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Overview

‣ RL Crash course

‣ Some behavioural considerations

‣ Fitting behaviour with RL models
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Types of models

‣ phenomenological
• what?
• summarise and describe data

• mean
• correlations, fMRI

‣ mechanistic
• how?
• algorhitmic

‣ normative
• why?
• teleological, notions of optimality
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Types of models

‣ normative
• why?
• teleological, notions of optimality
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Types of models
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Decisions: Let’s play XOX

…
9 initial
choices

…
x 8

x 7
(really
just 3) (really

just 5)

Can go through all possible 
board settings
9! to 230 symmetries etc.

For each, consider all following 
positions

Chose move that gets you 
closest to winning or keeps 
you furthest from losing 
(minimax/maximin)

{at}← argmax
{at}

∞∑

t=1

rt
Choose best sequence 

in advance: 
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Processing depth
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Chess

• Each move 30 odd choices

• 3040?

• MANY!!!
– Legal boards ~10123

• Can’t just do full tree search.
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Soooo….? 
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Soooo….? 

How do players do it?
How did Deep Blue beat Kasparov?
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Multiple, parallel, decision-making systems

Goal-directed system
Tree search

Habit system
Experience average

Innate system
Evolutionary strategy

Multiple decision systems “Controllers”

Competition and collaboration

In humans, animals and computers...
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Setup

Environment

Agent

at rtst

After Sutton and Barto 1998

{at}← argmax
{at}

∞∑

t=1

rt
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Discounting

‣ Why discount?

‣ When discount?
• infinite horizons

• finite, exponentially distributed horizons

∞∑

t=0

γtrt <∞

∞∑

t=0

rt =∞ if no absorbing state

for most r of interest

T ∼ 1
τ

et/τ
T∑

t=0

γtrt
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State space

Gold

Electric 
shocks
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A Markov Decision Problem

st ∈ S
at ∈ A

T a
ss′ = p(st+1|st, at)
rt ∼ R(st+1, at, st)

π(a|s) = p(a|s)

Markovian!
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Markov state-space descriptions

p(st+1|at, st, at−1, st−1, at−2, st−2, · · · ) = p(st+1|at, st)

Velocity

at−2, st−2 → at−1, st−1 → at, st

13Monday, 22 June 2009



Reinforcement Learning: The Basics Quentin Huys, UCLMagdeburg University, June 20th 2009

Markov state-space descriptions

p(st+1|at, st, at−1, st−1, at−2, st−2, · · · ) = p(st+1|at, st)

Velocity

at−2, st−2 → at−1, st−1 → at, st

13Monday, 22 June 2009



Reinforcement Learning: The Basics Quentin Huys, UCLMagdeburg University, June 20th 2009

Markov state-space descriptions

p(st+1|at, st, at−1, st−1, at−2, st−2, · · · ) = p(st+1|at, st)

Velocity

s′ = [position]→ s′ =
[

position
velocity

]

at−2, st−2 → at−1, st−1 → at, st
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MDP

st ∈ S
at ∈ A

T a
ss′ = p(st+1|st, at)
rt ∼ R(st+1, at, st)

π(a|s) = p(a|s)
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Rewards

‣ Any outcome we want to maximise

‣ Rewards & punishments
• reward = - punishment

‣ Matching

‣ Revealed preferences
• Ryanair?

‣ Discounting

p(at)→ R?

p(at) ∝ E

[
∑

t

rt|at

]

{at} ← argmax
{at}

∞∑

t=1

rt

{at} ← argmax
{at}

∞∑

t=1

γtrt
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MDP

st ∈ S
at ∈ A

T a
ss′ = p(st+1|st, at)
rt ∼ R(st+1, at, st)

π(a|s) = p(a|s)
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Actions

1 2 3 4 5 6 7

Action left

Action right

T right =





0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1





T left =





1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
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Actions

1 2 3 4 5 6 7

Action left

Action right

T right =





0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1





T left =





.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0
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Actions

1 2 3 4 5 6 7

Action left

Action right

T right =





0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1





T left =





.8 .8 0 0 0 0 0

.2 .2 .8 0 0 0 0
0 0 .2 .8 0 0 0
0 0 0 .2 .8 0 0
0 0 0 0 .2 .8 0
0 0 0 0 0 .2 .8
0 0 0 0 0 0 0





