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Recapitulation	


‣ MDP: {s,a,T,R,pi}
‣ Multiple solution approaches
‣ “Global”: policy evaluation & iteration
‣ “Local”: sampling: 

• Monte Carlo
• TD

‣ How do humans or animals solve RL problems? 
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Policy

‣ Unconditioned responses
‣ Pavlovian conditioning
‣ Habits 
‣ Goal-directed behaviour
‣ Doing tree search
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Pavlovian conditioning
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Unconditioned responses

Hershberger 1986

•powerful
•inflexible over short timescale
•adaptive on evolutionary scale
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are innate evolutionary strategies
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Innate evolutionary strategies

more 
survive

more 
survive

fewer 
survive

Hirsch and Bolles 1980
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Innate evolutionary strategies

more 
survive

more 
survive

fewer 
survive

Hirsch and Bolles 1980

are quite sophisticated...
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Specific biological substrates

Nature Reviews | Neuroscience
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from visual and auditory association areas 
and are likely to integrate non-olfactory 
predator-derived sensory cues19. Consistent 
with this view, lesions in these nuclei also 
reduce innate fear responses to a cat17. 
Olfactory and vomeronasal inputs to MEA 
also have a role in the detection of conspe-
cifics20. However, exposure to an aggressive 
conspecific activates predominantly the 
posterodorsal part of the MEA (pdMEA)20, 
suggesting that the processing of olfactory 
threat cues that associate with predators and 
conspecifics is likely to depend on different 
MEA subnuclei (FIG. 1). The close proximity 
of pdMEA and pvMEA has so far prevented 
a functional dissection of these pathways.

Nuclei of the cortical division of the 
amygdala appear to be particularly impor-
tant for learned fear. The LA is one of the 
main sites in which associative learning 
between conditioned and unconditioned 
stimuli occurs4–6,21,22, and lesions or pharma-
cological blockade of the LA prevent both 
the acquisition and the expression of con-
ditioned fear to footshock4–6,23,24, as well as 
conditioned fear to predators17 (for example, 
in rats, fear to a context that was previously 
associated with a cat). The LA, in turn, pro-
jects to the CEA both directly and indirectly 
via the BLA25 (FIG. 1). Importantly, lesions 
or pharmacological blockade of the CEA 
prevent the expression of conditioned fear 

to footshock4–6,26, but do not interfere with 
conditioned fear to a predator17. By contrast, 
lesions of the MEA that block fear responses 
to a predator do not block conditioned 
responses to footshock27. These mapping and 
lesion data show that the fear-of-predator  
circuit and the fear-of-pain circuit are segre-
gated at the level of amygdala outputs, with 
the former depending on outputs from the 
pvMEA and pBMA and the latter depending 
on outputs from the CEA (FIG. 1). Together, 
these data suggest that the amygdala acts as 
a switchboard, gathering distinct afferent 
inputs that carry information about envi-
ronmental threats and channelling them 
along distinct efferent pathways, with clearly 
distinct output circuits for fear of predators 
and fear of pain and a possible segregation 
of circuits that process predator cues and 
aggressive-conspecific cues (FIG. 1).

Parallel downstream pathways for fear
The parallel processing of different classes of 
fear responses continues downstream  
of the amygdala. Efferents from the CEA to 
the ventrolateral part of the periaqueductal 
grey (vlPAG) are crucial for suppressing 
ongoing motivated behaviours, promoting  
freezing and eliciting vocalization and  
analgesia4–6. These efferents arise in the 
medial subnucleus of the CEA (CEAm), 
which receives inhibitory projections from 

neurons in the lateral subnucleus (CEAl)28–30. 
These CEAl projection neurons also project 
to the basal forebrain (specifically, to the 
substantia innominata), where they promote 
the activity of cholinergic neurons that sup-
port cortical arousal and risk assessment31. 
Fear conditioning causes a generalized tonic 
upregulation of CEAl projection neurons 
to favour risk assessment and to suppress 
freezing outputs from the CEAm, whereas 
the presentation of a conditioned stimulus 
itself suppresses CEAl projection neurons 
to disinhibit freezing29,31. In this way, fear 
responses that are dependent on the CEA 
can be switched between outputs that favour 
freezing (from the vlPAG) and those that 
favour arousal and risk assessment (from the 
substantia innominata).

