Reinforcement Learning I:Theory

Quentin Huys

Wellcome Trust Centre for Neuroimaging, UCL Gatsby Computational Neuroscience Unit, UCL Guy's and St. Thomas' Hospital NHS Trust
Psychiatrische Universitatsklinik, University of Zurich Theoretical Neuromodeling Unit, ETH

Overview

- Reinforcement learning: rough overview
- mainly following Sutton \& Barto 1998
- Some behavioural considerations
- a few behavioural and neurobiological examples \& applications
- psychopathology
- Fitting behaviour with RL models
- some applied tips \& tricks

Types of learning

- Supervised
- Unsupervised
- Reinforcement learning

Setup

After Sutton and Barto 1998

State space

Electric shocks
-I

A Markov Decision Problem

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

									\mid
									\mid

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

Actions

Action left

Action right

$$
T^{\text {left }}=\left[\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad T^{\text {right }}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Actions

Action left

Action right

$$
T^{\mathrm{left}}=\left[\begin{array}{ccccccc}
.8 & .8 & 0 & 0 & 0 & 0 & 0 \\
.2 & .2 & .8 & 0 & 0 & 0 & 0 \\
0 & 0 & .2 & .8 & 0 & 0 & 0 \\
0 & 0 & 0 & .2 & .8 & 0 & 0 \\
0 & 0 & 0 & 0 & .2 & .8 & 0 \\
0 & 0 & 0 & 0 & 0 & .2 & .8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad T^{\mathrm{right}}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Noisy: plants, environments, agent

Actions

Action left

Noisy: plants, environments, agent
Absorbing state -> max eigenvalue <1

Markov state-space descriptions

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

Markov state-space descriptions

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

Markov state-space descriptions

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

$$
s^{\prime}=[\text { position }] \rightarrow s^{\prime}=\left[\begin{array}{l}
\text { position } \\
\text { velocity }
\end{array}\right]
$$

MP

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

Tall orders

- Aim: maximise total future reward

- i.e. we have to sum over paths through the future and weigh each by its probability
- Best policy achieves best long-term reward

Exhaustive tree search

Exhaustive tree search

Decision tree

$$
\sum_{t=1}^{\infty} r_{t}
$$

Decision tree

$$
\sum_{t=1}^{\infty} r_{t}
$$

Decision tree

$$
\sum_{t=1}^{\infty} r_{t}
$$

Decision tree

Policy for this talk

- Pose the problem mathematically
- Policy evaluation
- Policy iteration
- Monte Carlo techniques: experience samples
- TD learning

Policy

Evaluate \longleftrightarrow Update

Evaluating a policy

- Aim: maximise total future reward

$$
\sum_{t=1}^{\infty} r_{t}
$$

- To know which is best, evaluate it first
- The policy determines the expected reward from each state

$$
\mathcal{V}^{\pi}\left(s_{1}\right)=\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s_{1}=1, a_{t} \sim \pi\right]
$$

Discounting

- Given a policy, each state has an expected value

$$
\mathcal{V}^{\pi}\left(s_{1}\right)=\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s_{1}=1, a_{t} \sim \pi\right]
$$

- But: $\sum_{t=0}^{\infty} r_{t}=\infty$
- Episodic

$$
\sum_{t=0}^{T} r_{t}<\infty
$$

- Discounted
- infinite horizons $\sum_{t=0} \gamma^{t} r_{t}<\infty$
- finite, exponentially distributed horizons

$$
\sum_{t=0}^{T} \gamma^{t^{t} r_{t}} \quad T \sim \frac{1}{\tau} e^{t / \tau}
$$

Discounting

- Given a policy, each state has an expected value

$$
\mathcal{V}^{\pi}\left(s_{1}\right)=\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s_{1}=1, a_{t} \sim \pi\right]
$$

- But: $\sum_{t=0}^{\infty} r_{t}=\infty$
- Episodic

$$
\sum_{t=0}^{T} r_{t}<\infty
$$

- Discounted
- infinite horizons $\sum_{t=0} \gamma^{t} r_{t}<\infty$
- finite, exponentially distributed horizons

$$
\sum_{t=0}^{T} \gamma^{t} r_{t} \quad T \sim \frac{1}{\tau} e^{t / \tau}
$$

Discounting

- Given a policy, each state has an expected value

$$
\mathcal{V}^{\pi}\left(s_{1}\right)=\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s_{1}=1, a_{t} \sim \pi\right]
$$

