Reinforcement Learning Crash course

Quentin Huys

Wellcome Trust Centre for Neuroimaging Gatsby Computational Neuroscience Unit
Medical School
UCL

Magdeburg University, June 20th 2009

Overview

- RL Crash course

- Some behavioural considerations

- Fitting behaviour with RL models

Types of models

- phenomenological
- what?
- summarise and describe data
- mean
- correlations, fMRI
- mechanistic
- how?
- algorhitmic
- normative
- why?
- teleological, notions of optimality

Types of models

- mechanistic
- how?
- algorhitmic
- normative
- why?
- teleological, notions of optimality

Types of models

- normative
- why?
- teleological, notions of optimality

Types of models

Decisions: Let's play XOX

Can go through all possible board settings 9 ! to 230 symmetries etc.
For each, consider all following positions
Chose move that gets you closest to winning or keeps you furthest from losing (minimax/maximin)

Choose best sequence
in advance: $\quad\left\{a_{t}\right\} \leftarrow \underset{\left\{a_{t}\right\}}{\operatorname{argmax}} \sum_{t=1}^{\infty} r_{t}$

Processing depth

Chess

- Each move 30 odd choices
- 300^{40} ?
- MANY!!!
- Legal boards ~10 ${ }^{123}$
- Can't just do full tree search.

Soooo....?

Soooo....?

How do players do it? How did Deep Blue beat Kasparov?

Multiple, parallel, decision-making systems

Multiple decision systems "Controllers"
Competition and collaboration

Innate system Evolutionary strategy

\qquad

In humans, animals and computers...

Setup

After Sutton and Barto 1998

Discounting

- Why discount?

$$
\sum_{t=0}^{\infty} r_{t}=\infty
$$

if no absorbing state

- When discount?
- infinite horizons

$$
\sum_{t=0}^{\infty} \gamma^{t} r_{t}<\infty \quad \text { for most } r \text { of interest }
$$

- finite, exponentially distributed horizons

$$
\sum_{t=0}^{T} \gamma^{t} r_{t} \quad T \sim \frac{1}{\tau} e^{t / \tau}
$$

State space

Electric shocks

Gold

A Markov Decision Problem

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

Markovian!

Markov state-space descriptions

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

Markov state-space descriptions

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

Markov state-space descriptions

$$
p\left(s_{t+1} \mid a_{t}, s_{t}, a_{t-1}, s_{t-1}, a_{t-2}, s_{t-2}, \cdots\right)=p\left(s_{t+1} \mid a_{t}, s_{t}\right)
$$

Velocity

$$
s^{\prime}=[\text { position }] \rightarrow s^{\prime}=\left[\begin{array}{l}
\text { position } \\
\text { velocity }
\end{array}\right]
$$

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

Rewards

- Any outcome we want to maximise

$$
\left\{a_{t}\right\} \leftarrow \underset{\left\{a_{t}\right\}}{\operatorname{argmax}} \sum_{t=1}^{\infty} r_{t}
$$

- Rewards \& punishments
- reward = - punishment
- Matching

$$
p\left(a_{t}\right) \quad \propto E\left[\sum_{t} r_{t} \mid a_{t}\right]
$$

- Revealed preferences $\quad p\left(a_{t}\right) \rightarrow \mathcal{R}$?
- Ryanair?
- Discounting

$$
\left\{a_{t}\right\} \leftarrow \underset{\left\{a_{t}\right\}}{\operatorname{argmax}} \sum_{t=1}^{\infty} \gamma^{t} r_{t}
$$

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

Actions

Action left

Action right

$$
T^{\text {left }}=\left[\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad T^{\text {right }}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Actions

Action left

Action right

$$
T^{\mathrm{left}}=\left[\begin{array}{ccccccc}
.8 & .8 & 0 & 0 & 0 & 0 & 0 \\
.2 & .2 & .8 & 0 & 0 & 0 & 0 \\
0 & 0 & .2 & .8 & 0 & 0 & 0 \\
0 & 0 & 0 & .2 & .8 & 0 & 0 \\
0 & 0 & 0 & 0 & .2 & .8 & 0 \\
0 & 0 & 0 & 0 & 0 & .2 & .8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad T^{\mathrm{right}}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Actions

