

- Standard approach:
- Decide which feature of the data you care about
- Run descriptive statistical tests, e.g.ANOVA
- Many strengths
- Weakness
- Piecemeal, not holistic / global
- Descriptive, not generative
- No internal variables

Analysing behaviour

- Standard approach:
- Decide which feature of the data you care about
- Run descriptive statistical tests, e.g.ANOVA

- Many strengths
- Weakness
- Piecemeal, not holistic / global
- Descriptive, not generative
- No internal variables

Models

- Holistic
- Aim to model the process by which the data came about in its "entirety"
- Generative
- They can be run on the task to generate data as if a subject had done the task
- Inference process
- Capture the inference process subjects have to make to perform the task.
- Do this in sufficient detail to replicate the data.
- Parameters
- replace test statistics
- their meaning is explicit in the model
- their contribution to the data is assessed in a holistic manner

A simple Rescorla-Wagner model

- Q values

$$
\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)=\mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)+\epsilon\left(r_{t}-\mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)\right)
$$

a_{t} action on trial t; can be either 'go' or 'logo'
$s_{t} \quad$ stimulus presented on trial t
$\epsilon \quad$ learning rate

- Key points:

- Q is the key part of the hypothesis
- formally states the learning process in quantitative detail
- formalizes internal quantities that are used in the task

Actions

- Q values

$$
\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)=\mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)+\epsilon\left(r_{t}-\mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)\right)
$$

- Action probabilities:"softmax" of Q value

$$
\begin{aligned}
p\left(a_{t} \mid s_{t}, h_{t}, \beta\right) & =p\left(a_{t} \mid \mathcal{Q}\left(a_{t}, s_{t}\right), \beta\right) \\
& =\frac{e^{\beta \mathcal{Q}\left(a_{t}, s_{t}\right)}}{\sum_{a^{\prime}} e^{\beta \mathcal{Q}\left(a^{\prime}, s_{t}\right)}}
\end{aligned}
$$

- Features:

$$
\begin{aligned}
p\left(a_{t} \mid s_{t}\right) & \propto \mathcal{Q}\left(a_{t}, s_{t}\right) \\
0 & \leq p(a) \leq 1
\end{aligned}
$$

- links learning process and observations
- choices, RTs, or any other data
- link function in GLMs
- man other forms

Fitting models I

- Maximum likelihood (ML) parameters

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}(\theta)
$$

- where the likelihood of all choices is:

$$
\begin{aligned}
\mathcal{L}(\theta) & =\log p(\left\{a_{t}\right\}_{t=1}^{T} \mid\left\{s_{t}\right\}_{t=1}^{T},\left\{r_{t}\right\}_{t=1}^{T}, \underbrace{\theta}_{\beta, \epsilon}) \\
& =\log p\left(\left\{a_{t}\right\}_{t=1}^{T} \mid\left\{\mathcal{Q}\left(s_{t}, a_{t} ; \epsilon\right)\right\}_{t=1}^{T}, \beta\right) \\
& =\log \prod_{t=1}^{\beta} p\left(a_{t} \mid \mathcal{Q}\left(s_{t}, a_{t} ; \epsilon\right), \beta\right) \\
& =\sum_{t=1}^{T} \log p\left(a_{t} \mid \mathcal{Q}\left(s_{t}, a_{t} ; \epsilon\right), \beta\right)
\end{aligned}
$$

Fitting models II

- No closed form
- Use your favourite method
- gradients
- fminunc / fmincon...
- Gradients for RW model

$$
\begin{aligned}
\frac{d \mathcal{L}(\theta)}{d \theta} & =\frac{d}{d \theta} \sum_{t} \log p\left(a_{t} \mid \mathcal{Q}_{t}\left(a_{t}, s_{t} ; \epsilon\right), \beta\right) \\
& =\sum_{t} \frac{d}{d \theta} \beta \mathcal{Q}_{t}\left(a_{t}, s_{t} ; \epsilon\right)-\sum_{a^{\prime}} p\left(a^{\prime} \mid \mathcal{Q}_{t}\left(a^{\prime}, s_{t} ; \epsilon\right), \beta\right) \frac{d}{d \theta} \beta \mathcal{Q}_{t}\left(a^{\prime}, s_{t} ; \epsilon\right) \\
\frac{d \mathcal{Q}_{t}\left(a_{t}, s_{t} ; \epsilon\right)}{d \epsilon} & =(1-\epsilon) \frac{d \mathcal{Q}_{t-1}\left(a_{t}, s_{t} ; \epsilon\right)}{d \epsilon}+\left(r_{t}-\mathcal{Q}_{t-1}\left(a_{t}, s_{t} ; \epsilon\right)\right)
\end{aligned}
$$

