Fitting behavioural data with RL models

Quentin Huys & Michael Frank

UCL & Brown University

Janelia Farm, March 6-9th 2011

Fitting models: matching and noise

probabilistic policy, e.g. softmax

$$p(a|s) = \frac{e^{\beta \mathcal{Q}(s,a)}}{\sum_{a'} e^{\beta \mathcal{Q}(s,a')}}$$

total likelihood

$$\mathcal{L}(\theta) = p(\{a_t\}_{t=1}^T | \{s_t\}_{t=1}^T, \{r_t\}_{t=1}^T, \theta) = \prod_{t=1}^T p(a_t | s_t, r_{1\dots t-1}, \theta)$$

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \mathcal{L}(\theta)$$

Transforming variables

$$\beta = e^{\beta'}$$

$$\Rightarrow \beta' = \log(\beta)$$

$$\epsilon = \frac{1}{1 + e^{-\epsilon'}}$$

$$\Rightarrow \epsilon' = \log\left(\frac{\epsilon}{1 - \epsilon}\right)$$

$$\frac{d\log \mathcal{L}(\theta')}{d\theta'}$$

ML can be noisy

200 trials, I stimulus, I0 actions, learning rate = .05, beta=2

Constraining ML

Not so smooth

Smooth

Constraining ML

Not so smooth

Smooth

Maximum a posteriori estimate

$$\mathcal{P}(\theta) = p(\theta|a_{1...T}) = \frac{p(a_{1...T}|\theta)p(\theta)}{\int d\theta p(\theta|a_{1...T})p(\theta)}$$

$$\log \mathcal{P}(\theta) = \sum_{t=1}^{T} \log p(a_t | \theta) + \log p(\theta) + const.$$

$$\frac{\log \mathcal{P}(\theta)}{d\alpha} = \frac{\log \mathcal{L}(\theta)}{d\alpha} + \frac{d p(\theta)}{d\theta}$$

Maximum a posteriori estimate

200 trials, I stimulus, I0 actions, learning rate = .05, beta=2 m_{beta} =0, m_{eps} =-3, n=I

What prior parameters should I use?

Estimating the hyperparameters

What should the hyperparameters be?

$$\log \mathcal{P}(\theta) = \mathcal{L}(\theta) + \log \underbrace{p(\theta)}_{=p(\theta|\zeta)} + const.$$

▶ Empirical Bayes: set them to ML estimate

$$\hat{\zeta} = \underset{\zeta}{\operatorname{argmax}} p(\mathcal{A}|\zeta)$$

where we use all the actions by all the k subjects

$$\mathcal{A} = \{a_{1...T}^k\}_{k=1}^K$$

ML estimate of top-level parameters

$$\hat{\zeta} = \underset{\zeta}{\operatorname{argmax}} p(\mathcal{A}|\zeta)$$

Estimating the hyperparameters

Can't just do gradient ascent

$$\frac{d}{d\zeta}p(\mathcal{A}|\zeta)$$

Contains integral over individual parameters:

$$p(\mathcal{A}|\zeta) = \int d\theta p(\mathcal{A}|\theta) p(\theta|\zeta)$$

So we need to:

$$\hat{\zeta} = \underset{\zeta}{\operatorname{argmax}} p(\mathcal{A}|\zeta)$$

$$= \underset{\zeta}{\operatorname{argmax}} \int d\theta p(\mathcal{A}|\theta) p(\theta|\zeta)$$

Expectation Maximisation

- Iterate between
 - Estimating MAP parameters given prior parameters
 - Estimating prior parameters from MAP parameters

- ▶ There are other approaches
 - MCMC
 - Analytical conjugate priors
 - •

EM with Laplace approximation

First infer each subject's parameter and the certainty around them

EM with Laplace approximation

Next update the prior

Prior mean = mean of MAP estimates

$$\zeta_{\mu}^{(i+1)} = \frac{1}{K} \sum_{k} \mathbf{m}_{k}$$

$$\zeta_{\nu^2}^{(i+1)} = \frac{1}{N} \sum_{i} \left[(\mathbf{m}_k)^2 + \mathbf{S}_k \right] - (\zeta_{\mu}^{(i+1)})^2$$

Prior variance depends on S and variance of MAP estimates

And now iterate until convergence

Overview

- Empirical prior
 - Infer with approximate EM
- Model comparison
 - Group-level comparison
 - AIC / BIC / Laplacian
 - Error bars on group means
- Parameters
 - Comparisons