Efferents from the MEA that relay 
olfactory information about predators and 
aggressive conspecifics along with efferents 
from the pBMA that, we propose, relay 
non-olfactory information about preda-
tors innervate the medial hypothalamus32,33. 
On the basis of anatomical tract-tracing 
experiments of medial hypothalamic zone 
projections, this zone has been divided into 
two networks that show a high degree of 
interconnection among nuclei. One net-
work comprises the anterior hypothalamic 
nucleus (AHN), the dorsomedial part of 
the ventromedial nucleus (dmVMH) and 

Figure 1 | Parallel circuits mediate fear of pain, predators and aggres-
sive conspecifics. Fear of pain, fear of predators and fear of aggressive 
conspecifics are processed in three independent neural pathways that 
include subnuclei of the amygdala, hypothalamus and periaqueductal grey 
(PAG). Predators and aggressive conspecifics elicit innate fear responses 
through activation of distinct nuclei of the amygdala, which are in turn con-
nected to distinct regions of the ventromedial hypothalamus (VMH), dorsal 
premammillary nucleus (PMD) and PAG to produce stimulus-appropriate 
defensive behaviours. Thus, fear of predators involves a pathway that 
includes the lateral amygdala (LA), the posterior part of the basomedial 
amygdala (pBMA), the posteroventral part of the medial amygdala (pvMEA), 
the dorsomedial part of theVMH (dmVMH), the ventrolateral part of the 
PMD (vlPMD) and the dorsolateral part of the PAG (dlPAG). Fear of 

aggressive conspecifics involves a pathway including the posterodorsal part 
of the medial amygdala (pdMEA), the ventrolateral part of the VMH (vlVMH), 
the dorsomedial PMD (dmPMD) and the dorsomedial part of the PAG 
(dmPAG). Several additional interconnected nuclei of the medial hypotha-
lamic circuits are also recruited specifically by predator threats and conspe-
cific threats, including the anterior hypothalamic nucleus (AHN), medial 
preoptic nucleus (MPN) and ventral premammilliary nucleus (PMV). 
Conversely, cues that are associated with painful stimuli activate the central 
amygdala (CEA) to induce defensive behaviour via the ventrolateral part of 
the PAG (vlPAG). Thus, different classes of threatening stimuli recruit parallel 
and independent circuits to produce fear. BLA, basolateral amygdala;  
LS, lateral septum; vHIP, ventral hippocampus. Dashed arrows indicate 
stimulus input and behavioural output.

PERSPECT IVES

2 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/neuro

© 2012 Macmillan Publishers Limited. All rights reserved

Bandler et al. 1994

Gross & Canteras 2012

•The dorsal 
periaquaeductal gray has 
a map of fear behaviours

•These may form part of 
three specific fear 
circuits to classes of 
dangerous stimuli
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Pavlovian conditioning

prior to training

CS: bell -> no response
US: food -> salivation & consumption
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Pavlovian conditioning

prior to training

CS: bell -> no response
US: food -> salivation & consumption

training

CS: bell US: food

after training: 

CS: bell -> salivation
US: food -> salivation & consumption
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Pavlovian conditioning

prior to training

CS: bell -> no response
US: food -> salivation & consumption

training

CS: bell US: food

after training: 

CS: bell -> salivation
US: food -> salivation & consumption

omission training:

CS: bell

US: omitted

US: food

salivation

no salivation
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Aversive Pavlovian effects: freezing

Bolles and Riley 1973

Punish freezing on 15s Sidman schedule

Punish any freezing

Avoidance by freezing
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A UK checkout
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A UK checkout



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

A UK checkout

The Guardian, Sat Feb 26th 2011
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Go Nogo

Rewarded

Avoids loss

Pavlovian influences on instrumental learning

Guitart-Masip, Huys et al. 2011, 2012
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Go Nogo
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Avoids loss
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Pavlovian conditioning

‣ By being predictive of an affective outcome, a 
neutral stimulus can come to elicit the innate 
preparatory response usually evoked by the 
affective outcome.