Little tricks

- Transform your variables

$$
\begin{aligned}
\beta & =e^{\beta^{\prime}} \\
& \Rightarrow \beta^{\prime}=\log (\beta) \\
\epsilon & =\frac{1}{1+e^{-\epsilon^{\prime}}} \\
& \Rightarrow \epsilon^{\prime}=\log \left(\frac{\epsilon}{1-\epsilon}\right)
\end{aligned}
$$

$$
\frac{d \log \mathcal{L}\left(\theta^{\prime}\right)}{d \theta^{\prime}}
$$

- Avoid over/underflow

$$
\begin{aligned}
y(a) & =\beta \mathcal{Q}(a) \\
y_{m} & =\max _{a} y(a) \\
p & =\frac{e^{y(a)}}{\sum_{b} e^{y(b)}}=\frac{e^{y(a)-y_{m}}}{\sum_{b} e^{y(b)-y_{m}}}
\end{aligned}
$$

ML characteristics

ML characteristics

- ML is asymptotically consistent, but variance high
- I0-armed bandit, infer beta and epsilon

- Hessian $\frac{d^{2}}{d \theta d d_{s}} \mathcal{L}(\theta)$ can be used to derive confidence intervals and identify poorly constrained estimates

ML characteristics

- ML is asymptotically consistent, but variance high
- I0-armed bandit, infer beta and epsilon

200 trials, I stimulus, 10 actions, learning rate $=.05$, beta $=2$

- Hessian $\frac{d^{2}}{d \theta_{i d} \theta_{j}} \mathcal{L}(\theta)$ can be used to derive confidence intervals and identify poorly constrained estimates
- ML can overfit... more later

ML characteristics

- ML is asymptotically consistent, but variance high
- I0-armed bandit, infer beta and epsilon

200 trials, I stimulus, 10 actions, learning rate $=.05$, beta $=2$

- Hessian $\frac{d^{2}}{d \theta_{i d} \theta_{j}} \mathcal{L}(\theta)$ can be used to derive confidence intervals and identify poorly constrained estimates
- ML can overfit... more later

ML characteristics

- ML is asymptotically consistent, but variance high
- I0-armed bandit, infer beta and epsilon
beta and epsilon can
200 trials, I stimulus, 10 actions, learning rate $=.05$, beta $=2$
 trade off

- Hessian $\frac{d^{2}}{d \theta_{i d} d_{j}} \mathcal{L}(\theta)$ can be used to derive confidence intervals and identify poorly constrained estimates
- ML can overfit... more later

Priors

Not so smooth

Smooth

Priors

Not so smooth

Smooth

Priors

Not so smooth

Smooth

Maximum a posteriori estimate

$$
\begin{aligned}
& \mathcal{P}(\theta)=p\left(\theta \mid a_{1 \ldots T}\right)=\frac{p\left(a_{1 \ldots T} \mid \theta\right) p(\theta)}{\int d \theta p\left(\theta \mid a_{1 \ldots T}\right) p(\theta)} \\
& \log \mathcal{P}(\theta)=\sum_{t=1}^{T} \log p\left(a_{t} \mid \theta\right)+\log p(\theta)+\text { const. } \\
& \frac{\log \mathcal{P}(\theta)}{d \alpha}=\frac{\log \mathcal{L}(\theta)}{d \alpha}+\frac{d p(\theta)}{d \theta}
\end{aligned}
$$

- If likelihood is strong, prior will have little effect
- mainly has influence on poorly constrained parameters
- if a parameter is strongly constrained to be outside the typical range of the prior, then it will win over the prior

Maximum a posteriori estimate

200 trials, I stimulus, 10 actions, learning rate $=.05$, beta $=2$

$$
m_{\text {beta }}=0, m_{\text {eps }}=-3, n=1
$$

But

What prior parameters should I use?