Absorbing state -> max eigenvalue < 1

abs
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MDP

st ∈ S
at ∈ A

T a
ss′ = p(st+1|st, at)
rt ∼ R(st+1, at, st)

π(a|s) = p(a|s)
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MDP

st ∈ S
at ∈ A

T a
ss′ = p(st+1|st, at)
rt ∼ R(st+1, at, st)

π(a|s) = p(a|s)
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Decision tree: exhaustive search

wd
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Markov Decision Problems

V (st) = E
[ ∞∑

t′=1

rt′ |st = s

]

= E [r1| st = s] + E
[ ∞∑

t=2

rt|st = s

]

= E [r1| st = s] + E [V (st+1)]
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Markov Decision Problems

V (st) = E [r1| st = s] + E [V (st+1)]
r1 ∼ R(s2, a1, s1)

E [r1|st = s] = E




∑

st+1

p(st+1|st, at)R(st+1, at, st)





=
∑

at

p(at|st)




∑

st+1

p(st+1|st, at)R(st+1, at, st)





=
∑

at

π(at, st)




∑

st+1

T at
stst+1

R(st+1, at, st)
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Bellman equation

V (s) =
∑

a

π(a, st)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

V (st) = E [r1| st = s] + E [V (st+1)]

E [r1|st] =
∑

a

π(a, st)




∑

st+1

T a
stst+1

R(st+1, a, st)





E [V (st+1)] =
∑

a

π(a, st)




∑

st+1

T a
stst+1

V (st+1)
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Bellman Equation 

V (s) =
∑

a

π(a, st)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

All future
reward 
from 

state s

Immediate 
reward

= E

All future 
reward
from 

next state 
s’

+
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Q values

Q(s, a) =
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

= E
[ ∞∑

t=1

rt|s, a
]

V (s) =
∑

a

π(a|s)Q(s, a)

V (s) =
∑

a

π(a|s)
[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

︸ ︷︷ ︸
Q(s,a)
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Bellman Equation 

V (s) =
∑

a

π(a, st)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

1
|S|

∑

a,s,s′

1(T a
ss′ > 0)
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Solving the Bellman Equation 

V (s) =
∑

a

π(a, st)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
∑

a

π(a, st)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

⇒ v = Rπ + Tπv
⇒ vπ = (I−Tπ)−1Rπ

(w/ absorbing states)

O(|S|3)
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Solving the Bellman Equation 

V k+1(s) =
∑

a

π(a, st)

[
∑

s′

T a
ss′

[
R(s′, a, s) + V k(s′)

]
]

Option 1: turn it into update equation

Option 2: linear solution

V (s) =
∑

a

π(a, st)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

⇒ v = Rπ + Tπv
⇒ vπ = (I−Tπ)−1Rπ

(w/ absorbing states)

O(|S|3)
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Policy update

vπ = (I−Tπ)−1Rπ

Given the value function for a policy:

We can update the policy: 

π(a|s) =
{

1 if a = argmaxa

∑
s′ T a

ss′

[
Ra

ss + V pi(s′)
]

0 else

Or all at once:

V πi+1(s) = max
a

∑

s′

T a
ss′ [Ra

ss + V πi(s′)]
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Policy iteration

vπ = (I−Tπ)−1Rπ

π(a|s) =
{

1 if a = argmaxa

∑
s′ T a

ss′ [Ra
ss′ + V π(s′)]

0 else

Policy evaluation

Policy update
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Policy iteration

vπ = (I−Tπ)−1Rπ

V ∗(s) = max
a

∑

s′

T a
ss′ [Ra

ss + V ∗(s′)]

π(a|s) =
{

1 if a = argmaxa

∑
s′ T a

ss′ [Ra
ss′ + V π(s′)]

0 else

Policy evaluation

Policy update

Value iteration
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Solving the Bellman Equation 

V (s) =
∑

a

π(a, st)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]Option 3: sampling
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Solving the Bellman Equation 

Option 3: sampling

V (s) =
∫

da π(a, s)
[∫

ds′ T a
ss′ [R(s′, a, s) + V (s′)]

]
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Solving the Bellman Equation 

Option 3: sampling

V (s) =
∫

da π(a, s)
[∫

ds′ T a
ss′ [R(s′, a, s) + V (s′)]

