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Overview

‣ Reinforcement learning: rough overview
• mainly following Sutton & Barto 1998

‣ Some behavioural considerations
• a few behavioural and neurobiological examples & 

applications
• psychopathology

‣ Fitting behaviour with RL models
• some applied tips & tricks
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Types of learning

‣ Supervised

‣ Unsupervised

‣ Reinforcement learning
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Setup

Environment

Agent

at rtst

After Sutton and Barto 1998

{at}� argmax
{at}

��

t=1

rt
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State space

Gold
+1

Electric 
shocks

-1
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A Markov Decision Problem

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)
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MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)
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MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)
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Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅
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Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Noisy: plants, environments, agent
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Actions

1 2 3 4 5 6 7

Action left

Action right

T right =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

T left =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇤

.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌅

Absorbing state -> max eigenvalue < 1

abs

Noisy: plants, environments, agent
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Markov state-space descriptions

p(st+1|at, st, at�1, st�1, at�2, st�2, · · · ) = p(st+1|at, st)

Velocity

at�2, st�2 � at�1, st�1 � at, st
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Markov state-space descriptions

p(st+1|at, st, at�1, st�1, at�2, st�2, · · · ) = p(st+1|at, st)

Velocity

s� = [position]� s� =
�

position
velocity

⇥

at�2, st�2 � at�1, st�1 � at, st
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MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)
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MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)
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MDP

st ⇥ S
at ⇥ A

T a
ss� = p(st+1|st, at)
rt � R(st+1, at, st)

�(a|s) = p(a|s)

-1 +10
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Tall orders

‣ Aim: maximise total future reward

‣ i.e. we have to sum over paths through the future 
and weigh each by its probability

‣ Best policy achieves best long-term reward

1X

t=1

rt
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Exhaustive tree search
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Exhaustive tree search

wd
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Decision tree

1X

t=1

rt



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Decision tree

1X

t=1

rt

8
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Decision tree

1X

t=1

rt

8

64



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Decision tree

1X

t=1

rt

8

64

512

...
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Policy for this talk

‣ Pose the problem mathematically
‣ Policy evaluation 
‣ Policy iteration
‣ Monte Carlo techniques: experience samples
‣ TD learning

Policy

UpdateEvaluate
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Evaluating a policy

‣ Aim: maximise total future reward

‣ To know which is best, evaluate it first
‣ The policy determines the expected reward from 

each state

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

1X

t=1

rt
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Discounting

‣ Given a policy, each state has an expected value

‣ But:

‣ Episodic

‣ Discounted
• infinite horizons

• finite, exponentially distributed horizons

��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�

t=0

�trt

V⇡(s1) = E
" 1X

t=1

rt|s1 = 1, at ⇠ ⇡

#

TX

t=0

rt < 1
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�trt <�

��

t=0
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�

et/�
T�
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Discounting
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��

t=0

�trt <�

��

t=0

rt =�

T � 1
�

et/�
T�
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#

TX

t=0

rt < 1



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Markov Decision Problems

This dynamic consistency is key to many solution approaches. 
It states that the value of a state s is related to 

the values of its successor states s’.

V ⇡(st) = E
" 1X

t0=1

rt0 |st = s,⇡

#

= E [r1| st = s,⇡] + E
" 1X

t=2

rt|st = s,⇡

#

= E [r1| st = s,⇡] + E [V ⇡(st+1)|st = s,⇡]
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Markov Decision Problems

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

r1 ⇠ R(s2, a1, s1)

E [r1|st = s,⇡] = E

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

p(at|st)

2

4
X

st+1

p(st+1|st, at)R(st+1, at, st)

3

5

=
X

at

⇡(at, st)

2

4
X

st+1

T at
stst+1

R(st+1, at, st)

3

5
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Bellman equation

V ⇡(st) = E [r1| st = s,⇡] + E [V (st+1),⇡]

E [r1|st,⇡] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

R(st+1, a, st)