ML characteristics: group data

ML characteristics: group data

ML characteristics: group data

- Fixed effect
- conflates within- and between- subject variability

ML characteristics: group data

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model

ML characteristics: group data

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy

ML characteristics: group data

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
- prior mean = group mean

ML characteristics: group data

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
- prior mean = group mean

$$
p\left(\mathcal{A}_{i} \mid \mu_{\theta}, \sigma_{\theta}\right)=\int d \theta_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mu_{\theta}, \sigma_{\theta}\right)
$$

ML characteristics: group data

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
- prior mean = group mean

$$
p\left(\mathcal{A}_{i} \mid \mu_{\theta}, \sigma_{\theta}\right)=\int d \theta_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p(\theta_{i} \mid \underbrace{\mu_{\theta}, \sigma_{\theta}}_{\zeta})
$$

ML characteristics: group data

- Fixed effect
- conflates within- and between- subject variability
- Average behaviour
- disregards between-subject variability
- need to adapt model
- Summary statistic
- treat parameters as random variable, one for each subject
- overestimates group variance as ML estimates noisy
- Random effects
- prior mean = group mean

$$
p\left(\mathcal{A}_{i} \mid \mu_{\theta}, \sigma_{\theta}\right)=\int d \theta_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p(\theta_{i} \mid \underbrace{\mu_{\theta}, \sigma_{\theta}}_{\zeta})
$$

Estimating the hyperparameters

- MAP

$$
\log \mathcal{P}(\theta)=\mathcal{L}(\theta)+\log \underbrace{p(\theta)}_{=p(\theta \mid \zeta)}+\text { const. }
$$

- Empirical Bayes: set them to ML estimate

$$
\hat{\zeta}=\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta)
$$

- where we use all the actions by all the k subjects

$$
\mathcal{A}=\left\{a_{1 \ldots T}^{k}\right\}_{k=1}^{K}
$$

ML estimate of top-level parameters

$$
\hat{\zeta}=\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta)
$$

Estimating the hyperparameters

- Effectively we now want to do gradient ascent on:

$$
\frac{d}{d \zeta} p(\mathcal{A} \mid \zeta)
$$

- But this contains an integral over individual parameters:

$$
p(\mathcal{A} \mid \zeta)=\int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta)
$$

- So we need to:

$$
\begin{aligned}
\hat{\zeta} & =\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta) \\
& =\underset{\zeta}{\operatorname{argmax}} \int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta)
\end{aligned}
$$

Expectation Maximisation

$$
\begin{aligned}
\log p(\mathcal{A} \mid \zeta) & =\log \int d \theta p(\mathcal{A}, \theta \mid \zeta) \\
& =\log \int d \theta q(\theta) \frac{p(\mathcal{A}, \theta \mid \zeta)}{q(\theta)} \\
& \geq \int d \theta q(\theta) \log \frac{p(\mathcal{A}, \theta \mid \zeta)}{q(\theta)} \\
k^{\text {th }} \mathrm{E} \text { step: } q^{(k+1)}(\theta) & \leftarrow p\left(\theta \mid \mathcal{A}, \zeta^{(k)}\right) \\
k^{\text {th }} \mathrm{M} \text { step: } \zeta^{(k+1)} & \leftarrow \underset{\zeta}{\operatorname{argmax}} \int d \theta q(\theta) \log p(\mathcal{A}, \theta \mid \zeta)
\end{aligned}
$$

- There are other approaches
- Monte Carlo
- Analytical conjugate priors
- Variational Bayes
- Iterate between
- Estimating MAP parameters given prior parameters
- Estimating prior parameters from MAP parameters

EM with Laplace approximation

- E step: $q^{(k+1)}(\theta) \leftarrow p\left(\theta \mid \mathcal{A}, \zeta^{(k)}\right)$
- only need sufficient statistics to perform M step
- Approximate $p\left(\theta \mid \mathcal{A}, \zeta^{(k)}\right) \sim \mathcal{N}\left(\mathbf{m}_{k}, \mathbf{S}_{k}\right)$
- and hence:

E step: $\quad q_{k}(\theta)=\mathcal{N}\left(\mathbf{m}_{k}, \mathbf{S}_{k}\right)$

$$
\begin{aligned}
\mathbf{m}_{k} & \leftarrow \underset{\theta}{\operatorname{argmax}} p\left(\mathbf{a}_{k} \mid \theta\right) p\left(\theta \mid \zeta^{(i)}\right) \\
\mathbf{S}_{k}^{-1} & \left.\leftarrow \frac{\partial^{2} p\left(\mathbf{a}^{k} \mid \theta\right) p\left(\theta \mid \zeta^{(i)}\right)}{\partial \theta^{2}}\right|_{\theta=\mathbf{m}_{k}}
\end{aligned}
$$

EM with Laplace approximation

- Next update the prior

$$
\text { Prior mean }=\text { mean of MAP estimates }
$$

M step: $\quad \zeta_{\mu}^{(i+1)}=\frac{1}{K} \sum_{k} \mathbf{m}_{k}$

$$
\begin{aligned}
& \qquad \zeta_{\nu^{2}}^{(i+1)}=\frac{1}{N} \sum_{i}\left[\left(\mathbf{m}_{k}\right)^{2}+\mathbf{S}_{k}\right]-\left(\zeta_{\mu}^{(i+1)}\right)^{2} \\
& \text { Prior variance depends on inverse Hessian } S \text { and variance } \quad \text { Take uncertainty of estimates } \\
& \text { into account }
\end{aligned}
$$

- And now iterate until convergence

Hierarchical / random effects models

- Advantages
- Accurate group-level mean and variance
- Outliers due to weak likelihood are regularized
- Strong outliers are not
- Useful for model selection
- Disadvantages
- Individual estimates θ_{i} depend on other data, i.e. on $\mathcal{A}_{j \neq i}$ and therefore need to be careful in interpreting these as summary statistics
- Error bars on group parameters (especially group variance) are difficult to obtain
- More involved; less transparent

Link functions

- Sigmoid $p(a \mid s)=\frac{e^{\beta \mathcal{Q}(a, s)}}{\sum_{a^{\prime}} e^{\beta \mathcal{Q}\left(a^{\prime}, s\right)}}$
- \mathcal{E} - greedy $p(a \mid s)= \begin{cases}c & \text { if } a=\operatorname{argmax}_{a} \mathcal{Q}(a, s) \\ \frac{1-c}{|a|-1} & \text { else }\end{cases}$

- irreducible noise $p(a \mid s)=\frac{1-g}{2}+g \frac{e^{\beta \mathcal{Q}(a, s)}}{\sum_{a^{\prime}} e^{\beta \mathcal{Q}\left(a^{\prime}, s\right)}}$
- critical sanity check I: reasonable link function?

- other link functions for other observations

Model comparison

- A fit by itself is not meaningful
- Generative test
- qualitative
- Comparisons
- vs random
- vs other model -> test specific hypotheses and isolate particular effects in a generative setting

Model fit: likelihood

- How well does the model do?
- choice probabilities:

$$
\begin{aligned}
\mathbb{E} p(\text { correct }) & =e^{\mathcal{L}(\hat{\theta}) / K / T} \\
& =e^{\log p(\mathcal{A} \mid \theta) / K / T} \\
& =\left(\prod_{k, t=1}^{K, T} p\left(a_{k, t} \mid \theta_{k}\right)\right)^{\frac{1}{K T}}
\end{aligned}
$$

- typically around 0.65-0.75 for 2-way choice
- for I0-armed bandit example
- pseudo-r²:I-L/R
- better than chance?

$$
\begin{aligned}
\mathbb{E}\left[N_{k}(\text { correct })\right] & =\mathbb{E}\left[p_{k}(\text { correct })\right] T \\
p_{\text {bin }}\left(\mathbb{E}\left[N_{k}(\text { correct })\right] \mid N_{k} d, p_{0}=0.5\right) & <1-\alpha
\end{aligned}
$$

Generative test

- Model: probability(actions)
- simply draw from this distribution, and see what happens

- Critical sanity test: is the model meaningful?
- Caveat: overfitting

Overfitting

Model comparison

Model comparison

- Averaged over its parameter settings, how well does the model fit the data?