]

Sampling: 
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Solving the Bellman Equation 

Option 3: sampling

V (s) =
∫

da π(a, s)
[∫

ds′ T a
ss′ [R(s′, a, s) + V (s′)]

]

Sampling: 

a =
∫

dx f(x)p(x)
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Solving the Bellman Equation 

Option 3: sampling

V (s) =
∫

da π(a, s)
[∫

ds′ T a
ss′ [R(s′, a, s) + V (s′)]

]

Sampling: 

a =
∫

dx f(x)p(x)

xi ∼ p(x)→ â =
1
N

∑

i

f(xi)
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Solving the Bellman Equation 

Option 3: sampling

V (s) =
∫

da π(a, s)
[∫

ds′ T a
ss′ [R(s′, a, s) + V (s′)]

]

Sampling: 

a =
∫

dx f(x)p(x)

xi ∼ p(x)→ â =
1
N

∑

i

f(xi)

xi ∼ q(x)→ â =
1
N

∑

i

f(xi)wi where wi =
p(xi)
q(xi)
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Model-free, Monte Carlo RL

+10 +1 -2 0

0-5
0

Or rather, learn state-action values directly:

Q(s, a) =
1
N

∑

i

{
T∑

t′=1

ri
t′ |s0 = s, a0 = a

}
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Model-free, Monte Carlo RL

+10 +1 -2 0

0L-5R1 = -4

0-5
0

Or rather, learn state-action values directly:

Q(s, a) =
1
N

∑

i

{
T∑
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ri
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}

30Monday, 22 June 2009



Reinforcement Learning: The Basics Quentin Huys, UCLMagdeburg University, June 20th 2009

Model-free, Monte Carlo RL

+10 +1 -2 0

0L-5R1 = -4
0L-5R1 = -4

0-5
0

Or rather, learn state-action values directly:

Q(s, a) =
1
N

∑

i

{
T∑

t′=1

ri
t′ |s0 = s, a0 = a
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Model-free, Monte Carlo RL

+10 +1 -2 0

0L-5R1 = -4
0L-5R1 = -4
0R0R0  = 00-5

0

Or rather, learn state-action values directly:

Q(s, a) =
1
N

∑

i

{
T∑

t′=1

ri
t′ |s0 = s, a0 = a

}
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Model-free, Monte Carlo RL

+10 +1 -2 0

0L-5R1 = -4
0L-5R1 = -4
0R0R0  = 0
0R0L-2 = -2

0-5
0

Or rather, learn state-action values directly:

Q(s, a) =
1
N

∑

i

{
T∑

t′=1

ri
t′ |s0 = s, a0 = a

}

30Monday, 22 June 2009



Reinforcement Learning: The Basics Quentin Huys, UCLMagdeburg University, June 20th 2009

Model-free, Monte Carlo RL

+10 +1 -2 0
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0-5
0
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1
N

∑

i

{
T∑

t′=1

ri
t′ |s0 = s, a0 = a

}
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Model-free, Monte Carlo RL

+10 +1 -2 0

0L-5R1 = -4
0L-5R1 = -4
0R0R0  = 0
0R0L-2 = -2
0L-5L10= 5
0R0R0  = 0

0-5

-5/6

0

Or rather, learn state-action values directly:

Q(s, a) =
1
N

∑

i

{
T∑

t′=1

ri
t′ |s0 = s, a0 = a

}
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Model-free, Monte Carlo RL

+10 +1 -2 0

0L-5R1 = -4
0L-5R1 = -4
0R0R0  = 0
0R0L-2 = -2
0L-5L10= 5
0R0R0  = 0

0-5

-5/6

-1 0

Or rather, learn state-action values directly:

Q(s, a) =
1
N

∑

i

{
T∑

t′=1

ri
t′ |s0 = s, a0 = a

}
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Model-free, Monte Carlo RL

+10 +1 -2 0

0L-5R1 = -4
0L-5R1 = -4
0R0R0  = 0
0R0L-2 = -2
0L-5L10= 5
0R0R0  = 0

0-5

-5/6

-1 0

10

Or rather, learn state-action values directly:

Q(s, a) =
1
N

∑

i

{
T∑

t′=1

ri
t′ |s0 = s, a0 = a

}
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‣ softmax

• β trades off exploration vs exploitation

‣ ε-greedy:

• ε trades off exploration vs exploitation

‣ When should policy be updated? 