Action left

Absorbing state -> max eigenvalue < I

MP

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

$$
\begin{aligned}
s_{t} & \in \mathcal{S} \\
a_{t} & \in \mathcal{A} \\
\mathcal{T}_{s s^{\prime}}^{a} & =p\left(s_{t+1} \mid s_{t}, a_{t}\right) \\
r_{t} & \sim \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\pi(a \mid s) & =p(a \mid s)
\end{aligned}
$$

Decision tree: exhaustive search

Markov Decision Problems

$$
\begin{aligned}
V\left(s_{t}\right) & =\mathbb{E}\left[\sum_{t^{\prime}=1}^{\infty} r_{t^{\prime}} \mid s_{t}=s\right] \\
& =\mathbb{E}\left[r_{1} \mid s_{t}=s\right]+\mathbb{E}\left[\sum_{t=2}^{\infty} r_{t} \mid s_{t}=s\right] \\
& =\mathbb{E}\left[r_{1} \mid s_{t}=s\right]+\mathbb{E}\left[V\left(s_{t+1}\right)\right]
\end{aligned}
$$

Markov Decision Problems

$$
\begin{aligned}
V\left(s_{t}\right) & =\mathbb{E}\left[r_{1} \mid s_{t}=s\right]+\mathbb{E}\left[V\left(s_{t+1}\right)\right] \\
r_{1} & \sim \mathcal{R}\left(s_{2}, a_{1}, s_{1}\right) \\
\mathbb{E}\left[r_{1} \mid s_{t}=s\right] & =\mathbb{E}\left[\sum_{s_{t+1}} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right] \\
& =\sum_{a_{t}} p\left(a_{t} \mid s_{t}\right)\left[\sum_{s_{t+1}} p\left(s_{t+1} \mid s_{t}, a_{t}\right) \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right] \\
& =\sum_{a_{t}} \pi\left(a_{t}, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a_{t}} \mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)\right]
\end{aligned}
$$

Bellman equation

$$
\begin{aligned}
V\left(s_{t}\right) & =\mathbb{E}\left[r_{1} \mid s_{t}=s\right]+\mathbb{E}\left[V\left(s_{t+1}\right)\right] \\
\mathbb{E}\left[r_{1} \mid s_{t}\right] & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a} \mathcal{R}\left(s_{t+1}, a, s_{t}\right)\right]\left[\begin{array}{ll}
\square & \\
\hline & \\
\mathbb{E}\left[V\left(s_{t+1}\right)\right] & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s_{t+1}} \mathcal{T}_{s_{t} s_{t+1}}^{a} V\left(s_{t+1}\right)\right] \\
V(s) & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right.
\end{array},\right.
\end{aligned}
$$

Bellman Equation

$$
V(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

All future reward from state s

Q values

$$
\begin{aligned}
V(s) & =\sum_{a} \pi(a \mid s) \underbrace{\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]}_{\mathcal{Q}(s, a)} \\
\mathcal{Q}(s, a) & =\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{\infty} r_{t} \mid s, a\right] \\
V(s) & =\sum_{a} \pi(a \mid s) \mathcal{Q}(s, a)
\end{aligned}
$$

Bellman Equation

$$
\begin{gathered}
V(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
\frac{1}{|\mathcal{S}|} \sum_{a, s, s^{\prime}} \mathbf{1}\left(\mathcal{T}_{s s^{\prime}}^{a}>0\right)
\end{gathered}
$$

Solving the Bellman Equation

Option I: turn it into update equation

$$
V(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Option 2: linear solution (w/absorbing states)

$$
\begin{aligned}
V(s) & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
\Rightarrow \mathbf{v} & =\mathbf{R}^{\pi}+\mathbf{T}^{\pi} \mathbf{v} \\
\Rightarrow \mathbf{v}^{\pi} & =\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi} \quad \mathcal{O}\left(|\mathcal{S}|^{3}\right)
\end{aligned}
$$

