
Reinforcement Learning
I: Theory

Quentin Huys

Wellcome Trust Centre for Neuroimaging, UCL
Gatsby Computational Neuroscience Unit, UCL

Guy’s and St. Thomas’ Hospital NHS Trust

Psychiatrische Universitatsklinik, University of Zurich
Theoretical Neuromodeling Unit, ETH

Advanced Course in Computational Neuroscience, Bedlewo, Poland, August 2012

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Overview

‣ Reinforcement learning: rough overview
• mainly following Sutton & Barto 1998

‣ Some behavioural considerations
• a few behavioural and neurobiological examples &

applications
• psychopathology

‣ Fitting behaviour with RL models
• some applied tips & tricks

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Types of learning

‣ Supervised

‣ Unsupervised

‣ Reinforcement learning

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Setup

Environment

Agent

at rtst

After Sutton and Barto 1998

{at}� argmax
{at}

��

t=1

rt

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

State space

Gold
+1

Electric
shocks

-1

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

A Markov Decision Problem

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Noisy: plants, environments, agent

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Absorbing state -> max eigenvalue < 1

abs

Noisy: plants, environments, agent

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Markov state-space descriptions

p(st+1|at, st, at�1, st�1, at�2, st�2, · · ·) = p(st+1|at, st)

Velocity

at�2, st�2 � at�1, st�1 � at, st

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Markov state-space descriptions

p(st+1|at, st, at�1, st�1, at�2, st�2, · · ·) = p(st+1|at, st)

Velocity

at�2, st�2 � at�1, st�1 � at, st

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Markov state-space descriptions

p(st+1|at, st, at�1, st�1, at�2, st�2, · · ·) = p(st+1|at, st)

Velocity

s� = [position]� s� =
�

position
velocity

⇥

at�2, st�2 � at�1, st�1 � at, st

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

-1 +10

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Tall orders

‣ Aim: maximise total future reward

‣ i.e. we have to sum over paths through the future
and weigh each by its probability

‣ Best policy achieves best long-term reward

1X

t=1

rt

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Exhaustive tree search

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Exhaustive tree search

wd

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Decision tree

1X

t=1

rt

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Decision tree

1X

t=1

rt

8

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Decision tree

1X

t=1

rt

8

64

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Decision tree

1X

t=1

rt

8

64

512

...

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Policy for this talk

‣ Pose the problem mathematically
‣ Policy evaluation
‣ Policy iteration
‣ Monte Carlo techniques: experience samples
‣ TD learning

Policy

UpdateEvaluate

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Evaluating a policy

‣ Aim: maximise total future reward

‣ To know which is best, evaluate it first
‣ The policy determines the expected reward from

each state

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

1X

t=1

rt

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Discounting

‣ Given a policy, each state has an expected value

‣ But:

‣ Episodic

‣ Discounted
• infinite horizons

• finite, exponentially distributed horizons

��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�

t=0

�trt

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

TX

t=0

rt < 1

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Discounting

‣ Given a policy, each state has an expected value

‣ But:

‣ Episodic

‣ Discounted
• infinite horizons

• finite, exponentially distributed horizons

��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�

t=0

�trt

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

TX

t=0

rt < 1

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Discounting

‣ Given a policy, each state has an expected value

‣ But:

‣ Episodic

‣ Discounted
• infinite horizons

• finite, exponentially distributed horizons

��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�

t=0

�trt

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

TX

t=0

rt < 1

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Markov Decision Problems

This dynamic consistency is key to many solution approaches.
It states that the value of a state s is related to

the values of its successor states s’.

V ⇡(st) = E
" 1X

t0=1

rt0 |st = s,⇡

#

= E [r1| st = s,⇡] + E
" 1X

t=2

rt|st = s,⇡

#

= E [r1| st = s,⇡] + E [V ⇡(st+1)|st = s,⇡]

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Markov Decision Problems

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

r1 ⇠ R(s2, a1, s1)

E [r1|st = s,⇡] = E

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

p(at|st)

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

⇡(at, st)

2

4
X

st+1

T at
stst+1

R(st+1, at, st)

3

5

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Bellman equation

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

E [r1|st,⇡] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

R(st+1, a, st)

3

5

E [V ⇡(st+1),⇡, st] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

V ⇡(st+1)

3

5

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Bellman Equation

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Bellman Equation

All future
reward

from state s

Immediate
reward

= E

All future
reward
from

next state s’

+

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Bellman Equation

All future
reward

from state s

Immediate
reward

= E

All future
reward
from

next state s’

+

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

‣ so we can define state-action values as:

‣ and state values are average state-action values:

Q values = state-action values

Q(s, a) =
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

= E
� ⇥⇤

t=1

rt|s, a
⇥

V (s) =
�

a

�(a|s)Q(s, a)

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

‣ to evaluate a policy, we need to solve the above
equation, i.e. find the self-consistent state values

‣ options for policy evaluation
• exhaustive tree search - outwards, inwards, depth-first
• linear solution in 1 step
• value iteration: iterative updates
• experience sampling

Bellman Equation

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Solving the Bellman Equation

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Solving the Bellman Equation

V k+1(s) =
⇧

a

�(a, st)

⇤
⇧

s�

T a
ss�

�
R(s�, a, s) + V k(s�)