3

5

E [V ⇡(st+1),⇡, st] =
X

a

⇡(a, st)

2

4
X

st+1

T a
stst+1

V ⇡(st+1)

3

5

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Bellman Equation 

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Bellman Equation 

All future
reward 

from state s

Immediate 
reward

= E

All future 
reward
from 

next state s’

+

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Bellman Equation 

All future
reward 

from state s

Immediate 
reward

= E

All future 
reward
from 

next state s’

+

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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‣ so we can define state-action values as:

‣ and state values are average state-action values:

Q values = state-action values

Q(s, a) =
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

= E
� ⇥⇤

t=1

rt|s, a
⇥

V (s) =
�

a

�(a|s)Q(s, a)

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)
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‣ to evaluate a policy, we need to solve the above 
equation, i.e. find the self-consistent state values

‣ options for policy evaluation 
• exhaustive tree search - outwards, inwards, depth-first
• linear solution in 1 step
• value iteration: iterative updates
• experience sampling

Bellman Equation 

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#
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Solving the Bellman Equation 

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)
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Solving the Bellman Equation 

V k+1(s) =
⇧

a

�(a, st)

⇤
⇧

s�

T a
ss�

�
R(s�, a, s) + V k(s�)

⇥
⌅

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s⇥, a, s) + V (s⇥)]

⇥

⇥ v = R� + T�v
⇥ v� = (I�T�)�1R�

(w/ absorbing states)

O(|S|3)
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Policy update

Given the value function for a policy, say via linear solution

Given the values V for the policy, we can improve the policy by always
choosing the best action:

V ⇡(s) =
X

a

⇡(a|s)
"
X

s0

T a
ss0 [R(s0, a, s) + V ⇡(s0)]

#

| {z }
Q⇡(s,a)

It is guaranteed to improve:

Q⇡
(s,⇡0

(s)) = max

a
Q⇡

(s, a) � Q⇡
(s,⇡(s)) = V⇡

(s)
for deterministic policy

⇡0
(a|s) =

⇢
1 if a = argmaxa Q⇡

(s, a)
0 else
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Policy iteration

v� = (I�T�)�1R�

Policy evaluation

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else
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Policy iteration

v� = (I�T�)�1R�

Policy evaluation

greedy policy improvement

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else
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Policy iteration

v� = (I�T�)�1R�

V �(s) = max
a

�

s�

T a
ss� [Ra

ss + V �(s⇥)]

Policy evaluation

greedy policy improvement

Value iteration

�(a|s) =
⇤

1 if a = argmaxa

⌅
s� T a

ss�

�
Ra

ss + V pi(s�)
⇥

0 else
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Model-free solutions

‣ So far we have assumed knowledge of R and T
• R and T are the ‘model’ of the world, so we assume full 

knowledge of the dynamics and rewards in the 
environment

‣ What if we don’t know them? 
‣ We can still learn from state-action-reward samples

• we can learn R and T from them, and use our estimates to 
solve as above

• alternatively, we can directly estimate V or Q
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Solving the Bellman Equation 

V (s) =
⇤

a

�(a, st)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
Option 3: sampling

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and 
average over them:
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Solving the Bellman Equation 

Option 3: sampling

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and 
average over them:
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Solving the Bellman Equation 

Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and 
average over them:
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Solving the Bellman Equation 

Option 3: sampling

this is an expectation over policy and transition samples.

a =
X

k

f(xk)p(xk)

x

(i) ⇠ p(x) ! â =
1

N

X

i

f(x(i))

So we can just draw some samples from the policy and the transitions and 
average over them:

more about this later...
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Learning from samples

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

A new problem: exploration versus exploitation
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Monte Carlo

‣ First visit MC
• randomly start in all states, generate paths, average for 

starting state only

‣ More efficient use of samples
• Every visit MC
• Bootstrap: TD
• Dyna

‣ Better samples
• on policy versus off policy
• UCB, UCT, BOSS...