- But: $\sum_{t=0}^{\infty} r_{t}=\infty$
- Episodic

$$
\sum_{t=0}^{T} r_{t}<\infty
$$

- Discounted
- infinite horizons $\sum_{t=0} \gamma^{t} r_{t}<\infty$
- finite, exponentially distributed horizons

$$
\sum_{t=0}^{T} \gamma^{t} r_{t} \quad T \sim \frac{1}{\tau} e^{t / \tau}
$$

Markov Decision Problems

$$
\begin{aligned}
V^{\pi}\left(s_{t}\right) & =\mathbb{E}\left[\sum_{t^{\prime}=1}^{\infty} r_{t^{\prime}} \mid s_{t}=s, \pi\right] \\
& =\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right]+\mathbb{E}\left[\sum_{t=2}^{\infty} r_{t} \mid s_{t}=s, \pi\right] \\
& =\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right]+\mathbb{E}\left[V^{\pi}\left(s_{t+1}\right) \mid s_{t}=s, \pi\right]
\end{aligned}
$$

This dynamic consistency is key to many solution approaches. It states that the value of a state s is related to the values of its successor states s'.

Markov Decision Problems

$$
\begin{aligned}
V^{\pi}\left(s_{t}\right) & =\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right]+\mathbb{E}\left[V\left(s_{t+1}\right), \pi\right] \\
r_{1} & \sim \mathcal{R}\left(s_{2}, a_{1}, s_{1}\right) \\
=s, \pi] & =\mathbb{E}\left[\sum_{s_{t+1}} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{a_{t}} p\left(a_{t} \mid s_{t}\right)\left[\sum_{s_{t+1}} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right] \\
& =\sum_{a_{t}} \pi\left(a_{t}, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a_{t}} \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right]
\end{aligned}
$$

Bellman equation

$$
\begin{aligned}
V^{\pi}\left(s_{t}\right) & =\mathbb{E}\left[r_{1} \mid s_{t}=s, \pi\right]+\mathbb{E}\left[V\left(s_{t+1}\right), \pi\right] \\
\mathbb{E}\left[r_{1} \mid s_{t}, \pi\right] & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a} \mathcal{R}\left(s_{t+1}, a, s_{t}\right)\right] \neq \square \\
{\left[V^{\pi}\left(s_{t+1}\right), \pi, s_{t}\right] } & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a} V^{\pi}\left(s_{t+1}\right)\right] \\
V^{\pi}(s)= & \sum_{a} \pi(a \mid s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]
\end{aligned}
$$

Bellman Equation

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]
$$

Bellman Equation

Bellman Equation

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]
$$

All future
reward
from state s

reward

from

Immediate

reward

next state s'\end{array}\right]+\)

Q values = state-action values

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s) \underbrace{\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]}_{\mathcal{Q}^{\pi}(s, a)}
$$

- so we can define state-action values as:

$$
\begin{aligned}
\mathcal{Q}(s, a) & =\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s, a\right]
\end{aligned}
$$

- and state values are average state-action values:

$$
V(s)=\sum_{a} \pi(a \mid s) \mathcal{Q}(s, a)
$$

Bellman Equation

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]
$$

- to evaluate a policy, we need to solve the above equation, i.e. find the self-consistent state values
- options for policy evaluation
- exhaustive tree search - outwards, inwards, depth-first
- linear solution in I step
- value iteration: iterative updates
- experience sampling

Solving the Bellman Equation

Option I: turn it into update equation

Option 2: linear solution (w/ absorbing states)

$$
\begin{aligned}
V(s) & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
\Rightarrow \mathbf{v} & =\mathbf{R}^{\pi}+\mathbf{T}^{\pi} \mathbf{v} \\
\Rightarrow \mathbf{v}^{\pi} & =\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi} \quad \mathcal{O}\left(|\mathcal{S}|^{3}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option I: turn it into update equation

$$
V^{k+1}(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{k}\left(s^{\prime}\right)\right]\right]
$$