Probabilistic policies

p(a|s) =
eβQ(s,a)

∑
a′ eβQ(s,a′)

p(a|s) =
{

1− ε if a = a∗

ε else
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Monte Carlo RL

‣ Average over sample state paths
‣ No knowledge of  transitions T or rewards R

• No model of the world!
• But need to sample from it

‣ standard deviation ~
• values policy-dependent 

• importance sampling
• Sample relevant state-actions 

‣ Curse of dimensionality
• hurts sampling

‣ exploration / exploitation?

1√
N 0L-5R1 = -4

0L-5R1 = -4
0R0R0  = 0
0R0L-2 = -2
0L-5L10= 5
0R0R0  = 0
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Update equation: towards TD

Bellman equation

V (s) =
∑

a

π(a, s)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

Not yet converged, so it doesn’t hold:

And then use this to update

V i+1(s) = V i(s) + dV (s)

dV (s) = −V (s) +
∑

a

π(a, s)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]
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Model-free RL: TD learning

dV (s) = −V (s) +
∑

a

π(a, s)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]
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Model-free RL: TD learning

Sample
at ∼ π(a|st)

st+1 ∼ T at
st,st+1

rt = R(st+1, at, st)

dV (s) = −V (s) +
∑

a

π(a, s)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]
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Model-free RL: TD learning

Sample
at ∼ π(a|st)

st+1 ∼ T at
st,st+1

rt = R(st+1, at, st)

dV (s) = −V (s) +
∑

a

π(a, s)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

δt = −Vt−1(st) + rt + Vt−1(st+1)
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Model-free RL: TD learning

V i+1(s) = V i(s) + dV (s)

Sample
at ∼ π(a|st)

st+1 ∼ T at
st,st+1

rt = R(st+1, at, st)

dV (s) = −V (s) +
∑

a

π(a, s)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

Vt(st) = Vt−1(st) + αδt

δt = −Vt−1(st) + rt + Vt−1(st+1)
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TD learning

at ∼ π(a|st)
st+1 ∼ T at

st,st+1

rt = R(st+1, at, st)

δt = −Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + αδt
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Learning rate

Vt+1(s) = Vt(s) + αδt

= Vt(s) + α(rt − Vt(s))
= (1− α)Vt(s) + αrt

= (1− α)2Vt−1(s) + α[(1− α)rt−1 + rt]

= (1− α)tV0(s) + α
t∑

t′=1

(1− α)t−t′rt′
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Fixed learning rate

0

5

R
e

w
a

rd
s

0

1

2

3

4

Time

V
a

lu
e

 

 

!=.01

!=.05

!=.1

!=.001

Fixed learning rate = exponential forgetting
Assumption of changing world
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TD learning

at ∼ π(a|st)
st+1 ∼ T at

st,st+1

rt = R(st+1, at, st)

δt = −Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + αδt

Vt+1(s) = (1− α)Vt(s) + α(Vt(st+1) + rt)
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Model-free: TD vs Markov

B1
B1
B1
B1
B1
B1
B0
A0   B0

Markov 
V(A)=0
V(B)=3/4

TD
V(B)=3/4
V(A)=3/4?

after Sutton and Barto 1998
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Aside: what makes a TD error?

‣ unpredicted reward expectation change
‣ disappears with learning
‣ stays with probabilistic reinforcement
‣ sequentiality

• TD error vs prediction error

‣ see Niv and Schoenbaum 2008

Schultz et al. 
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TD learning

at ∼ π(a|st)
st+1 ∼ T at

st,st+1

rt = R(st+1, at, st)

δt = −Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + αδt

→ V π(s)
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TD learning

at ∼ π(a|st)
st+1 ∼ T at

st,st+1

rt = R(st+1, at, st)

δt = −Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + αδt

→ V π(s)

πnew?