⇥
⌅

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Policy update

Given the value function for a policy, say via linear solution

Given the values V for the policy, we can improve the policy by always
choosing the best action:

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)

It is guaranteed to improve:

Q⇡
(s,⇡0

(s)) = max

a
Q⇡

(s, a) � Q⇡
(s,⇡(s)) = V⇡

(s)
for deterministic policy

⇡0
(a|s) =

⇢
1 if a = argmaxa Q⇡

(s, a)
0 else

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Policy iteration

v� = (I�T�)�1R�

Policy evaluation

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Policy iteration

v� = (I�T�)�1R�

Policy evaluation

greedy policy improvement

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Policy iteration

v� = (I�T�)�1R�

V �(s) = max
a

�

s�

T a
ss� [Ra

ss + V �(s⇥)]

Policy evaluation

greedy policy improvement

Value iteration

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Model-free solutions

‣ So far we have assumed knowledge of R and T
• R and T are the ‘model’ of the world, so we assume full

knowledge of the dynamics and rewards in the
environment

‣ What if we don’t know them?
‣ We can still learn from state-action-reward samples

• we can learn R and T from them, and use our estimates to
solve as above

• alternatively, we can directly estimate V or Q

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Solving the Bellman Equation

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
Option 3: sampling

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and
average over them:

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Solving the Bellman Equation

Option 3: sampling

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and
average over them:

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and
average over them:

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and
average over them:

more about this later...

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Learning from samples

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

A new problem: exploration versus exploitation

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Monte Carlo

‣ First visit MC
• randomly start in all states, generate paths, average for

starting state only

‣ More efficient use of samples
• Every visit MC
• Bootstrap: TD
• Dyna

‣ Better samples
• on policy versus off policy
• UCB, UCT, BOSS...

V(s) = 1

N

X

i

(
TX

t0=1

rit0 |s0 = s

)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Update equation: towards TD

Bellman equation

V (s) =
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Not yet converged, so it doesn’t hold:

And then use this to update

V i+1(s) = V i(s) + dV (s)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

TD learning

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

TD learning

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

TD learning

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

�t = �Vt�1(st) + rt + Vt�1(st+1)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

TD learning

V i+1(s) = V i(s) + dV (s)

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Vt(st) = Vt�1(st) + �⇥t

�t = �Vt�1(st) + rt + Vt�1(st+1)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

TD learning

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

�t = �Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + �⇥t

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Aside: what makes a TD error?

‣ unpredicted reward expectation change
‣ disappears with learning
‣ stays with probabilistic reinforcement
‣ sequentiality

• TD error vs prediction error

‣ see Niv and Schoenbaum 2008

Schultz et al.

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

The effect of bootstrapping

B1
B1
B1
B1
B1
B1
B0
A0 B0

Markov (every visit)
V(B)=3/4
V(A)=0

TD
V(B)=3/4
V(A)=~3/4

after Sutton and Barto 1998

‣ Average over various bootstrappings: TD()�

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

‣ policy and value separately parametrised

Actor-critic

⇥t = rt+1 + �V (st+1)� V (st)

w(s, a)� w(s, a) + �⇥t

w(s, a)⇥ w(s, a) + �⇥t(1� ⇤(s, a))

⇡(a|s) = ew(s,a)

P
a0 ew(s,a0)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

‣ Do TD for state-action values instead:

‣ convergence guarantees - will estimate

SARSA

Q(st, at)⇥ Q(st, at) + �[rt + ⇥Q(st+1, at+1)�Q(st, at)]

st, at, rt, st+1, at+1

Q⇡(s, a)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

‣ Learn off-policy
• draw from some policy
• “only” require extensive sampling

‣ will estimate

Q learning: off-policy

Q(st, at)⇥ Q(st, at) + �

�

⇤rt + ⇥ max
a
Q(st+1, a)

⌥ ⌃⇧ �
�Q(st, at)

⇥

⌅

update towards
optimum

Q⇤(s, a)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

‣ states=distance from
goal

‣ state-space choice
crucial
• too big -> curse of

dimensionality
• too small -> can’t

express good policies
• unsolved problem

‣ humans in tasks have
to infer state-space

Learning in the wrong state space

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

‣ So far: look-up tables

‣ Parametric value functions

Neural network approximations

st
at

es

actions

s

a
Q(s, a;�)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Hierarchical decompositions

‣ Subtasks stay the same
• Learn subtasks
• Learn how to use

subtasks

‣ Macroactions
• ‘go to door’
• search goal

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Learning a model

‣ So far we’ve concentrated on model-free learning
‣ What if we want to build some model of the

environment?

‣ Count transitions

‣ Average rewards

V (s) =
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

T̂ a
ss� =

�
t 1(st = s, at = a, st+1 = s�)�

t 1(st = s, at = a)

R̂a
ss� =

�
t rt1(st = s, at = a, st+1 = s�)�
t 1(st = s, at = a, st+1 = s�)

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Dyna

‣ Combine model estimation with TD learning

Vt+1(st) = Vt(st) + �⇥t

Generate extra
experience samples

from estimated model

Sutton & Barto 1998, Figure 9.5

Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Conclusion I

‣ Long-term rewards have internal consistency
‣ This can be exploited for solution
‣ Exploration and exploitation trade off when

sampling
‣ Clever use of samples can produce fast learning

• Brain most likely does something like this

