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Recapitulation

» MDP: {s,a, T,R,pi}

» Multiple solution approaches

» “Global’: policy evaluation & iteration
» “Local”: sampling:

e Monte Carlo
e TD

» How do humans or animals solve RL problems?

Quentin Huys
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Reinforcement learning



Policy

» Unconditioned responses
» Pavlovian conditioning

» Habits

» Goal-directed behaviour
» Doing tree search
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Pavlovian conditioning
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Unconditioned responses

epowerful
*inflexible over short timescale
*adaptive on evolutionary scale

Hershberger 1986
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are innate evolutionary strategies
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Innate evolutionary strategies

PO ionotlls

Hirsch and Bolles 1980
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Innate evolutionary strategies
are quite sophisticated...

PO ionotlls & I I
more more
survive survive
fewer

survive

Hirsch and Bolles 1980
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Specific biological

substrates

*The dorsal
periaquaeductal gray has
a map of fear behaviours

*These may form part of
three specific fear
circuits to classes of
dangerous stimuli

Hippocampus Septum

Bandler et al. 1994
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Innate defensive
responses to predators

» Innate defensive responses
to aggressive conspecifics

Fear conditioning to
painful stimuli

Gross & Canteras 2012
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Pavlovian conditioning

prior to training

CS: bell -> no response
US: food -> salivation & consumption
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Pavlovian conditioning

prior to training

CS: bell -> no response
US: food -> salivation & consumption

training

CS: bell » US: food

Reinforcement learning Advanced Course in Computational Neuroscience, Bedlewo, Poland August [5-16 2012 Quentin Huys



Pavlovian conditioning

prior to training

CS: bell -> no response
US: food -> salivation & consumption

training

CS: bell » US: food
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Pavlovian conditioning

prior to training

CS: bell -> no response
US: food -> salivation & consumption

training

CS: bell » US: food

after training:

CS: bell -> salivation

15 | . . .
SOt pamg| | US: food -> salivation & consumption
; :
0 | | | | | | | !
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Pavlovian conditioning

prior to training

CS: bell -> no response
US: food -> salivation & consumption

training

CS: bell —> US: food

after training:

CS: bell -> salivation

15 | . . .
W ryeel B US: food -> salivation & consumption
; :
0 | | | | | | | !
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Aversive Pavlovian effects: freezing
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Aversive Pavlovian effects: freezing

Avoidance by freezing
100 -

Punish freezing on 15s Sidman schedule

—

Punish any freezing

Percentage Freezing

5-min intervals
Bolles and Riley 1973

Reinforcement learning
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A UK checkout

WARNING:
Tobacco

smoke can
harm your
children.
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A UK checkout

WARNING:
Tobacco

smoke can
harm your
children.

O Mnstérn da Saude adverle
O uso deste produto obstrui as artérias e
d¥ficulta a circulacio do sangue.

PARE DE FUMAR
’j DISQUE SAUDL

0800 61 1997
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A UK checkout

WARNING:
Tobacco

smoke can
harm your
children.

Tobacco firms accused of funding
campaign to keep cigarettes on display

Jamie Doward and Alex Ascherson
guardian.co.uk, Saturday 26 February 2011 20.54 GMT
Article history
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Cigarettes displayed for sale at a store in central London. F‘hm&graph: Andy Rain.fEF'ﬁ-.

O Mo da Saode adverte The Guardian, Sat Feb 26th 201 |

O uso deste produto obstrai as artérias e
dficulta a circulaclio do sangue.
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’j DISQUE SAUDL

0800 61 1997
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Pavlovian influences on instrumental learning

Go

Nogo

Rewarded

Avoids loss

Guitart-Masip, Huys et al.2011,2012
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Pavlovian influences on instrumental learning

Rewarded

Avoids loss

=N

=5
=

c 2 0.5
Q 5
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Go rewarded
Go to win

Goto Goto Nogoto Nogo to
Win Avoid Win Avoid

Probability(Go

Guitart-Masip, Huys et al.2011,2012
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Pavlovian influences on instrumental learning

Go Nogo

Rewarded

Avoids loss

Probability
correct
o
2k

Goto Goto Nogoto Nogo to
Win Avoid Win Avoid

Go rewarded Nogo punished Nogo rewarded
Go to win Go to avoid Nogo to win

Y‘“_ll IlllII Il EEIE
\

Probability(Go

Guitart-Masip, Huys et al.2011,2012
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Pavlovian conditioning

» By being predictive of an affective outcome, a
neutral stimulus can come to elicit the innate
preparatory response usually evoked by the
affective outcome.