41Monday, 22 June 2009



Reinforcement Learning: The Basics Quentin Huys, UCLMagdeburg University, June 20th 2009

TD learning

at ∼ π(a|st)
st+1 ∼ T at

st,st+1

rt = R(st+1, at, st)

δt = −Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + αδt

→ V π(s)

πnew? Qπ(a, s) =
∑

s′

T a
ss′ [Ra

ss′ + V pi(s′)]
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‣ Do TD for state-action values instead:

‣ base policy on Q

‣ convergence guarantees

SARSA

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]

st, at, rt, st+1, at+1

p(a|s) =
eβQ(s,a)

∑
a′ eβQ(s,a′)

p(a|s) =
{

1− ε if a = a∗

ε else
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‣ Learn off-policy
• draw from some policy
• “only” require extensive sampling

Q learning: off-policy 

Q(st, at)← Q(st, at) + α



rt + γ max
a
Q(st+1, a)

︸ ︷︷ ︸
−Q(st, at)





update towards
optimum
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‣ policy and value separately parametrised

Actor-critic

δt = rt+1 + γV (st+1)− V (st)

π(s, a) =
ew(s,a)

∑
a′ ew(s,a′)

w(s, a)← w(s, a) + βδt

w(s, a)← w(s, a) + βδt(1− π(s, a))
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States

‣ Some more comments...
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‣ states=distance from 
goal

‣ state-space choice 
crucial
• too big -> curse of 

dimensionality
• too small -> can’t 

express good policies
• unsolved problem

‣ humans in tasks have 
to infer state-space

Learning in the wrong state space
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‣ So far: look-up tables

‣ Parametric value functions

Neural network approximations

st
at

es

actions

s

a
Q(s, a;θ)

47Monday, 22 June 2009



Reinforcement Learning: The Basics Quentin Huys, UCLMagdeburg University, June 20th 2009

Neural network approximations

‣ still get same error: update towards consistent 
values

‣ but when doing update, need to apportion 
responsibility correctly

δt = rt + Vt(s′)− Vt(st)

θt+1 = θt + αδt∇θVt(st)︸ ︷︷ ︸
backprop

state

V
(s
)

state

V
(s
)
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Hierarchical decompositions

‣ Subtasks stay the same
• Learn subtasks
• Learn how to use 

subtasks

‣ Macroactions
• ‘go to door’
• search goal
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Learning a model

‣ So far we’ve concentrated on model-free learning
‣ What if we want to build some model of the 

environment?

‣ Count transitions

‣ Average rewards 

V (s) =
∑

a

π(a, s)

[
∑

s′

T a
ss′ [R(s′, a, s) + V (s′)]

]

T̂ a
ss′ =

∑
t 1(st = s, at = a, st+1 = s′)∑

t 1(st = s, at = a)

R̂a
ss′ =

∑
t rt1(st = s, at = a, st+1 = s′)∑
t 1(st = s, at = a, st+1 = s′)
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‣ explicitly addresses exploration / exploitation

‣ Model changes as we ‘think ahead’
• account for the value of added information

Using a learned model

T̂ a
ss′(t)

T̂ a
ss′(t + 1, s′ = 2)T̂ a

ss′(t + 1, s′ = 1)
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Model uncertainty

Q(s, a|T̂ , R̂) =
∑

s′

T̂ a
ss′(t)

[
R̂(s′, a, s)(t) + max

a′
Q(s′, a′|T̂ (t + 1), R̂(t + 1))

]
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Consequences of control

1 2 3 4 5−1

−0.5

0

0.5

1

Tree depth
Q(

a kn
ow

n)−
Q(

a un
kn

ow
n)

Exploration vs Exploitation

1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Reward

 
P(

re
wa

rd
   

a kn
ow

n)

Predictive Distributions

1 2 3 4 5
0

2

High control
Low control

Choose blue slot machine

Choose orange slot machine
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Multiple, parallel, decision-making systems

Goal-directed system
Tree search

Habit system
Experience average

Innate system
Evolutionary strategy

Multiple decision systems “Controllers”

Competition and collaboration

In humans, animals and computers...
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Some behavioural signatures
of different models

Quentin Huys
Wellcome Trust Centre for Neuroimaging
Gatsby Computational Neuroscience Unit

Medical School
UCL

Magdeburg University, June 20th 2009
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Why are choices hard? 

Time present and time past 
Are both perhaps present in time future,
And time future contained in time past. 