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M})
$$

- Model comparison: Bayes factors

$$
B F=\frac{p\left(\mathcal{M}_{1} \mid \mathcal{A}\right)}{p\left(\mathcal{M}_{0} \mid \mathcal{A}\right)}=\frac{p\left(\mathcal{A} \mid \mathcal{M}_{1}\right) p\left(\mathcal{M}_{1}\right)}{p\left(\mathcal{A} \mid \mathcal{M}_{2}\right) p\left(\mathcal{M}_{2}\right)}
$$

- Problem:
- integral rarely solvable
- approximation: Laplace, sampling, variational...

Why integrals? The God Almighty test

Why integrals? The God Almighty test

Why integrals? The God Almighty test

These two factors fight it out Model complexity vs model fit

Bayesian Information Criterion

- Laplace's approximation (saddle-point method)

Bayesian Information Criterion

- Laplace's approximation (saddle-point method)

Bayesian Information Criterion

- Laplace's approximation (saddle-point method)

Bayesian Information Criterion

- Laplace's approximation (saddle-point method)

Bayesian Information Criterion: one subject

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M})
$$

Bayesian Information Criterion: one subject

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \overbrace{-}^{\substack{p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M}) \\ \text { is propto Gaussian }}}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \overbrace{2}^{\substack{p(\mathcal{A} \mid \theta)) p(\theta \mid \mathcal{M}) \\
\text { is propto Guussian }}} \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|}
\end{aligned}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \underbrace{\substack{p(\mathcal{A} \mid \theta)(\theta(\theta \mid \mathcal{M}) \\
\text { is propto Gaussian }}}_{\substack{p(\theta \mid \mathcal{M})=\text { const. } \\
\text { Model doest prefer } \\
\text { particular }}} \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|}
\end{aligned}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \overbrace{}^{\substack{p(\mathcal{A} \mid \theta) \\
\text { is propto Gaussian }}} \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
\log p(\mathcal{A} \mid \mathcal{M}) & \approx \log p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi)
\end{aligned}
$$

Bayesian Information Criterion: one subject

Bayesian Information Criterion: one subject

$$
\begin{aligned}
& p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
& \log p(\mathcal{A} \mid \mathcal{M}) \approx \log p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi) \\
& \Sigma_{i i} \propto \frac{1}{T} \Rightarrow \frac{1}{2} \log (|\Sigma|) \approx-\frac{N}{2} \log (T) p(\theta \mid \mathcal{M}) \\
& \text { is propto Gaussian } \\
& \text { Moded doestit prefer } \\
& \text { particular }
\end{aligned}
$$

Bayesian Information Criterion: one subject

$$
\begin{aligned}
& p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M}) \\
& \text { is propto Gaussian } \\
& p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) p(\theta \mid \mathcal{M}) \\
& \approx p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right) p\left(\theta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
& \log p(\mathcal{A} \mid \mathcal{M}) \approx \log p\left(\mathcal{A} \mid \theta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi) \\
& \Sigma_{i i} \propto \frac{1}{T} \Rightarrow \frac{1}{2} \log (|\Sigma|) \approx-\frac{N}{2} \log (T) \quad \text { Bayesian Information Criterion (BIC) } \\
& \approx \quad-N \quad \text { Akaike Information Criterion (AIC) }
\end{aligned}
$$

Group data

- Multiple subjects
- Multiple models
- do they use the same model? If not parameters are not comparable
- which model best accounts for all of them?
- Multiple groups
- difference in models?
- difference in parameters?
- 2^{k} possible model comparisons
- Multiple parameters
- 2^{k} possible correlations with any one psychometric measure

Group data - approaches

- Summary statistic
- Treat individual model comparison measure as summary statistics, do ANOVA or t-test
- Fixed effect analysis
- Subject data independent

$$
\begin{aligned}
\log p(\mathcal{A} \mid \mathcal{M}) & =\sum_{i} \log p\left(\mathcal{A}_{i} \mid \mathcal{M}\right) \\
& =\sum_{i} \log \int d \theta_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mathcal{M}_{i}\right) \approx-\frac{1}{2} \sum_{i} \mathrm{BIC}_{i}
\end{aligned}
$$