» p(active response) ~ value(stimulus)?
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Model

Rewarded

Avoids loss
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Guitart-Masip et al. 201 |, Guitart-Masip, Huys et al. Submitted

Reinforcement learning Advanced Course in Computational Neuroscience, Bedlewo, Poland August 15-16 2012 Quentin Huys



Model

Probability(Go

p(go|st)

Go rewarded
Go to win

X

Reinforcement learning
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Model

Go Nogo

- n l-
o - -

p(golst) o< Qq(golst) + bias(go) + Vi(s¢)
Ve(s¢) Vi—1(st) + €(ry — Vi—1(st))

Go rewarded
Go to win

Probability(Go

_I-‘-.;'- . :

Guitart-Masip et al. 201 |, Guitart-Masip, Huys et al. Submitted
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Model

Go Nogo

P(go) & value of stimulus n |-
Rewarded
o - -

p(golst) o< Qq(golst) + bias(go) + Vi(s¢)
Ve(s¢) Vi—1(st) + €(ry — Vi—1(st))

Go rewarded
Go to win

-_— . W= L
l“--_- _q-l- -

Probability(Go

Guitart-Masip et al. 201 |, Guitart-Masip, Huys et al. Submitted
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Pavlovian values in the brain?

» Where the values V(s) are is not so clear

» Midbrain dopamine neurons seem to reporta ID
error

mesocortical tract

tuberoinfundibular tract
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Pavlovian values in the brain?

» Where the values V(s) are is not so clear

» Midbrain dopamine neurons seem to reporta ID

error
A Montague et al. 1996
early
el atte
late 10
o

0
0.5 0 05 -05 0 0.5
stimulusd £ () reward—T t(s)

Reinforcement learning
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Pavlovian values in the brain?

» Where the values V(s) are is not so clear

» Midbrain dopamine neurons seem to reporta ID
error
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Addictive Pavlovian values

1

'

7

Huys et al. 2012 after Flagel et al. 2009, 201 |
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Addictive Pavlovian values
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Huys et al. 2012 after Flagel et al. 2009, 201 |
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Addictive Pavlovian values

Pavlovian state value acquisition
A C
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Huys et al. 2012 after Flagel et al. 2009, 201 |
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Addictive Pavlovian values

Pavlovian state value acquisition
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‘Sign-tracking’
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‘Sign-tracking’

» Wiers et al. 2010: Attentional
training reduces relapse

» Heinze et al. 2009: NAcc DBS
reduces relapse & craving

Depression: aversive stimulus values
» dot probe task

» emotional stroop

» recollection bias
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Devaluation

Before After
Devaluation Devaluation

'] .:Q> } :%00 ; A + lots of training

After
Devaluation

Lever pressing

Goal-directed vs. habitual behaviour
mix and match
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Habits

» Instrumental stimulus-response tendencies

» Lever pressing: not innate
» SARSA:

Q(st,as) < Q(s¢,a¢) + alry + yQ(St41,ae41) — (8¢, ar)]

® any response
* slow acquisition
* slow ‘extinction’ if reward changes
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Decision systems in parallel

» Devaluation

* Train briefly / overtrain
e Devalue outcome
e |Immediate behaviour!?

early: g-d late: habits
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Decision systems in parallel

» Devaluation

* Train briefly / overtrain
e Devalue outcome
e |Immediate behaviour!?

early: g-d late: habits

—— N
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o e
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Killcross and Coutureau 2003
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Decision systems in parallel

» Devaluation

* Train briefly / overtrain
e Devalue outcome
e |Immediate behaviour!?

early: g-d late: habits
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Decision systems in parallel