Solving the Bellman Equation

Option I: turn it into update equation

$$
V^{k+1}(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V^{k}\left(s^{\prime}\right)\right]\right]
$$

Option 2: linear solution (w/ absorbing states)

$$
\begin{aligned}
V(s) & =\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
\Rightarrow \mathbf{v} & =\mathbf{R}^{\pi}+\mathbf{T}^{\pi} \mathbf{v} \\
\Rightarrow \mathbf{v}^{\pi} & =\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi} \quad \mathcal{O}\left(\mathcal{S} \mathcal{S}^{3}\right)
\end{aligned}
$$

Policy update

Given the value function for a policy:

$$
\mathbf{v}^{\pi}=\left(\mathbf{I}-\mathbf{T}^{\pi}\right)^{-1} \mathbf{R}^{\pi}
$$

We can update the policy:

$$
\pi(a \mid s)=\left\{\begin{array}{l}
1 \text { if } a=\operatorname{argmax}_{a} \sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s}^{a}+V^{p i}\left(s^{\prime}\right)\right] \\
0 \text { else }
\end{array}\right.
$$

Or all at once:

$$
V^{\pi_{i+1}}(s)=\max _{a} \sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s}^{a}+V^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Policy iteration

Policy evaluation

Policy update

$$
\pi(a \mid s)=\left\{\begin{array}{l}
1 \text { if } a=\operatorname{argmax}_{a} \sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s^{\prime}}^{a}+V^{\pi}\left(s^{\prime}\right)\right] \\
0 \text { else }
\end{array}\right.
$$

Policy iteration

Policy evaluation

Policy update

$$
\pi(a \mid s)=\left\{\begin{array}{l}
1 \text { if } a=\operatorname{argmax}_{a} \sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s^{\prime}}^{a}+V^{\pi}\left(s^{\prime}\right)\right] \\
0 \text { else }
\end{array}\right.
$$

Solving the Bellman Equation

Option 3: sampling

$$
V(s)=\sum_{a} \pi\left(a, s_{t}\right)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Solving the Bellman Equation

Option 3: sampling

$$
V(s)=\int d a \pi(a, s)\left[\int d s^{\prime} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Solving the Bellman Equation

Option 3: sampling

$$
V(s)=\int d a \pi(a, s)\left[\int d s^{\prime} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Sampling:

Solving the Bellman Equation

Option 3: sampling

$$
V(s)=\int d a \pi(a, s)\left[\int d s^{\prime} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Sampling:

$$
a=\int d x f(x) p(x)
$$

Solving the Bellman Equation

Option 3: sampling

$$
V(s)=\int d a \pi(a, s)\left[\int d s^{\prime} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Sampling:

$$
\begin{gathered}
a=\int d x f(x) p(x) \\
x_{i} \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x_{i}\right)
\end{gathered}
$$

Solving the Bellman Equation

Option 3: sampling

$$
V(s)=\int d a \pi(a, s)\left[\int d s^{\prime} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Sampling:

$$
\begin{aligned}
& a= \int d x f(x) p(x) \\
& x_{i} \sim p(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x_{i}\right) \\
& \quad x_{i} \sim q(x) \rightarrow \hat{a}=\frac{1}{N} \sum_{i} f\left(x_{i}\right) w_{i} \quad \text { where } w_{i}=\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}
\end{aligned}
$$

Model-free, Monte Carlo RL

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

$$
\begin{aligned}
& \text { OL-5RI }=-4 \\
& \text { OL-5RI }=-4 \\
& \text { ORORO }=0 \\
& \text { OROL-2 }=-2
\end{aligned}
$$

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

$$
\begin{aligned}
& \text { OL-5RI }=-4 \\
& \text { OL-5RI }=-4 \\
& \text { ORORO }=0 \\
& \text { OROL-2 }=-2 \\
& \text { OL-5LIO }=5
\end{aligned}
$$