T. S. Eliot
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The future, in the long term

goodness of an action = immediate reward + all future reward 
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Making optimal decisions

Niv et al. 2007
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Many decision systems in parallel

Goal-directed system
Tree search

Habit system
Experience average

Innate system
Evolutionary strategy
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Evaluating the future: Think hard 
Goal-directed decisions

General solution: search a tree
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Evaluating the future: Think hard 
Goal-directed decisions

General solution: search a tree
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Decision tree: exhaustive search

wd
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Chess

• Each move 30 odd choices

• 3040?

• MANY!!!
– Legal boards ~10123

• Can’t just do full tree search.
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Simple is better at times: cars

Car A: 75% +ve
Car B: 50% +ve
Car C: 50% +ve
Car D: 25% +ve

Dijksterhuis et al. 2006Asian disease: time
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So…?
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So…?

How do HUMAN players do it?
How did Deep Blue beat Kasparov?
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Devaluation
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Goal-directed choices

‣ Model-based
• how is the model learned?

‣ Computationally expensive

‣ Flexible

‣ Action-outcome
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Simple is better at times: doctors

20 cases for which truth known

Cardiologists
General physicians

A&E physicians

Melly et al. 2002
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Simple is better at times: doctors

20 cases for which truth known

Cardiologists
General physicians

A&E physicians

Physicians overly cautious, but 
still miss many -> complications

Melly et al. 2002
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Cached evaluation: TD & Co

at ∼ π(a|st)
st+1 ∼ T at

st,st+1

rt = R(st+1, at, st)

δt = −Vt(st) + rt + Vt(st+1)

Vt+1(st) = Vt(st) + αδt
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Habits: heuristics, position evaluation
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Devaluation

Goal-directed vs. habitual behaviour
mix and match
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Habits 

‣ Are empirical averages

‣ Change slowly

‣ Are cheap to build

‣ No unlearning
• extinction
• higher-order models
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Arbitrating between controllers

‣ Uncertainty

Non-
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Daw et al. 2005
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Evaluating the future… actually, let’s not!

Choose randomly at S1
Then just go for food if hungry

Or for water if thirsty
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Are chicken pretty stupid?

Hershberger 1986
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Kahnemann & Tversky

Imagine that the United States is preparing for the outbreak of an 
unusual Asian disease, which is expected to kill 600 people. 

Two alternative programs to combat the disease have been proposed.

Assume that the exact scientific estimates of the consequences of 
the programs are as follows:

If Program A is adopted, 200 people will be saved
If Program B is adopted, there is a one-third probability that 600 
people will be saved and a two-thirds probability that no people will 
be saved.

If Program A' is adopted, 400 people will die
If Program B' is adopted, there is a one-third probability that nobody
will die and a two-thirds probability that 600 people will die

A

B’
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Clever innate strategies

X

If Program A is adopted, 200 people will be saved
If Program B is adopted, there is a one-third probability that 600 
people will be saved and a two-thirds probability that no people will 
be saved.

If Program A' is adopted, 400 people will die
If Program B' is adopted, there is a one-third probability that nobody
will die and a two-thirds probability that 600 people will die

A

B’
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Innate evolutionary strategies
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Innate evolutionary strategies

more 
survive

more 
survive

fewer 
survive

Hirsch and Bolles 1980
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Sometimes knowledge hurts

“We added balsamic vinegar to one of these”
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Sometimes knowledge hurts

“We added balsamic vinegar to one of these”

+BV
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Sometimes knowledge hurts

“We added balsamic vinegar to one of these”

“We added balsamic vinegar to the light one”

+BV
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Sometimes knowledge hurts

“We added balsamic vinegar to one of these”

“We added balsamic vinegar to the light one”

+BV

+BV
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Recap

‣ Multiple decision systems
‣ Multiple values
‣ Multiple action mechanisms
‣ Interactions

• Override
• Uncertainty

‣ Complex problem
‣ Identification via critical features
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Fitting behavioural data
with RL models

Quentin Huys
Wellcome Trust Centre for Neuroimaging
Gatsby Computational Neuroscience Unit

Medical School
UCL

Magdeburg University, June 20th 2009
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Overview

‣ Formulate probabilistic model for choices
• model fit: predictive probability

‣ ML / MAP
• parameter inference
• prior inferred from all joint data

‣ Empirical prior
• Infer with approximate EM
• second level analysis: 

• priors
• individual posterior parameters

‣ Model comparison
• Normal-inverse Gamma -> Gaussian mixture
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RL models