» Devaluation

* Train briefly / overtrain
e Devalue outcome
e |Immediate behaviour!?

early: g-d late: habits
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Simple is better at times: doctors

. Suspectsd Ml on ECG 20 cases for which truth known
Na Yes Cardiologists
l \_ General physicians
Suspeced iachennic \ High Risk| A&E physicians
&
Yas

¥
Mo \‘

No sk Onarisk  Twoormore Noorone  Twoe or more

r:lmm 1T risk; r&ﬁnxr:hfmr risk faclons |

{ ‘Vary low Liorw I Moderate
Frisk Risk Rrisk

Melly et al. 2002
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Simple is better at times: doctors
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Dopamine and habits

» Also see phasic DA responses in instrumental
learning

» DA seems to be involved in learning with prediction
errors

* Sum of prediction errors = “cached” value (Daw et al.
2005)
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Many decision systems in parallel

Goal-directed system Habit system Innate system
Tree search Experience average Evolutionary strategy

/’\/\/\/\/\

» behaviourally and neurobiologically distinct and
identifiable

* How to arbitrate? according to advantages and
disadvantages?

» Interactions

* Pavlovian pruning of decision trees
* model-based teaching of habits
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Goal-directed decision making

* Each move: 30 odd options

e 30407

* Legal boards ~10'%3

* Can’t just do full tree search.
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Pruning a decision tree

Continutation
probability
Pspir(S)

al

ol 02 ol 02 ol 02 ol o2 ol 02 ol 02 ol 02 ol 02

Quentin Huys
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Pruning a decision tree

Continutation
probability
Pspir(S)

/l
£\
/

al /
//
I /\\

ol 02 ol oz el o2 ol 02

a2

ol 02 ol 02 ol 02 ol o2

Don’t go there... Don’t think it either?

Quentin Huys
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Pavlovian pruning

) OPtlmaIIt)’ /\
® conserve

guarantees Pruning 10 20
. difficult & /\
computationally 120 50

expensive ' | /\ /\

g ApprOX|m2.1te. -20 -140 -140 -20
e trade optimality for

speed -20 -140 -180 -60
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Pavlovian pruning

) OPtlmaIIt)’ /
® conserve

guarantees Pruning 10 20
e difficult & /
computationally 120 50
expensive ' | / /
» Approximate
-20 -140 -140 -
e trade optimality for
speed -20 -140 -180 -60

» Pavlovian

* reflexively prune on encountering a
punishment
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Psychochess

3 moves to go
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A poor experimental psychologist’s version
of chess

X =-140
A tree search task
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A poor experimental psychologist’s version
of chess

X =-140
A tree search task
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Model |: full lookahead

O
o =

o
~

O
N

o

Choice fraction predicted
by full tree search
o
o
|
F | -
74
_ 1 1
! - !

Choices to go
Group 140
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Model |:full lookahead / 2 e
A
NN

Don’t look all the way to the end

N\

\

Choice fraction predicted
by full tree search
o
o
|
F | i
74
’ I
! N !

o
~

O
N

o

Choices to go
Group 140
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Pruning

. ey U
key I /\

-140 -20

N

-20 +20 +20 -20

/N /NN /N

+140 +20 -20 -140 -20 -140 -140 -20
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Pruning

B key ‘U
III

key
-140 -20

Flat pruning -20 +20 +20 -20
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Pruning

Probability of
ey U looking ahead
- / = “discounting”
key ‘I

120 ) 20
< /.

Flat pruning -20 +20 +20 -20

;R /\

+140 +20 -20 -140 -20 -140 -140 -
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People don’t look to the end...

better

Discounting

Look-ahead

1400 1500 1600 1700
group-level Bayes factor

Huys et al. (201 1) Submitted
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Chess

Selective pruning!
Pavlovian pruning???
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Pruning

B key ‘U
III

key
-140 -20

-20 +20 +20 -20
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Pruning

. ey U
key I /\

-140 -20

/

+20 -20

/N /N

-20 -140 -140 -20
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Pavlovian?

-20 -140 -140 -20
-20 -140 -180 -60
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Pavlovian?