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

$$
\begin{aligned}
& \text { OL-5RI }=-4 \\
& \text { OL-5RI }=-4 \\
& \text { ORORO }=0 \\
& \text { OROL-2 }=-2 \\
& \text { OL-5LIO }=5 \\
& \text { ORORO }=0
\end{aligned}
$$

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

$$
\begin{aligned}
& \text { OL-5RI }=-4 \\
& 0 \mathrm{~L}-5 R \mathrm{~F}=-4 \\
& \text { ORORO }=0 \\
& \text { OROL-2 }=-2 \\
& \text { OL-5LIO }=5 \\
& \text { ORORO }=0
\end{aligned}
$$

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

$$
\begin{array}{|l|}
\hline 0 \mathrm{~L}-5 \mathrm{RI}=-4 \\
\text { OL-5RI }=-4 \\
\hline \text { ORORO }=0 \\
\text { OROL-2 }=-2 \\
\hline \text { OL-5LIO }=5 \\
\hline \text { ORORO }=0
\end{array}
$$

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Model-free, Monte Carlo RL

Or rather, learn state-action values directly:

$$
\mathcal{Q}(s, a)=\frac{1}{N} \sum_{i}\left\{\sum_{t^{\prime}=1}^{T} r_{t^{\prime}}^{i} \mid s_{0}=s, a_{0}=a\right\}
$$

Probabilistic policies

- softmax

$$
p(a \mid s)=\frac{e^{\beta \mathcal{Q}(s, a)}}{\sum_{a^{\prime}} e^{\beta \mathcal{Q}\left(s, a^{\prime}\right)}}
$$

- β trades off exploration vs exploitation
- ε-greedy:

$$
p(a \mid s)= \begin{cases}1-\epsilon & \text { if } a=a^{*} \\ \epsilon & \text { else }\end{cases}
$$

- ε trades off exploration vs exploitation
- When should policy be updated?

Monte Carlo RL

- Average over sample state paths
- No knowledge of transitions T or rewards R
- No model of the world!
- But need to sample from it
- standard deviation $\sim \frac{1}{\sqrt{N}}$
- values policy-dependent - importance sampling
- Sample relevant state-actions
- Curse of dimensionality
- hurts sampling
- exploration / exploitation?

Update equation: towards TD

Bellman equation

$$
V(s)=\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Not yet converged, so it doesn't hold:

$$
d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

And then use this to update

$$
V^{i+1}(s)=V^{i}(s)+d V(s)
$$

Model-free RL:TD learning

$$
d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right]
$$

Model-free RL:TD learning

$$
\begin{aligned}
d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\right. & {\left.\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] } \\
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)
\end{aligned}
$$

Model-free RL:TD learning

$$
\begin{aligned}
& d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
& a_{t} \sim \pi\left(a \mid s_{t}\right) \\
& s_{t+1} \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
& r_{t}=\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right)
\end{aligned}
$$

Model-free RL:TD learning

$$
\begin{aligned}
& d V(s)=-V(s)+\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}\left(s^{\prime}, a, s\right)+V\left(s^{\prime}\right)\right]\right] \\
& a_{t} \sim \pi\left(a \mid s_{t}\right) \\
& s_{t+1} \sim \mathcal{T}_{s_{t}, s_{t+1}}^{a_{t}} \\
& r_{t}=\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
& \delta_{t}=-V_{t-1}\left(s_{t}\right)+r_{t}+V_{t-1}\left(s_{t+1}\right) \\
& V^{i+1}(s)=V^{i}(s)+d V(s) \quad V_{t}\left(s_{t}\right)=V_{t-1}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

TD learning

$$
\begin{aligned}
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}}^{a_{t}}, s_{t+1} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\delta_{t} & =-V_{t}\left(s_{t}\right)+r_{t}+V_{t}\left(s_{t+1}\right) \\
V_{t+1}\left(s_{t}\right) & =V_{t}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