V(s) = 1

N

X

i

(
TX

t0=1

rit0 |s0 = s

)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
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Update equation: towards TD

Bellman equation

V (s) =
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Not yet converged, so it doesn’t hold:

And then use this to update

V i+1(s) = V i(s) + dV (s)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
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TD learning

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
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TD learning

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥
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TD learning

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

�t = �Vt�1(st) + rt + Vt�1(st+1)
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TD learning

V i+1(s) = V i(s) + dV (s)

Sample

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

dV (s) = �V (s) +
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

Vt(st) = Vt�1(st) + �⇥t

�t = �Vt�1(st) + rt + Vt�1(st+1)
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TD learning

at � �(a|st)
st+1 � T at

st,st+1

rt = R(st+1, at, st)

�t = �Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + �⇥t
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Aside: what makes a TD error?

‣ unpredicted reward expectation change
‣ disappears with learning
‣ stays with probabilistic reinforcement
‣ sequentiality

• TD error vs prediction error

‣ see Niv and Schoenbaum 2008

Schultz et al. 
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The effect of bootstrapping

B1
B1
B1
B1
B1
B1
B0
A0   B0

Markov (every visit) 
V(B)=3/4
V(A)=0

TD
V(B)=3/4
V(A)=~3/4

after Sutton and Barto 1998

‣ Average over various bootstrappings: TD(  )�
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‣ policy and value separately parametrised

Actor-critic

⇥t = rt+1 + �V (st+1)� V (st)

w(s, a)� w(s, a) + �⇥t

w(s, a)⇥ w(s, a) + �⇥t(1� ⇤(s, a))

⇡(a|s) = ew(s,a)

P
a0 ew(s,a0)
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‣ Do TD for state-action values instead:

‣ convergence guarantees - will estimate 

SARSA

Q(st, at)⇥ Q(st, at) + �[rt + ⇥Q(st+1, at+1)�Q(st, at)]

st, at, rt, st+1, at+1

Q⇡(s, a)
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‣ Learn off-policy
• draw from some policy
• “only” require extensive sampling

‣ will estimate 

Q learning: off-policy 

Q(st, at)⇥ Q(st, at) + �

�

⇤rt + ⇥ max
a
Q(st+1, a)

⌥ ⌃⇧ �
�Q(st, at)

⇥

⌅

update towards
optimum

Q⇤(s, a)
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‣ states=distance from 
goal

‣ state-space choice 
crucial
• too big -> curse of 

dimensionality
• too small -> can’t 

express good policies
• unsolved problem

‣ humans in tasks have 
to infer state-space

Learning in the wrong state space
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‣ So far: look-up tables

‣ Parametric value functions

Neural network approximations

st
at

es

actions

s

a
Q(s, a;�)
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Hierarchical decompositions

‣ Subtasks stay the same
• Learn subtasks
• Learn how to use 

subtasks

‣ Macroactions
• ‘go to door’
• search goal
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Learning a model

‣ So far we’ve concentrated on model-free learning
‣ What if we want to build some model of the 

environment?

‣ Count transitions

‣ Average rewards 

V (s) =
⇤

a

�(a, s)

�
⇤

s�

T a
ss� [R(s�, a, s) + V (s�)]

⇥

T̂ a
ss� =

�
t 1(st = s, at = a, st+1 = s�)�

t 1(st = s, at = a)

R̂a
ss� =

�
t rt1(st = s, at = a, st+1 = s�)�
t 1(st = s, at = a, st+1 = s�)
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Dyna

‣ Combine model estimation with TD learning

Vt+1(st) = Vt(st) + �⇥t

Generate extra 
experience samples 

from estimated model

Sutton & Barto 1998, Figure 9.5
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Conclusion I

‣ Long-term rewards have internal consistency
‣ This can be exploited for solution
‣ Exploration and exploitation trade off when 

sampling
‣ Clever use of samples can produce fast learning

• Brain most likely does something like this