. -140 -20
Pruning

+20 -20

ANV AN ANIYA

-20 -140 -140 -20
-20 -140 -180 -60

-l
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Pavlovian?

-140 > -100

-100 -20

~
~
>t
>

-20 -100 -100 -20
+20 -20 -100 -140 -60

-l
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Stop at losses?
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Stop at losses?
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Stop at losses?

+140
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Avoiding losses ’

A  Start state 3, 3 moves B Start state 3, 3 moves
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Avoiding losses 2_| |

D 4
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- Optimal Lookahead sequence contains large loss
- Optimal Lookahead sequence does not contain large loss

= = = Dashed lines show predictions from model ‘Pruning & Learned’
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Adaptive pruning mode]

Probability of
Probability of " oihlelry °
transition through / transitions
large loss
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Adaptive pruning mode]

Probability of

Probability of other
transition through / transitions
I I
arge loss ( 2140 90 >

/
+20 -20 >

p(XIM) = c / 46 p(X|6)
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Adaptive pruning wins

parsimony

Pruning

Discounting

Look-ahead

1400 1500 1600 1700
group-level Bayes factor

Huys et al. (201 1) Submitted
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Generate some data
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Generate some data

One choice to go \ / \ /
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Generate some data
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1 — I Empirical data

%
/
N\

> Pruning (predicted) 4 (i
3 — 0.8
< O
S ©
2% 0.6 -
c T
9 (7)) | D I’
_(-% E 0-4
5 2 N\
£ 02 m m - 2
0
100 140
Group

Reinforcement learning Advanced Course in Computational Neuroscience, Bedlewo, Poland August [5-16 2012 Quentin Huys



Generate some data 2 JJ\

One choice to go
1 — I Empirical data
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V(s) < V(s) +e(V(s") + 1 — V(s))
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Generate some data 2 JJ\
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1 — I Empirical data
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Pavlovian influences inside a decision tree

Continutation
probability
Pspir(S)
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Adaptive pruning wins

parsimony

Pruning & Im-
mediate (separate)

Pruning &
Immediate

Pruning

Discounting

Look-ahead

1400 1500 1600 1700
group-level Bayes factor

Huys et al. (201 1) Submitted
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Further alternatives

» Loss aversion
* maybe subjects dislike large loss disproportionately?

» Cached terminal values
» Cached learning only
» Choices of entire sequences

» Compare models’ abilities to explain the ENTIRE
set of data
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Pruning is Pavlovian

0.6 r—

0.4
0.2

Choices to go
Group 140

Huys et al. (201 1) Submitted
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Pruning is Pavlovian

Maximal loss
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% choices pre—
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Huys et al. (201 1) Submitted
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Pruning is Pavlovian

Maximal loss
-100 -140
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% choices pre—
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Choices to go Choices to go
Group 100 Group 140

Huys et al. (201 1) Submitted
Quentin Huys
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Pruning is Pavlovian

Maximal loss
-70 -100 -140
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Group 70 Group 100 Group 140

Huys et al. (201 1) Submitted
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Generating data from the model 12

S
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A  Start state 3, 3 moves B Start state 3, 3 moves
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- Optimal Lookahead sequence contains large loss
- Optimal Lookahead sequence does not contain large loss

: Dashed lines show predictions from model ‘Pruning & Learned’
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Pruning parameters

» Given the model, can now look at parameters
* Ensure they are meaningful

Shallow . pI=O.OOO1I pl=0.0055I pl<0.0001I _
0.8 i

=
-'% 0.6 -
A 04- -
0.2+ i

0
Deep
Group 70 Group 100 Group 140

B below large loss I below any outcome
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Pruning parameters

» Given the model, can now look at parameters
* Ensure they are meaningful

p=0.0001 p=0.0055 p<0.0001
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Deep
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Pruning in the brain: PAG and sgPFC

preliminary!
with Niall Lally
and Jon Roiser
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Two Pavlovian influences

(i.e. state values directly linked to actions
thorughout learning)
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Recap

» Multiple decision systems
» Multiple values
» Multiple action mechanisms

» Interactions

e Override
 Uncertainty

» Complex problem
» ldentification via critical features
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