Learning rate

$$
\begin{aligned}
V_{t+1}(s) & =V_{t}(s)+\alpha \delta_{t} \\
& =V_{t}(s)+\alpha\left(r_{t}-V_{t}(s)\right) \\
& =(1-\alpha) V_{t}(s)+\alpha r_{t} \\
& =(1-\alpha)^{2} V_{t-1}(s)+\alpha\left[(1-\alpha) r_{t-1}+r_{t}\right] \\
& =(1-\alpha)^{t} V_{0}(s)+\alpha \sum_{t^{\prime}=1}^{t}(1-\alpha)^{t-t^{\prime}} r_{t^{\prime}}
\end{aligned}
$$

Fixed learning rate

Fixed learning rate $=$ exponential forgetting Assumption of changing world

TD learning

$$
\begin{aligned}
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}}^{a_{t}}, s_{t+1} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\delta_{t} & =-V_{t}\left(s_{t}\right)+r_{t}+V_{t}\left(s_{t+1}\right) \\
V_{t+1}\left(s_{t}\right) & =V_{t}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

$$
V_{t+1}(s)=(1-\alpha) V_{t}(s)+\alpha\left(V_{t}\left(s_{t+1}\right)+r_{t}\right)
$$

Model-free:TD vs Markov

BI	
BI	
BO	
AO	BO

Markov
$V(A)=0$
$V(B)=3 / 4$
TD
$V(B)=3 / 4$
$V(A)=3 / 4$?

after Sutton and Barto 1998

Aside: what makes a TD error?

- unpredicted reward expectation change
- disappears with learning
- stays with probabilistic reinforcement
- sequentiality
- TD error vs prediction error
- see Niv and Schoenbaum 2008

TD learning

$$
\begin{aligned}
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}}^{a_{t}}, s_{t+1} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\delta_{t} & =-V_{t}\left(s_{t}\right)+r_{t}+V_{t}\left(s_{t+1}\right) \\
V_{t+1}\left(s_{t}\right) & =V_{t}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

$$
\rightarrow V^{\pi}(s)
$$

TD learning

$$
\begin{aligned}
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}}^{a_{t}}, s_{t+1} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\delta_{t} & =-V_{t}\left(s_{t}\right)+r_{t}+V_{t}\left(s_{t+1}\right) \\
V_{t+1}\left(s_{t}\right) & =V_{t}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

$$
\rightarrow V^{\pi}(s)
$$

$\pi^{n e w} ?$

TD learning

$$
\begin{aligned}
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}}^{a_{t}}, s_{t+1} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\delta_{t} & =-V_{t}\left(s_{t}\right)+r_{t}+V_{t}\left(s_{t+1}\right) \\
V_{t+1}\left(s_{t}\right) & =V_{t}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

$$
\rightarrow V^{\pi}(s)
$$

$$
\pi^{n e w} ?
$$

$$
\mathcal{Q}^{\pi}(a, s)=\sum_{s^{\prime}} \mathcal{T}_{s s^{\prime}}^{a}\left[\mathcal{R}_{s s^{\prime}}^{a}+V^{p i}\left(s^{\prime}\right)\right]
$$

SARSA

- Do TD for state-action values instead:

$$
\begin{gathered}
\mathcal{Q}\left(s_{t}, a_{t}\right) \leftarrow \mathcal{Q}\left(s_{t}, a_{t}\right)+\alpha\left[r_{t}+\gamma \mathcal{Q}\left(s_{t+1}, a_{t+1}\right)-\mathcal{Q}\left(s_{t}, a_{t}\right)\right] \\
s_{t}, a_{t}, r_{t}, s_{t+1}, a_{t+1}
\end{gathered}
$$

- base policy on Q

$$
p(a \mid s)=\frac{e^{\beta \mathcal{Q}(s, a)}}{\sum_{a^{\prime}} e^{\beta \mathcal{Q}\left(s, a^{\prime}\right)}} \quad p(a \mid s)= \begin{cases}1-\epsilon & \text { if } a=a^{*} \\ \epsilon & \text { else }\end{cases}
$$