Option 2: linear solution
(w/ absorbing states)

$$
\begin{aligned}
V(s) & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
\Rightarrow \mathbf{v} & =\mathbf{R}^{\pi}+\mathbf{T}^{\pi} \mathbf{v} \\
\Rightarrow \mathbf{v}^{\pi} & =\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi} \quad \mathcal{O}\left(|\mathcal{S}|^{3}\right)
\end{aligned}
$$

Policy update

Given the value function for a policy, say via linear solution

$$
V^{\pi}(s)=\sum_{a} \pi(a \mid s) \underbrace{\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{\pi}\left(s^{\prime}\right)\right]\right]}_{\mathcal{Q}^{\pi}(s, a)}
$$

Given the values V for the policy, we can improve the policy by always choosing the best action:

$$
\pi^{\prime}(a \mid s)=\left\{\begin{array}{l}
1 \text { if } a=\operatorname{argmax}_{a} \mathcal{Q}^{\pi}(s, a) \\
0 \text { else }
\end{array}\right.
$$

It is guaranteed to improve:

$$
\mathcal{Q}^{\pi}\left(s, \pi^{\prime}(s)\right)=\max _{a} \mathcal{Q}^{\pi}(s, a) \geq \mathcal{Q}^{\pi}(s, \pi(s))=\mathcal{V}^{\pi}(s)
$$

Policy iteration

Policy evaluation

$$
\mathbf{v}^{\pi}=\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi}
$$

$$
\pi(a \mid s)=\left\{\begin{array}{l}
1 \text { if } a=\operatorname{argmax}_{a} \sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s}^{a}+V^{p i}\left(s^{\prime}\right)\right] \\
0 \text { else }
\end{array}\right.
$$

Policy iteration

Policy iteration

Model-free solutions

- So far we have assumed knowledge of R and T
- R and T are the 'model' of the world, so we assume full knowledge of the dynamics and rewards in the environment
- What if we don't know them?
- We can still learn from state-action-reward samples
- we can learn R and T from them, and use our estimates to solve as above
- alternatively, we can directly estimate V or Q

Solving the Bellman Equation

Option 3: sampling

$$
V(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

So we can just draw some samples from the policy and the transitions and average over them:

$$
\begin{aligned}
a & =\sum_{k} f\left(x_{k}\right) p\left(x_{k}\right) \\
x^{(i)} & \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x^{(i)}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option 3: sampling

So we can just draw some samples from the policy and the transitions and average over them:

$$
\begin{aligned}
a & =\sum_{k} f\left(x_{k}\right) p\left(x_{k}\right) \\
x^{(i)} & \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x^{(i)}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option 3: sampling

this is an expectation over policy and transition samples.

So we can just draw some samples from the policy and the transitions and average over them:

$$
\begin{aligned}
a & =\sum_{k} f\left(x_{k}\right) p\left(x_{k}\right) \\
x^{(i)} & \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x^{(i)}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option 3: sampling
this is an expectation over policy and transition samples.

So we can just draw some samples from the policy and the transitions and average over them:

$$
\begin{aligned}
a & =\sum_{k} f\left(x_{k}\right) p\left(x_{k}\right) \\
x^{(i)} & \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x^{(i)}\right)
\end{aligned}
$$

more about this later...

Learning from samples

A new problem: exploration versus exploitation

Monte Carlo

- First visit MC
- randomly start in all states, generate paths, average for starting state only

$$
\mathcal{V}(s)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s\right\}
$$

- More efficient use of samples
- Every visit MC
- Bootstrap:TD
- Dyna
- Better samples
- on policy versus off policy
- UCB, UCT, BOSS...

Update equation: towards TD

Bellman equation

$$
V(s)=\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Not yet converged, so it doesn't hold:

$$
d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

And then use this to update

$$
V^{i+1}(s)=V^{i}(s)+d V(s)
$$

TD learning

$$
d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

TD learning

$$
\begin{aligned}
& d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
& a_{t} \sim \pi\left(a \mid s_{t}\right) \\
& s_{t+1} \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
& r_{t}=\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)
\end{aligned}
$$

TD learning

$$
\begin{aligned}
& d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
& a_{t} \sim \pi\left(a \mid s_{t}\right) \\
& s_{t+1} \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
& r_{t}=\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
& \delta_{t}=-V_{t-1}\left(s_{t}\right)+r_{t}+V_{t-1}\left(s_{t+1}\right)
\end{aligned}
$$