‣ p(active response) ~ value(stimulus)?
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p(go|st) � Qt(go|st) + bias(go)
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p(go|st) ⇥ Qt(go|st) + bias(go) + Vt(st)

Vt(st) = Vt�1(st) + �(rt � Vt�1(st))

P(go) ∝ value of stimulus
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‣ Where the values V(s) are is not so clear
‣ Midbrain dopamine neurons seem to report a TD 

error

Pavlovian values in the brain?
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‣ Where the values V(s) are is not so clear
‣ Midbrain dopamine neurons seem to report a TD 

error

Pavlovian values in the brain?

Montague et al. 1996
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‣ Where the values V(s) are is not so clear
‣ Midbrain dopamine neurons seem to report a TD 

error

Pavlovian values in the brain?

Neuron
134

firing rate rising to three or four times baseline, sug-
gesting that, in this range, this neuron linearly encodes
the weighted averaging calculation described by the β
weights. However, for values of this calculation less
than −0.1, there appears to be no modulation in the
neuronal response. This lack of modulation seems to
occur because the neuron reaches the bottom end
of its dynamic range; it produces zero spikes during
our measured interval for all large negative values of
weighted reward history. These results indicate that the
firing rate of this neuron during the rewarded interval is
quantitatively correlated with the difference between
the current reward and a recency-weighted average of
previous rewards for a limited range of reward histories.

Figure 5C shows the set of weights derived by linear
regression for another individual neuron. For this neu-
ron, there is also a large positive weight for the current
reward and negative weights for the previous rewards
that approach zero for rewards farther in the past. This
neuron also shows a nearly linear relationship between
weighted reward history and firing rate, but again there
is a rectification for very negative values of the calcula-
tion, suggesting that the firing rate of this neuron during
the postreward interval carries a signal encoding this
calculation only for positive values (Figure 5D).

Activity of the Neuronal Population
This pattern of neuronal responses, in which firing rate
was correlated with the difference between the value of
the current reward and a recency-weighted average of
the previous rewards, was characteristic of nearly all
of our neurons. The responses of 44 out of 50 neurons

Figure 5. Multiple Linear Regression of Neuronal Firing Rate and were significantly (p < 0.01) modulated by reward his-
Reward History: Single Neuron tory, with a mean R-squared value of 0.29 (SD = 0.15).
(A) Coefficients from multiple linear regression for a single neuron We also performed a single multiple regression
(L041103). (Inset) Last ten coefficients plotted as they would be analysis on combined data from all of the neurons in
used to compute a weighted average. Each one is divided by the our population. In order to combine data from multiple
value of the first coefficient. Error bars represent the 95% confi-

neurons, we normalized the firing rates of each cell bydence intervals. R-squared = 0.50; p < 0.00001; n = 1007 trials.
subtracting from them the average baseline firing rate(B) Firing rate plotted as a function of weighted reward history.

Weighted reward history computed using the coefficients shown in of that cell and compiled the corresponding reward his-
(A) after they have been normalized by dividing all coefficients by tory for each trial. We then performed a single regres-
the value of the first. Error bars represent standard error. sion of normalized firing rate against reward history for
(C) Coefficients from multiple linear regression for a single neuron all of these trials. Figure 5E shows the combination of
(C032504). (Inset) Last ten coefficients plotted as they would be

previous rewards that best predicts the change in neu-used to compute a weighted average. Error bars represent the 95%
ronal firing rate from baseline levels, for all trials fromconfidence intervals. R-squared = 0.42; p < 0.00001; n = 295 trials.

(D) Firing rate plotted as a function of weighted reward history. all cells. When this large data set is used, the derived
Weighted reward history computed using normalized regression weights describe a signal computed as the difference
coefficients shown in (C). Error bars represent standard error. between the value of the current reward and a recency-
(E) Coefficients from multiple linear regression for all neurons com- weighted average of the values of the last six or seven
bined. (Inset) Last ten coefficients plotted as they would be used

rewards. Plotting this weighted reward history againstto compute a weighted average. Error bars represent the 95% con-
firing rate (Figure 5F), there is a linear relationship forfidence intervals. R-squared = 0.21; p < 0.0001; n = 13919 trials.