- convergence guarantees

Q learning: off-policy

- Learn off-policy
- draw from some policy
- "only" require extensive sampling

$$
\mathcal{Q}\left(s_{t}, a_{t}\right) \leftarrow \mathcal{Q}\left(s_{t}, a_{t}\right)+\alpha[\underbrace{r_{t}+\gamma \max _{a} \mathcal{Q}\left(s_{t+1}, a\right)}_{\begin{array}{c}
\text { update towards } \\
\text { optimum }
\end{array}}-\mathcal{Q}\left(s_{t}, a_{t}\right)]
$$

Actor-critic

- policy and value separately parametrised

$$
\begin{aligned}
\pi(s, a) & =\frac{e^{w(s, a)}}{\sum_{a^{\prime}} e^{w\left(s, a^{\prime}\right)}} \\
\delta_{t}=r_{t+1} & +\gamma V\left(s_{t+1}\right)-V\left(s_{t}\right) \\
w(s, a) & \leftarrow w(s, a)+\beta \delta_{t} \\
w(s, a) & \leftarrow w(s, a)+\beta \delta_{t}(1-\pi(s, a))
\end{aligned}
$$

- Some more comments...

Learning in the wrong state space

- states=distance from goal
- state-space choice crucial
- too big -> curse of dimensionality
- too small -> can't express good policies

- unsolved problem
- humans in tasks have to infer state-space

Neural network approximations

- So far: look-up tables

- Parametric value functions

Neural network approximations

- still get same error: update towards consistent values

$$
\delta_{t}=r_{t}+V_{t}\left(s^{\prime}\right)-V_{t}\left(s_{t}\right)
$$

- but when doing update, need to apportion responsibility correctly

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}+\alpha \delta_{t} \underbrace{\nabla_{\boldsymbol{\theta}} V_{t}\left(s_{t}\right)}_{\text {backprop }}
$$

Hierarchical decompositions

- Subtasks stay the same
- Learn subtasks
- Learn how to use subtasks
- Macroactions
- 'go to door'
- search goal

Learning a model

- So far we've concentrated on model-free learning
- What if we want to build some model of the environment?

$$
\left.V(s)=\sum_{a} \pi(a, s)\left[\sum_{s^{\prime}}\left|\mathcal{T}_{s s^{\prime}}^{a}\right| \sqrt{\mathcal{R}\left(s^{\prime}, a, s\right)}+V\left(s^{\prime}\right)\right]\right]
$$

- Count transitions

$$
\hat{\mathcal{T}}_{s s^{\prime}}^{a}=\frac{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a\right)}
$$

- Average rewards

$$
\hat{\mathcal{R}}_{s s^{\prime}}^{a}=\frac{\sum_{t} r_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}{\sum_{t} \mathbf{1}\left(s_{t}=s, a_{t}=a, s_{t+1}=s^{\prime}\right)}
$$

Using a learned model

- explicitly addresses exploration / exploitation

- Model changes as we 'think ahead'
- account for the value of added information

Model uncertainty

$$
\mathcal{Q}(s, a \mid \hat{\mathcal{T}}, \hat{\mathcal{R}})=\sum_{s^{\prime}} \hat{\mathcal{T}}_{s s^{\prime}}^{a}(t)\left[\hat{\mathcal{R}}\left(s^{\prime}, a, s\right)(t)+\max _{a^{\prime}} \mathcal{Q}\left(s^{\prime}, a^{\prime} \mid \hat{\mathcal{T}}(t+1), \hat{\mathcal{R}}(t+1)\right)\right]
$$

Consequences of control

Multiple, parallel, decision-making systems

Multiple decision systems "Controllers"
Competition and collaboration

Innate system Evolutionary strategy

\qquad

In humans, animals and computers...

Some behavioural signatures of different models

Quentin Huys

Wellcome Trust Centre for Neuroimaging Gatsby Computational Neuroscience Unit

Medical School
UCL

Magdeburg University, June 20th 2009

Why are choices hard?

Time present and time past Are both perhaps present in time future, And time future contained in time past.

T. S. Eliot

The future, in the long term

goodness of an action = immediate reward + all future reward

Making optimal decisions

Niv et al. 2007

Many decision systems in parallel

Evaluating the future:Think hard
 Goal-directed decisions

General solution: search a tree

Evaluating the future:Think hard
 Goal-directed decisions

General solution: search a tree

Decision tree: exhaustive search

Chess

- Each move 30 odd choices
- 300^{40} ?
- MANY!!!
- Legal boards ~10 ${ }^{123}$
- Can't just do full tree search.