‣ Are no panacea
• statistics about specific aspects of decision machinery
• only account for part of the variance

‣ Model needs to match experiment
• ensure subjects actually do the task the way you wrote it 

in the model
• model comparison

‣ Model = Quantitative hypothesis
• strong test
• includes all consequences of a hypothesis for choice
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Fitting models: matching and noise

‣ probabilistic policy, e.g. softmax

‣ total likelihood

p(a|s) =
eβQ(s,a)

∑
a′ eβQ(s,a′)

L(θ) = p({at}T
t=1|{st}T

t=1, {rt}T
t=1, θ) =

T∏

t=1

p(at|st, r1···t−1, θ)

θ̂ = argmax
θ

L(θ)
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Typical parameters

‣ r / β

• similar if want to infer r+>0 and r-<0 and separately
• can only distinguish these with some neural signature

‣ learning rate α
• multiplies TD error
• also induces forgetting

‣ discounting γ
• only if there is actually a sequential aspect

‣ Instructions
‣ TD error: 

• affected by both r and α

Qt+1(s, a) ∝
∑

(1− α)t−t′rt′ = η
∑

(1− α)t−t′r′t′

r′ =
r

η
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Overview

‣ Formulate probabilistic model for choices
• model fit: predictive probability

‣ ML / MAP
• parameter inference
• prior inferred from all joint data

‣ Empirical prior
• Infer with approximate EM
• second level analysis: 

• priors
• individual posterior parameters

‣ Model comparison
• Normal-inverse Gamma -> Gaussian mixture
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Softmax likelihood

‣ log is easier: 

L(θ) = p({at}T
t=1|{st}T

t=1, {rt}T
t=1, θ) =

T∏

t=1

p(at|st, r1···t−1, θ)

logL(θ) =
T∑

t=1

log p(at|st, r1···t−1, θ)

=
T∑

t=1

[
βQt(at, st)− log

∑

a′

eβQt(a
′,st)

]
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ML by gradient ascent

logL(θ)
dβ

=
T∑

t=1

[
Qt(at, st)−

∑
a′ eβQt(a

′,st)

∑
a′′ eβQt(a′′,st)

Q(a′, st)

]
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ML by gradient ascent

logL(θ)
dβ

=
T∑

t=1

[
Qt(at, st)−

∑
a′ eβQt(a

′,st)

∑
a′′ eβQt(a′′,st)

Q(a′, st)

]

=
T∑

t=1

[
Qt(at, st)−

∑

a′

pt(a′|st)Qt(a′, st)

]
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ML by gradient ascent

logL(θ)
dβ

=
T∑

t=1

[
Qt(at, st)−

∑
a′ eβQt(a

′,st)

∑
a′′ eβQt(a′′,st)

Q(a′, st)

]

=
T∑

t=1

[
Qt(at, st)−

∑

a′

pt(a′|st)Qt(a′, st)

]

logL(θ)
dα

= β
T∑

t=1

[
dQt(at, st)

dα
−

∑

a′

pt(a′|st)
dQ(a′, st)

dα

]
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ML by gradient ascent

logL(θ)
dβ

=
T∑

t=1

[
Qt(at, st)−

∑
a′ eβQt(a

′,st)

∑
a′′ eβQt(a′′,st)

Q(a′, st)

]

=
T∑

t=1

[
Qt(at, st)−

∑

a′

pt(a′|st)Qt(a′, st)

]

logL(θ)
dα

= β
T∑

t=1

[
dQt(at, st)

dα
−

∑

a′

pt(a′|st)
dQ(a′, st)

dα

]

dQt(at, st)
dα

= (1− α)
dQt−1(at, st)

dα
−Qt−1(a′, st) + rt
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Transforming variables

β = eβ′

⇒ β′ = log(β)

ε = log
(

ε′

1− ε′

)

⇒ ε =
1

1 + e−ε′

d logL(θ′)
dθ′
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ML can be noisy

L(β = 10) ≈ L(β = 100)
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200 trials, 1 stimulus, 10 actions, learning rate = .05, beta=2
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Maximum a posteriori estimate

P(θ) = p(θ|a1...T ) =
p(a1...T |θ)p(θ)∫
dθp(θ|a1...T )p(θ)

logP(θ) =
T∑

t=1

log p(at|θ) + log p(θ) + const.