- Random effects analyses
- Hierarchical prior on group parameters

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \zeta \int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Hierarchical prior on models

$$
p\left(\mathcal{A}, \mathcal{M}_{k}, r \mid \alpha\right)=p\left(\mathcal{A} \mid \mathcal{M}_{k}\right) p\left(\mathcal{M}_{k} \mid r\right) p(r \mid \alpha)
$$

Group-level likelihood

- Contains two integrals:
- subject parameters
- prior parameters

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

Evaluating p(A|M)

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

Evaluating p(A|M)

- Two integrals

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

Evaluating $p(A \mid M)$

- Two integrals

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Top level first:

Evaluating p(A|M)

- Two integrals

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately

- Top level first:

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M})
$$

Evaluating $p(A \mid M)$

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level
- less action

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M})
$$

Evaluating $p(A \mid M)$

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level
- less action

$$
p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M})
$$

$p(\mathcal{A} \mid \mathcal{M})=\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M})$

Evaluating $p(A \mid M)$

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level
- less action

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M}) \overbrace{2}^{\substack{p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M}) \\
\text { is propto Gaussian }}} \\
& \approx p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right) p\left(\zeta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|}
\end{aligned}
$$

Evaluating $p(A \mid M)$

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level
- less action

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M}) \overbrace{2}^{\substack{p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M}) \\
\text { is propto Gaussian }}} \\
& \approx p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right) p\left(\zeta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|}
\end{aligned}
$$

Model doesn't prefer particular ζ

Evaluating $p(A \mid M)$

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level
- less action

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M})
$$

$$
\approx p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right) p\left(\zeta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|}
$$

$\log p(\mathcal{A} \mid \mathcal{M}) \approx \log p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi)$

Model doesn't prefer particular ζ

Evaluating $p(A \mid M)$

- Two integrals
- tricky

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level
- less action

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M})
$$

$$
\approx p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right) p\left(\zeta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|}
$$

$\log p(\mathcal{A} \mid \mathcal{M}) \approx \log p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi)$

Evaluating p(A|M)

- Two integrals

$$
p(\mathcal{A} \mid \mathcal{M})=\int d \theta p(\mathcal{A} \mid \theta, \mathcal{M}) \int d \zeta p(\theta \mid \zeta) p(\zeta \mid \mathcal{M})
$$

- Step by step: approximating levels separately
- Approximate at the top level
- less action

$$
\begin{aligned}
p(\mathcal{A} \mid \mathcal{M}) & =\int d \zeta p(\mathcal{A} \mid \zeta, \mathcal{M}) p(\zeta \mid \mathcal{M}) \\
& \approx p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right) p\left(\zeta^{M L} \mid \mathcal{M}\right) \times \sqrt{(2 \pi)^{N}|\Sigma|} \\
\log p(\mathcal{A} \mid \mathcal{M}) & \approx \log p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right)+\frac{1}{2} \log (|\Sigma|)+\frac{N}{2} \log (2 \pi)
\end{aligned}
$$

Approximating level I

- Still leaves the first level:
- Approximate integral by sampling, e.g. importance sampling for few dimensions (<10)

$$
\begin{aligned}
\log p\left(\mathcal{A} \mid \zeta^{M L}, \mathcal{M}\right) & =\log \int d \theta p(\mathcal{A} \mid \theta) p\left(\theta \mid \zeta^{M L}\right) \\
& \approx \log \frac{1}{B} \sum_{b=1}^{B} p\left(\mathcal{A} \mid \theta^{b}\right) \\
\theta^{b} & \sim p\left(\theta \mid \zeta^{M L}\right)
\end{aligned}
$$

Group-level BIC

$$
\begin{aligned}
\log p(\mathcal{A} \mid \mathcal{M}) & =\int d \boldsymbol{\zeta} p(\mathcal{A} \mid \boldsymbol{\zeta}) p(\boldsymbol{\zeta} \mid \mathcal{M}) \\
& \approx-\frac{1}{2} \mathrm{BIC}_{\mathrm{int}} \\
& =\log \hat{p}\left(\mathcal{A} \mid \hat{\boldsymbol{\zeta}}^{M L}\right)-\frac{1}{2}|\mathcal{M}| \log (|\mathcal{A}|)
\end{aligned}
$$