TD learning

$$
\begin{aligned}
& d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
& a_{t} \sim \pi\left(a \mid s_{t}\right) \\
& s_{t+1} \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
& r_{t}=\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
& \delta_{t}=-V_{t-1}\left(s_{t}\right)+r_{t}+V_{t-1}\left(s_{t+1}\right) \\
& V^{i+1}(s)=V^{i}(s)+d V(s) \quad V_{t}\left(s_{t}\right)=V_{t-1}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

TD learning

$$
\begin{aligned}
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{0}} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\delta_{t} & =-V_{t}\left(s_{t}\right)+r_{t}+V_{t}\left(s_{t+1}\right) \\
V_{t+1}\left(s_{t}\right) & =V_{t}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

Aside: what makes a TD error?

- unpredicted reward expectation change
- disappears with learning
- stays with probabilistic reinforcement
- sequentiality
- TD error vs prediction error
- see Niv and Schoenbaum 2008

The effect of bootstrapping

BI	
BO	

$$
\begin{aligned}
& \text { Markov (every visit) } \\
& V(B)=3 / 4 \\
& V(A)=0 \\
& \text { TD } \\
& V(B)=3 / 4 \\
& V(A)=\sim 3 / 4
\end{aligned}
$$

- Average over various bootstrappings:TD (λ)

Actor-critic

- policy and value separately parametrised

$$
\begin{aligned}
& \delta_{t}=r_{t+1}+\gamma V\left(s_{t+1}\right)-V\left(s_{t}\right) \\
& w(s, a) \leftarrow w(s, a)+\beta \delta_{t} \\
& w(s, a) \leftarrow w(s, a)+\beta \delta_{t}(1-\pi(s, a))
\end{aligned}
$$

$$
\pi(a \mid s)=\frac{e^{w(s, a)}}{\sum_{a^{\prime}} e^{w\left(s, a^{\prime}\right)}}
$$

SARSA

- Do TD for state-action values instead:

$$
\begin{gathered}
\mathcal{Q}\left(s_{t}, a_{t}\right) \leftarrow \mathcal{Q}\left(s_{t}, a_{t}\right)+\alpha\left[r_{t}+\gamma \mathcal{Q}\left(s_{t+1}, a_{t+1}\right)-\mathcal{Q}\left(s_{t}, a_{t}\right)\right] \\
s_{t}, a_{t}, r_{t}, s_{t+1}, a_{t+1}
\end{gathered}
$$

- convergence guarantees - will estimate $\mathcal{Q}^{\pi}(s, a)$

Q learning: off-policy

- Learn off-policy
- draw from some policy
- "only" require extensive sampling

$$
\mathcal{Q}\left(s_{t}, a_{t}\right) \leftarrow \mathcal{Q}\left(s_{t}, a_{t}\right)+\alpha[\underbrace{r_{t}+\gamma \max _{a} \mathcal{Q}\left(s_{t+1}, a\right)}_{\begin{array}{c}
\text { update towards } \\
\text { optimum }
\end{array}}-\mathcal{Q}\left(s_{t}, a_{t}\right)]
$$

- will estimate $\mathcal{Q}^{*}(s, a)$

Learning in the wrong state space

- states=distance from goal
- state-space choice crucial
- too big -> curse of dimensionality
- too small -> can't express good policies

- unsolved problem
- humans in tasks have to infer state-space

Neural network approximations

- So far: look-up tables

- Parametric value functions

Hierarchical decompositions

- Subtasks stay the same
- Learn subtasks
- Learn how to use subtasks

Learning a model

- So far we've concentrated on model-free learning
- What if we want to build some model of the environment?

$$
\left.V(s)=\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a} \mid \mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

- Count transitions

$$
\hat{\mathcal{T}}_{s s^{\prime}}^{a}=\frac{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a\right)}
$$

- Average rewards

$$
\hat{\mathcal{R}}_{s s^{\prime}}^{a}=\frac{\sum_{t} r_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}
$$

- Combine model estimation with TD learning

$$
V_{t+1}\left(s_{t}\right)=V_{t}\left(s_{t}\right)+\alpha \delta_{t}
$$

Generate extra experience samples from estimated model

Conclusion I

- Long-term rewards have internal consistency
- This can be exploited for solution
- Exploration and exploitation trade off when sampling
- Clever use of samples can produce fast learning - Brain most likely does something like this

