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Fitting models: matching and noise

» probabilistic policy, e.g. softmax
BQ(s,a)
p(a\s) — Za’ eBQ(s,a’)

» total likelihood

L£(0) = p({asti—y [{sthi=1. {re}i=1,0) =

) = argmax L£(6)
f
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Transforming variables
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ML can be noisy
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Constraining ML
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Maximum a posteriori estimate

B B p(a1..7|0)p(0)
P(0) =pBlai..T) = [ dbp(8la1..7)p(0)

T
log P(6) = » logp(as|0) +log p(6) + const.

t=1

log P(6)
doy
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Maximum a posteriori estimate
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What prior parameters should | use!?
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Estimating the hyperparameters

» What should the hyperparameters be!

logP(0) = L(O) +log p(f) +const.
—~—
=p(0|¢)

» Empirical Bayes: set them to ML estimate

A

( = arglénaxp(fl\( )

» where we use all the actions by all the k subjects

A= {alf...T}i(ﬂ
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ML estimate of top-level parameters

Estimate

. q' *f

.' ‘ .’
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”;2'34{\. .a’ %.:/-1‘*‘ ‘

1 OOO

Subject

argmax p(A|C)
G
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Estimating the hyperparameters

» Can’t just do gradient ascent

d
d_Cp(AK)

» Contains integral over individual parameters:

p(A[C) = / 46p(Al9) p(68])

» So we need to:

¢ arglénaxp(fl\é’ )

argmax / dOp(A|0) p(0|C)
G
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Expectation Maximisation

» lterate between

e Estimating MAP parameters given prior parameters
e Estimating prior parameters from MAP parameters

» There are other approaches

e MCMC
* Analytical conjugate priors
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EM with Laplace approximation

» First infer each subject’s parameter and the

certainty around them

E step:  gx(0) = N(myg,Sy)

m; < arg]énax p(ag \9)p(‘9|g(i))

0*p(a®|9)p(0|¢™)

y

A\

002

9:mk

matlab: [m,L,,,S]=fminunc(...)

Just what we had before: MAP inference given some prior parameters
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EM with Laplace approximation

» Next update the prior

Prior mean = mean of MAP estimates

M step: L(fﬂ)

C(H‘l)

12

Prior variance depends on S and variance of MAP
estimates

» And now iterate until convergence
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Overview

» Empirical prior
* [nfer with approximate EM

» Model comparison

* Group-level comparison
e AIC/BIC / Laplacian
* Error bars on group means

» Parameters
e Comparisons
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Model fit; likelihood

» How well does the model do?
e choice probabilities: Ep(correct) = e~O/K/T

plog p(Al0)/ /T

“Predictive probabilities” ~—
typically around 0.65-0.75 for 2-way choice
for 10-armed bandit example 200
pseudo R squared
better than chance!

E[Ny(correct)] = E[pg(correct)|T - " -
Poin (E[Ng(correct)]|Nrpd,po = 0.5) < 1—« Predictive Probabilty
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Generative test

» Model:  probability(actions)

e simply draw from this distribution, and see what happens

Go rewarded Nogo punished Nogo rewarded Go punished
Go to win Go to avoid Nogo to win Nogo to avoid

e e

Probability(Go)

20 40 60

» Another sanity test: can my model fit this data at all?
» BUT: it might still be overfitting!
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Overfitting
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Model comparison
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Model comparison

» So far:individual likelihood: p(a;|6")

» But can we allow different model for each subject!?
* No: use *all* the data

* Yes! Forget the group level from now on
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Model comparison

» So far:individual likelihood: p(a;|6")

» But can we allow different model for each subject!?
e No:use *all* the data: A= {{az:}{ {1},

» To choose between models at the group level:
p(AM)p(M)

p(A)
» If we have a prior over Models, we should use it:

p(M|A) =

p(M)
» Otherwise stick with model likelihood: p(A|M)
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Evaluating the model likelihood

» Contains two integrals:

e subject parameters
® prior parameters

/ 46 p(Al8, M) / 4¢ p(8]¢) p(¢IM)
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Why integrals?

Powerful model Weak model
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Why integrals?

Powerful model Weak model

~ (P(X]601) + p(X|62)

K

These two factors fight it out
Model complexity vs model fit
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Evaluating p(A|M)
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Evaluating p(A|M)

» Two integrals
* tricky

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)

pAIM) = / 4¢ p(AIC, M) p(CIM)
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Laplacian approximation
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Laplacian approximation
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Laplacian approximation
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Laplacian approximation

Just a Gaussian

/d:c f(z) = f*(x0) V2ro?
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)

p(AIM) / 4¢ p(AIC, M) p(CIM)

PAICME, M)p(CMEM) x ([ (2m)N |5
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)

p(A[¢, M) p(¢|M)
p(AIM) / ICp(AIC M) p(EIM) T )

PAICME, M)p(CMEM) x ([ (2m)N |5
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)

p(Al¢, M) p(¢IM)

is propto Gaussian

p(AIM) / ICp(AICM) pEIM) T )

PAICME, M)p(CMEM) x ([ (2m)N |5
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)

p(Al¢, M) p(¢IM)

is propto Gaussian

p(AIM) / ICp(AICM) pEIM) T )

Model doesn’t prefer
particular (

PAICME, M)p(CMEM) x ([ (2m)N |5 j
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)

p(Al¢, M) p(¢IM)

is propto Gaussian

p(AIM) / ICp(AICM) pEIM) T )