Example task

Example task

Guitart-Masip, Huys et al. Submitted

Model validation: generating data

Guitart-Masip et al. 20I I, Guitart-Masip, Huys et al. Submitted

Model validation: generating data

$$
p\left(\text { go } \mid s_{t}\right) \propto \mathcal{Q}_{t}\left(\text { go } \mid s_{t}\right)+\operatorname{bias}(\text { go })
$$

Guitart-Masip et al. 20I I, Guitart-Masip, Huys et al. Submitted

Model validation: generating data

$$
\begin{aligned}
p\left(\mathrm{go} \mid s_{t}\right) & \propto \mathcal{Q}_{t}\left(\mathrm{go} \mid s_{t}\right)+\operatorname{bias}(\mathrm{go})+\mathcal{V}_{t}\left(s_{t}\right) \\
\mathcal{V}_{t}\left(s_{t}\right) & =\mathcal{V}_{t-1}\left(s_{t}\right)+\epsilon\left(r_{t}-\mathcal{V}_{t-1}\left(s_{t}\right)\right)
\end{aligned}
$$

Guitart-Masip et al. 20I I, Guitart-Masip, Huys et al. Submitted

Model validation: generating data

$\mathrm{P}(\mathrm{go}) \propto$ value of stimulus

$$
\begin{aligned}
p\left(\mathrm{go} \mid s_{t}\right) & \propto \mathcal{Q}_{t}\left(\mathrm{go} \mid s_{t}\right)+\operatorname{bias}(\mathrm{go})+\mathcal{V}_{t}\left(s_{t}\right) \\
\mathcal{V}_{t}\left(s_{t}\right) & =\mathcal{V}_{t-1}\left(s_{t}\right)+\epsilon\left(r_{t}-\mathcal{V}_{t-1}\left(s_{t}\right)\right)
\end{aligned}
$$

Guitart-Masip et al. 20I I, Guitart-Masip, Huys et al. Submitted

Model comparison: overfitting?

Model comparison: overfitting?

Model comparison: overfitting?

Model comparison: overfitting?

How does it do?

₹ $\mathrm{EBC}_{\mathrm{L}}$

Int

How does it do?

Fitted by EM... too nice?
$\Sigma_{\mathrm{i}} \mathrm{BIC}_{\mathrm{LL}}^{\mathrm{i}}$

Int

Top-level Laplacian approximation

- Estimating the top-level determinant
- using 2nd order finite differences

$$
\begin{aligned}
\left.\frac{d^{2}}{d h_{i j}^{2}} p(\mathcal{A} \mid \boldsymbol{\zeta})\right|_{\boldsymbol{\zeta}=\hat{\boldsymbol{\zeta}}^{M L}} \approx & \frac{1}{\delta^{2}}\left[p\left(\mathcal{A} \mid \hat{\boldsymbol{\zeta}}^{M L}+\delta \mathbf{e}_{i}\right)-\right. \\
& \left.2 p\left(\mathcal{A} \mid \hat{\boldsymbol{\zeta}}^{M L}\right)+p\left(\mathcal{A} \mid \hat{\boldsymbol{\zeta}}^{M L}-\delta \mathbf{e}_{j}\right)\right]
\end{aligned}
$$

- the shifted likelihoods can be evaluated by shifting the samples.

Group level errors

- Increasing Subject \# N
- Increasing Trials T

Total \# of observations ($\mathrm{N} \times \mathrm{T}$)

Total \# of observations ($\mathrm{N} \times \mathrm{T}$)

Posterior distribution on models

- Generative model for models

Bayesian model selection - equations

- Write down joint distribution of generative model
- Variational approximations lead to set of very simple update equations
- start with flat prior over model probabilities

$$
\alpha=\alpha_{0}
$$

- then update

$$
\begin{aligned}
u_{k}^{i} & =\left(\int d \theta_{i} p\left(\mathcal{A}_{i}, \theta_{i} \mid \mathcal{M}_{k}\right)\right) \exp \left(\Psi\left(\alpha_{k}\right)-\Psi\left(\sum_{k} \alpha_{k}\right)\right) \\
\alpha_{k} & \leftarrow \alpha_{0, k}+\sum_{i} \frac{u_{k}^{i}}{\sum_{k} u_{k}^{i}}
\end{aligned}
$$