Model fit: likelihood

- ▶ How well does the model do?
 - choice probabilities:

$$\mathbb{E}p(correct) = e^{\mathcal{L}(\hat{\theta})/K/T}$$

$$= e^{\log p(\mathcal{A}|\theta)/K/T}$$

$$= \left(\prod_{k,t=1}^{K,T} p(a_{k,t}|\theta_k)\right)^{\frac{1}{KT}}$$
probabilities"

- "Predictive probabilities" —
- typically around 0.65-0.75 for 2-way choice
- for I0-armed bandit example
- pseudo R squared
- better than chance?

$$\mathbb{E}[N_k(correct)] = \mathbb{E}[p_k(correct)]T$$

$$p_{bin}(\mathbb{E}[N_k(correct)]|N_kd, p_0 = 0.5) < 1 - \alpha$$

Generative test

- Model: probability(actions)
 - simply draw from this distribution, and see what happens

- Another sanity test: can my model fit this data at all?
- BUT: it might still be overfitting!

Overfitting

Model comparison

Model comparison

- So far: individual likelihood: $p(\mathbf{a}_k|\theta^k)$
- But can we allow different model for each subject?
 - No: use *all* the data
 - Yes? Forget the group level from now on

Model comparison

- So far: individual likelihood: $p(\mathbf{a}_k|\theta^k)$
- But can we allow different model for each subject?
 - No: use *all* the data: $A = \{\{\mathbf{a}_{k,t}\}_{t=1}^T\}_{k=1}^K$
- ▶ To choose between models at the group level:

$$p(\mathcal{M}|\mathcal{A}) = \frac{p(\mathcal{A}|\mathcal{M})p(\mathcal{M})}{p(\mathcal{A})}$$

If we have a prior over Models, we should use it:

$$p(\mathcal{M})$$

▶ Otherwise stick with model likelihood: p(A|M)

Evaluating the model likelihood

- Contains two integrals:
 - subject parameters
 - prior parameters

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

Why integrals?

Why integrals?

Why integrals?

$$\frac{1}{N}(\mathbf{p}(\mathbf{X}|\boldsymbol{\theta_1}) + p(X|\boldsymbol{\theta_2}) + \cdots)$$

These two factors fight it out Model complexity vs model fit

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- Two integrals
 - tricky

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

 $p(\mathcal{A}|\zeta,\mathcal{M}) \ p(\zeta|\mathcal{M})$

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$
 $\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML},\mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$
 Model doesn't prefer particular ζ

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML},\mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$
 Model doesn't prefer particular ζ
$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML},\mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$
 is propto Gaussian
$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta,\mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML},\mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$
 Model doesn't prefer particular ζ
$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML},\mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

$$\approx$$
 $-N$

 \approx -N Akaike Information Criterion (AIC)

$$\approx -\frac{N}{2}\log(KT)$$

 $\approx -\frac{N}{2}\log(KT)$ Bayesian Information Criterion (BIC)

Two integrals

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \int d\zeta \, p(\theta|\zeta) \, p(\zeta|\mathcal{M})$$

- tricky
- Step by step: approximating levels separately
 - Top level first:

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

$$pprox -N$$
 Akaike Information Criterion (AIC)

$$\approx -\frac{N}{2}\log(KT)$$
 Bayesian Information Criterion (BIC)

Model fit vs Model complexity

Approximating level I

- Still leaves the first level:
 - Approximate integral by sampling, e.g. importance sampling:

$$\log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) = \log \int d\theta \, p(\mathcal{A}|\theta) \, p(\theta|\zeta^{ML})$$

$$\approx \log \frac{1}{B} \sum_{b=1}^{B} p(\mathcal{A}|\theta^b)$$

$$\theta^b \sim p(\theta|\zeta^{ML})$$

Group-level BIC

$$\begin{split} \log p(\mathcal{A}|\mathcal{M}) &= \int d\boldsymbol{\zeta} \, p(\mathcal{A}|\boldsymbol{\zeta}) \, p(\boldsymbol{\zeta}|\mathcal{M}) \\ &\approx -\frac{1}{2} \mathsf{BIC}_{\mathsf{int}} \\ &= \log \hat{p}(\mathcal{A}|\hat{\boldsymbol{\zeta}}^{ML}) - \frac{1}{2} |\mathcal{M}| \log(|\mathcal{A}|) \end{split}$$

So:

Group-level BIC

$$\begin{split} \log p(\mathcal{A}|\mathcal{M}) &= \int d\boldsymbol{\zeta} \, p(\mathcal{A}|\boldsymbol{\zeta}) \, p(\boldsymbol{\zeta}|\mathcal{M}) \\ &\approx -\frac{1}{2} \mathsf{BIC}_{\mathsf{int}} \\ &= \log \hat{p}(\mathcal{A}|\hat{\boldsymbol{\zeta}}^{ML}) - \frac{1}{2} |\mathcal{M}| \log(|\mathcal{A}|) \end{split}$$

So:

Model fit vs Model complexity

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

- Model comparison for each subject individually
 - Treat them as data points -> do classical pairwise tests

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

- Model comparison for each subject individually
 - Treat them as data points -> do classical pairwise tests

$$p(\mathcal{A}|\mathcal{M}) = \int d\zeta \, p(\mathcal{A}|\zeta, \mathcal{M}) \, p(\zeta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) p(\zeta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\zeta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

- Model comparison for each subject individually
 - Treat them as data points -> do classical pairwise tests

$$p(\mathcal{A}|\mathcal{M}) = \int d\theta \, p(\mathcal{A}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M})$$

$$\approx p(\mathcal{A}|\theta^{ML}, \mathcal{M}) p(\theta^{ML}|\mathcal{M}) \times \sqrt{(2\pi)^N |\Sigma|}$$

$$\log p(\mathcal{A}|\mathcal{M}) \approx \log p(\mathcal{A}|\theta^{ML}, \mathcal{M}) + \frac{1}{2} \log(|\Sigma|) + \frac{N}{2} \log(2\pi)$$

- Model comparison for each subject individually
 - Treat them as data points -> do classical pairwise tests

How does it do?

How does it do?

Top-level Laplacian approximation

- Estimating the top-level determinant
 - using 2nd order finite differences

$$\frac{d^2}{dh_{ij}^2} p(\mathcal{A}|\zeta) \bigg|_{\zeta = \hat{\zeta}^{ML}} \approx \frac{1}{\delta^2} \left[p(\mathcal{A}|\hat{\zeta}^{ML} + \delta \mathbf{e}_i) - 2p(\mathcal{A}|\hat{\zeta}^{ML}) + p(\mathcal{A}|\hat{\zeta}^{ML} - \delta \mathbf{e}_j) \right]$$

 the shifted likelihoods can be evaluated by shifting the samples.

Group comparisons

- Are two groups similar in parameter x?
 - ANOVA: compare likelihood of two means to likelihood of one global mean. Take degrees of freedom into account.
 - But: this tries to account for the parameters with one or two groups, not for the data
- Need to:
 - I: Compare models with separate or joint parameter & prior:

Model 1	3	β_1, β_2
Model 2	3	β

• 2: **IF** Model I > Model 2, then can do classical test on parameters, as splitting does not say that group means should be significantly different, or which direction.

Priors and 2nd level analysis

- Posterior parameter estimates
 - do classical second level analyses
 - can use Hessians as weights

E step:
$$q_k(\theta) = \mathcal{N}(\mathbf{m}_k, \mathbf{S}_k)$$

$$\mathbf{m}_k \leftarrow \underset{\theta}{\operatorname{argmax}} p(\mathbf{a}_k | \theta) p(\theta | \zeta^{(i)})$$

$$\mathbf{S}_k^{-1} \leftarrow \frac{\partial^2 p(\mathbf{a}^k | \theta) p(\theta | \zeta^{(i)})}{\partial \theta^2} \Big|_{\theta = \mathbf{m}_k}$$

matlab: [m,L,,,S]=fminunc(...)

Regression

Standard regression analysis:

$$\mathbf{m}_i = \mathbf{Cr}_i + \Sigma^{1/2} \boldsymbol{\eta} \qquad \forall i$$

Including uncertainty about each subject's inferred parameters

$$\mathbf{m}_i = \mathbf{Cr}_i + (\Sigma^{1/2} + \mathbf{S}_i^{1/2}) \boldsymbol{\eta} \qquad \forall i$$

Overview

- Formulate probabilistic model for choices
 - model fit: predictive probability
- ML / MAP
 - parameter inference
 - prior inferred from all joint data
- Empirical prior
 - Infer with approximate EM
 - second level analysis:
 - priors
 - individual posterior parameters

RL models

Are no panacea

- statistics about specific aspects of decision machinery
- only account for part of the variance

Model needs to match experiment

- ensure subjects actually do the task the way you wrote it in the model
- model comparison

Model = Quantitative hypothesis

- strong test
- need to compare models, not parameters
- includes all consequences of a hypothesis for choice