(F) Firing rate plotted as a function of weighted reward history. positive values of weighted reward history, but not for
Weighted reward history computed using normalized regression negative values below about −0.1. This is similar to the
coefficients shown in (E). Error bars represent standard error. result we show in the single neuron examples, suggest-

ing that the population of dopamine neurons encodes
the difference between the current reward and a re-rate on that trial. Figure 5B shows firing rate plotted

as a function of the trial-by-trial weighted average of cency-weighted average of past rewards. However, ad-
ditional data have not diminished the rectification in therewards specified by the linear regression as in Figure

5A. If the underlying function that the regression ana- neuronal response for very negative weighted reward
history values. The firing rates of these dopamine neu-lyzed had been entirely linear, these data points would

all fall along a straight line of slope 1. Interestingly, for rons at the expected time of reward do not encode the
difference between the value of the current reward andall values of this weighted reward history greater than

−0.1, there is a roughly linear relationship with neuronal a recency-weighted average of the values of the last

Bayer and Glimcher 2005

Montague et al. 1996
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Addictive Pavlovian values
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‘Sign-tracking’
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‘Sign-tracking’

‣ Wiers et al. 2010: Attentional 
training reduces relapse

‣ Heinze et al. 2009: NAcc DBS 
reduces relapse & craving

Depression: aversive stimulus values
‣ dot probe task 
‣ emotional stroop
‣ recollection bias
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Devaluation

Goal-directed vs. habitual behaviour
mix and match
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Habits

‣ Instrumental stimulus-response tendencies
‣ Lever pressing: not innate
‣ SARSA:

• any response
• slow acquisition
• slow ‘extinction’ if reward changes

Q(st, at)⇥ Q(st, at) + �[rt + ⇥Q(st+1, at+1)�Q(st, at)]
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‣ Devaluation
• Train briefly / overtrain
• Devalue outcome
• Immediate behaviour?

Decision systems in parallel

early: g-d late: habits
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‣ Devaluation
• Train briefly / overtrain
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Killcross and Coutureau 2003

early: g-d late: habits
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‣ Devaluation
• Train briefly / overtrain
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Decision systems in parallel
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Simple is better at times: doctors

20 cases for which truth known

Cardiologists
General physicians

A&E physicians

Melly et al. 2002
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Simple is better at times: doctors

20 cases for which truth known

Cardiologists
General physicians

A&E physicians

Physicians overly cautious, but 
still miss many -> complications

Melly et al. 2002
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Dopamine and habits

‣ Also see phasic DA responses in instrumental 
learning

‣ DA seems to be involved in learning with prediction 
errors
• Sum of prediction errors = “cached” value (Daw et al. 

2005)
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‣ behaviourally and neurobiologically distinct and 
identifiable
• How to arbitrate? according to advantages and 

disadvantages?

‣ interactions
• Pavlovian pruning of decision trees
• model-based teaching of habits

Many decision systems in parallel

Goal-directed system
Tree search

Habit system
Experience average

Innate system
Evolutionary strategy
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Goal-directed decision making

• Each move: 30 odd options
• 3040? 
• Legal boards ~10123

• Can’t just do full tree search.
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Pruning a decision tree
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Pruning a decision tree
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Don’t go there… Don’t think it either?
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Pavlovian pruning

-140

-20

+140 +20 -20 -140 -20 -140 -140 -20

+20 +20 -20

-20

-20 -140 -140 -260 -20 -140 -180 -60

Pruning

‣ Optimality
• conserve 

guarantees
• difficult & 

computationally 
expensive

‣ Approximate
• trade optimality for 

speed
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Pavlovian pruning

-140

-20

+140 +20 -20 -140 -20 -140 -140 -20

+20 +20 -20

-20

-20 -140 -140 -260 -20 -140 -180 -60

Pruning

‣ Optimality
• conserve 

guarantees
• difficult & 

computationally 
expensive

‣ Approximate
• trade optimality for 

speed

‣ Pavlovian
• reflexively prune on encountering a 

punishment
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Psychochess

L R

3 moves to go
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A poor experimental psychologist’s version 
of chess