logP(θ)
dα

=
logL(θ)

dα
+

d p(θ)
dθ
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Maximum a posteriori estimate
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200 trials, 1 stimulus, 10 actions, learning rate = .05, beta=2
mbeta=0, meps=-3, n=1
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Overview

‣ Formulate probabilistic model for choices
• model fit: predictive probability

‣ ML / MAP
• parameter inference
• prior inferred from all joint data

‣ Empirical prior
• Infer with approximate EM
• second level analysis: 

• priors
• individual posterior parameters

‣ Model comparison
• Normal-inverse Gamma -> Gaussian mixture
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‣ What should the hyperparameters be?

‣ Empirical Bayes: set them to ML estimate

‣ where we use all the actions by all the k subjects

Estimating the hyperparameters

logP(θ) = L(θ) + log p(θ)︸︷︷︸
=p(θ|ζ)

+const.

ζ̂ = argmax
ζ

p(A|ζ)

A = {ak
1...T }K

k=1
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‣ Need to integrate out individual parameters:

‣ Standard problem, apply EM

Estimating the hyperparameters

ζ̂ = argmax
ζ

p(A|ζ)

= argmax
ζ

∫
d θp(A|θ) p(θ|ζ)
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EM with Laplace approximation

E step: qk(θ) = N (mk,Sk)
mk = argmax

θ
p(ak|θ)p(θ|ζi)

S−1
k =

∂2p(ak|θ)p(θ|ζi)
∂θ2 θ=mk

M step: ζµ
i+1 =

1
K

∑

k

mk

ζν2

i+1 = var(mk)
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Priors and 2nd level analysis

‣ Priors over parameters
• can do this for subgroups

‣ Posterior parameter estimates
• do classical second level analyses
• can use Hessians as weights

p(θ|ζ̂)

point estimates θ̂k = mk

precisions Sk
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Overview

‣ Formulate probabilistic model for choices
• model fit: predictive probability

‣ ML / MAP
• parameter inference
• prior inferred from all joint data

‣ Empirical prior
• Infer with approximate EM
• second level analysis: 

• priors
• individual posterior parameters

‣ Model comparison
• Normal-inverse Gamma -> Gaussian mixture
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Model fit: predictive probabilities

‣ How well does the model do?
• choice probabilities:

• typically around 0.65-0.75 for 2-way choice

• for 10-armed bandit example:

Ep(correct) = eL(θ̂)/K/T

= elog p(A|θ)/K/T

=




K,T∏

k,t=1

p(ak,t|θ)
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Model comparison
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Model comparison

‣ Penalise for overly broad predictions

‣ where we can simplify a bit

p(M1|A)
p(M2|A)

=
p(A|M1)p(M1)
p(A|M2)p(M2)

p(A|M1) =
∫

dζ

∫
dθ p(A|θ) p(θ|ζ) p(ζ|M)

=
∫

dθ p(A|θ) p(θ|M)
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Model comparison

‣ Prior form

‣ straightforward option is conjugate prior, in this 
case Normal-inverse Gamma

‣ which gives us a Gaussian scale mixture

p(µ, ν2|M) =
ba

Γ(a)

(
1
ν2

)a+1

exp
(
− b

ν2

)
s√
2πν

exp
(
− (µ−m)2

2ν2/s2

)

p(θ|M) =
∫

dζ p(θ|ζ) p(ζ|M)︸ ︷︷ ︸
p(µ,ν2|M)

p(β|M) =
Γ(a + 1

2 )
Γ(a)

ba

√
2π(1 + 1/s2)

(
(β −m)2

2(1 + 1/s2)
+ b

)−(a+ 1
2 )
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For a simple RW model
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‣ Evaluate integral by sampling

p(A|M1) =
∫

dθ p(A|θ) p(θ|M)

≈ 1
N

∑

i

p(A|θi); θi ∼ p(θ|M)
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Overview

‣ Formulate probabilistic model for choices
• model fit: predictive probability

‣ ML / MAP
• parameter inference
• prior inferred from all joint data

‣ Empirical prior
• Infer with approximate EM
• second level analysis: 

• priors
• individual posterior parameters

‣ Model comparison
• Normal-inverse Gamma -> Gaussian mixture
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