Model doesn’t prefer
particular (

1 N
log p(A|M) log p(A|¢CMF, M) + 5 log (%)) + - log(27)

P(AICME, M)p(CMHIM) x 1/ (2m)N |2 :)

Fitting behavioural data with RL models Janelia Farm March 6-9th 201 |
Wednesday, 11 May 2011



Evaluating p(A|M)

» Two integrals
* tricky
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* Top level first:
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)

p(Al¢, M) p(¢IM)

is propto Gaussian

p(AIM) / ICp(AICM) pEIM) T )

Model doesn’t prefer

p(AKML,./\/l)p(CML]M) > \/(27T)N|Z‘ particularC’

1 N
log p(A|M) log p(A|¢CMH, M)+ 5 log (%)) + - log(27)

—N Akaike Information Criterion (AlC)
— - log(KT) Bayesian Information Criterion (BIC)
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Evaluating p(A|M)

» Two integrals
* tricky

» Step by step: approximating levels separately
* Top level first:

pAM) = / 46 p(Alf, M) / 4¢ p(8]¢) p(¢IM)

p(Al¢, M) p(¢IM)

is propto Gaussian

p(AIM) / ICp(AICM) pEIM) T )

Model doesn’t prefer

p(AKML,./\/l)p(CML]M) > \/(QW)N|Z‘ particularC’

1 N
log p(A|M) log p(A|¢CMH, M)+ 5 log (%)) + - log(27)

—N Akaike Information Criterion (AlC)
— - log(KT) Bayesian Information Criterion (BIC)
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Approximating level |

» Still leaves the first level:

 Approximate integral by sampling, e.g. importance
sampling:

log p(AICME, M) = log / 46 p(Al6) p(6]cM ™)

B
1
logE E ﬁp(Alﬁb)
b=1

p(0]¢M)
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Group-level BIC

/ 4¢ p(AIC) p(¢IM)

1
__BICint
2

o 1
log p(AEME) — = M| log(JA]

Fitting behavioural data with RL models Janelia Farm March 6-9th 201 |
Wednesday, 11 May 2011



Group-level BIC

/ 4¢ p(AIC) p(¢IM)

1
2

o 1
log p(AEME) — = M| log(JA]
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Individual level BIC

» No group level

p(AIM) / 4¢ p(AIC, M) p(¢IM)

P(AICME, M)p(CMHIM) x 1/ (2m) V|2

1 N
log p(A|M) log p(A|¢ME, M) + 5 log([%]) + - log(2m)

» Model comparison for each subject individually
* Treat them as data points -> do classical pairwise tests
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Individual level BIC

» No group level
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Individual level BIC

» No group level

p(AIM) / 4¢ p(AIC, M) p(¢IM)

P(AICME, M)p(CMHIM) x 1/ (2m) V|2

1 N
log p(A|M) log p(A|¢M*, M) + = log(|Z]) + - log(2m)

2
U known!

» Model comparison for each subject individually
* Treat them as data points -> do classical pairwise tests
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Individual level BIC

» No group level

p(AIM) / 40 p( A9, M) p(8]M)

p(ABME, M)p(6M | M) x 1/ (2m)N |5

1 N
logp(AIM) = logp(A6*E, M) + - Tog(|2)) + - log(2n)

U known!

» Model comparison for each subject individually
* Treat them as data points -> do classical pairwise tests
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How does it do!?
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How does it do!?

Fitted by EM...
too nice!
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Top-level Laplacian approximation

» Estimating the top-level determinant
* using 2nd order finite differences

L 1
5 P
dh?,

Al¢) ~ = |PUAICME + de;) -
¢=¢ME

2p(A[EMF) + p(AIEME — Ge;)]

* the shifted likelihoods can be evaluated by shifting the
samples.
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Group comparisons

» Are two groups similar in parameter x!

e ANOVA: compare likelihood of two means to likelihood
of one global mean. Take degrees of freedom into account.

e But: this tries to account for the parameters with one
or two groups, not for the data

» Need to:

 |:Compare models with separate or joint parameter &
prior:

Model 1 £ B4, B2
Model 2 € 3

e 2:1F Model | > Model 2, then can do classical test on
parameters, as splitting does not say that group means
should be significantly different, or which direction.

Fitting behavioural data with RL models Janelia Farm March 6-9th 201 | Quentin Huys, UCL
Wednesday, 11 May 2011



Priors and 2nd level analysis

» Posterior parameter estimates

* do classical second level analyses
e can use Hessians as weights

E step:  gx(0) =N (myg,Sy)

m; < a,rg]énaxp(ak |9)p(9|C(i))

0”p(a®|0)p(6]¢"")
8(92 szk

matlab: [m,L,,,S]=fminunc(...)
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Regression

» Standard regression analysis:

m, = CI'Z' -+ 21/277 \4)

» Including uncertainty about each subject’s inferred
parameters
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Overview

» Formulate probabilistic model for choices
* model fit: predictive probability

» ML/ MAP

e parameter inference
e prior inferred from all joint data

» Empirical prior
* [nfer with approximate EM
e second level analysis:
® priors
* individual posterior parameters
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RL models

» Are no panacea

* statistics about specific aspects of decision machinery
* only account for part of the variance

» Model needs to match experiment

* ensure subjects actually do the task the way you wrote it
in the model

e model comparison

» Model = Quantitative hypothesis

* strong test
* need to compare models, not parameters
* includes all consequences of a hypothesis for choice
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