2 1

3

4 5

6

-X
+2
0-20

+140

A tree search task
-X = -140 
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A poor experimental psychologist’s version 
of chess

2 1

3

4 5

6

-X
+2
0-20

+140

A tree search task
-X = -140 



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Model 1: full lookahead
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Model 1: full lookahead
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Pruning

-140

-20

+140

Total: -20 -140 -140 -260 -20 -140 -180 -60

+20 -20 -140 -20 -140 -140 -20

+20 +20 -20

-20

key  ‘U’
key   ‘I’

...
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Pruning

-140

-20

+140

Total: -20 -140 -140 -260 -20 -140 -180 -60
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key  ‘U’
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Flat pruning



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Pruning

-140

-20

+140

Total: -20 -140 -140 -260 -20 -140 -180 -60

+20 -20 -140 -20 -140 -140 -20

+20 +20 -20

-20

key  ‘U’
key   ‘I’

Flat pruning

Probability of
looking ahead

= “discounting”
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People don’t look to the end...

Huys et al. (2011) Submitted

1400 1500 1600 1700

Group

Likelihood ratio

1041:1

1016:1

Mean 
individual

7.7:1

2.2:1

Look-ahead

Discount

Pruning

Pruning & 
Immediate

Pruning & Im-
mediate (separate)

BICint (log10 scale)

                                                                                                          

better

                                                                                                          

                                                                                                          Discounting

Pruning

group-level Bayes factor
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Chess

Selective pruning!
Pavlovian pruning???
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Pruning

-140

-20

+140

Total: -20 -140 -140 -260 -20 -140 -180 -60
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+20 +20 -20

-20
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Pruning
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Pavlovian?
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Pavlovian?
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Pavlovian?
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Stop at losses? 

2 1

3

4 5

6
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Avoiding losses
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Optimal Lookahead sequence contains large loss

Optimal Lookahead sequence does not contain large loss

Dashed lines show predictions from model ‘Pruning & Learned’
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Avoiding losses
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Adaptive pruning model
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Adaptive pruning model

-140

-20

+140

Total: -20 -140 -140 -260 -20 -140 -180 -60

+20 -20 -140 -20 -140 -140 -20

+20 +20 -20

-20

key  ‘U’
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Probability of
transition through

large loss

Probability of
other 

transitions

p(X|M) = c

Z
d✓ p(X|✓)



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Adaptive pruning wins

Huys et al. (2011) Submitted

1400 1500 1600 1700

Group

Likelihood ratio

1041:1

1016:1

Mean 
individual

7.7:1

2.2:1

Look-ahead

Discount

Pruning

Pruning & 
Immediate

Pruning & Im-
mediate (separate)

BICint (log10 scale)
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Pruning

group-level Bayes factor



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Generate some data 2 1

3

4 5

6

-X
+2
0-20

+140



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Generate some data
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Generate some data
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Generate some data
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Generate some data
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Pavlovian influences inside a decision tree

−4 −2 0 2 40

0.5

1

V(s)

C
o
n
ti
n
u
ta
ti
o
n

p
ro
b
a
b
il
it
y

p
5
H
T
(s
)

↵5HT



Reinforcement learning Quentin HuysAdvanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012

Adaptive pruning wins
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Further alternatives

‣ Loss aversion
• maybe subjects dislike large loss disproportionately?

‣ Cached terminal values

‣ Cached learning only

‣ Choices of entire sequences

‣ Compare models’ abilities to explain the ENTIRE 
set of data
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Pruning is Pavlovian
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Pruning is Pavlovian
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Generating data from the model
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Dashed lines show predictions from model ‘Pruning & Learned’
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‣ Given the model, can now look at parameters
• Ensure they are meaningful
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Pruning in the brain: PAG and sgPFC

preliminary!
with Niall Lally
and Jon Roiser
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Two Pavlovian influences
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Recap

‣ Multiple decision systems
‣ Multiple values
‣ Multiple action mechanisms
‣ Interactions

• Override
• Uncertainty

‣ Complex problem
‣ Identification via critical features