Group Model selection

Integrate out your parameters

Questions in psychiatry l: regression

- Parametric relationship with other variables ψ
- do standard second level analyses
- can use Hessians to determine weights

$$
\begin{aligned}
\text { E step: } \quad \begin{aligned}
q_{k}(\theta) & =\mathcal{N}\left(\mathbf{m}_{k}, \mathbf{S}_{k}\right) \\
\mathbf{m}_{k} & \leftarrow \underset{\theta}{\operatorname{argmax}} p\left(\mathbf{a}_{k} \mid \theta\right) p\left(\theta \mid \zeta^{(i)}\right) \\
\mathbf{S}_{k}^{-1} & \left.\leftarrow \frac{\partial^{2} p\left(\mathbf{a}^{k} \mid \theta\right) p\left(\theta \mid \zeta^{(i)}\right)}{\partial \theta^{2}}\right|_{\theta=\mathbf{m}_{k}}
\end{aligned} .
\end{aligned}
$$

- better: compare two models

$$
\begin{array}{rc}
\text { Model 1: } & \prod_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mu_{0}, \sigma\right) \\
\text { i.e. } & \theta_{i} \sim \mathcal{N}\left(\mu_{0}, \sigma\right) \\
\text { Model 2: } & \prod_{i} p\left(\mathcal{A}_{i} \mid \theta_{i}\right) p\left(\theta_{i} \mid \mu_{0}, c, \sigma, \psi_{i}\right) \\
\text { i.e. } & \theta_{i} \sim \mathcal{N}\left(\mu_{0}+c \psi_{i}, \sigma\right)
\end{array}
$$

Regression

- Standard regression analysis:

$$
\mathbf{m}_{i}=\mathbf{C r}_{i}+\Sigma^{1 / 2} \boldsymbol{\eta} \quad \forall i
$$

- Including uncertainty about each subject's inferred parameters

$$
\mathbf{m}_{i}=\mathbf{C r}_{i}+\left(\Sigma^{1 / 2}+\mathbf{S}_{i}^{1 / 2}\right) \boldsymbol{\eta} \quad \forall i
$$

- Careful: Finite difference estimates S can be noisy!
- regularize...

Questions in psychiatry II: group differences

- Do groups differ in terms of parameter(s)?
- Cannot compare parameters across different models
- even very similar parameters can account for different effects

- For models with k parameters, there are 2^{k} possible comparisons
- multiple comparisons?
- posterior over models (Stephan et al. 2009)

Group differences in parameters

- Are two groups similar in parameter x?
- ANOVA: compare likelihood of two means to likelihood of one global mean. Take degrees of freedom into account.
- But: this tries to account for the parameters with one or two groups, not for the data
- Compare models with separate or joint parameter \& prior:

Model 1	ε	β_{1}, β_{2}
Model 2	ε	β

Questions in psychiatry III: Classification

- Who belongs to which of two groups?
- How many groups are there?

Model comparison again

- What is 'significant'?

$$
\begin{aligned}
& B F= \frac{p\left(\mathcal{A} \mid \mathcal{M}_{1}\right)}{p\left(\mathcal{A} \mid \mathcal{M}_{2}\right)} \\
& p(\Lambda<\eta)
\end{aligned}
$$

$\log _{10}\left(B_{10}\right)$	B_{10}
0 to $1 / 2$	1 to 3.2
$1 / 2$ to 1	3.2 to 10
1 to 2	10 to 100
>2	>100

Evidence against H_{0}
Not worth more than a bare
mention
Substantial
Strong
Decisive
Kaas and Raftery 95

- "Spread of effect" in group comparisons
- Better model does not mean a behavioural effect is concentrated in one parameter
- Obvious raw differences spread between parameters

Behavioural data modelling

- Are no panacea
- statistics about specific aspects of decision machinery
- only account for part of the variance
- Model needs to match experiment
- ensure subjects actually do the task the way you wrote it in the model
- model comparison
- Model = Quantitative hypothesis
- strong test
- need to compare models, not parameters
- includes all consequences of a hypothesis for choice

Modelling in psychiatry

- Hypothesis testing
- otherwise untestable hypotheses
- internal processes
- Limited by data quality
- Look for strong behaviours, not noisy
- "Holistic" testing of hypotheses
- Marr's levels
- physical
- algorithm
- computational