Simple is better at times: cars

Car A: 75\% +ve
Car B: $50 \%+\mathrm{ve}$
Car C: 50% +ve Car D: 25% +ve

Asian disease: time
Dijksterhuis et al. 2006

How do HUMAN players do it? How did Deep Blue beat Kasparov?

Devaluation

Goal-directed choices

- Model-based
- how is the model learned?
- Computationally expensive
- Flexible
- Action-outcome

Simple is better at times: doctors

20 cases for which truth known

Cardiologists
General physicians A\&E physicians

Melly et al. 2002

Simple is better at times: doctors

20 cases for which truth known
Cardiologists
General physicians A\&E physicians

Physicians overly cautious, but still miss many -> complications

Melly et al. 2002

Cached evaluation:TD \& Co

$$
\begin{aligned}
a_{t} & \sim \pi\left(a \mid s_{t}\right) \\
s_{t+1} & \sim \mathcal{T}_{s_{t}}^{a_{t}}, s_{t+1} \\
r_{t} & =\mathcal{R}\left(s_{t+1}, a_{t}, s_{t}\right) \\
\delta_{t} & =-V_{t}\left(s_{t}\right)+r_{t}+V_{t}\left(s_{t+1}\right) \\
V_{t+1}\left(s_{t}\right) & =V_{t}\left(s_{t}\right)+\alpha \delta_{t}
\end{aligned}
$$

Habits: heuristics, position evaluation

Devaluation

Goal-directed vs. habitual behaviour mix and match

Habits

- Are empirical averages
- Change slowly
- Are cheap to build
- No unlearning
- extinction
- higher-order models

Arbitrating between controllers

- Uncertainty

Daw et al. 2005

Evaluating the future... actually, let's not!

Choose randomly at SI Then just go for food if hungry

Or for water if thirsty

Are chicken pretty stupid?

Kahnemann \& Tversky

Imagine that the United States is preparing for the outbreak of an unusual Asian disease, which is expected to kill 600 people.

Two alternative programs to combat the disease have been proposed.
Assume that the exact scientific estimates of the consequences of the programs are as follows:

> If Program A is adopted, 200 people will be saved If Program B is adopted, there is a one-third probability that 600 people will be saved and a two-thirds probability that no people will be saved.

If Program A^{\prime} is adopted, 400 people will die If Program B^{\prime} is adopted, there is a one-third probability that nobody will die and a two-thirds probability that 600 people will die

Clever innate strategies

If Program A is adopted, 200 people will be saved If Program B is adopted, there is a one-third probability that 600 people will be saved and a two-thirds probability that no people will be saved.

If Program A^{\prime} is adopted, 400 people will die If Program B^{\prime} is adopted, there is a one-third probability that nobody will die and a two-thirds probability that 600 people will die

Innate evolutionary strategies

Innate evolutionary strategies

Hirsch and Bolles 1980

Sometimes knowledge hurts

"We added balsamic vinegar to one of these"

Sometimes knowledge hurts

"We added balsamic vinegar to one of these"

Sometimes knowledge hurts

"We added balsamic vinegar to one of these"

"We added balsamic vinegar to the light one"

Sometimes knowledge hurts

"We added balsamic vinegar to one of these"

"We added balsamic vinegar to the light one"

Recap

- Multiple decision systems
- Multiple values
- Multiple action mechanisms
- Interactions
- Override
- Uncertainty
- Complex problem
- Identification via critical features

Fitting behavioural data with RL models

Quentin Huys

Wellcome Trust Centre for Neuroimaging Gatsby Computational Neuroscience Unit

Medical School
UCL

Magdeburg University, June 20th 2009

Overview

- Formulate probabilistic model for choices
- model fit: predictive probability
- ML / MAP
- parameter inference
- prior inferred from all joint data
- Empirical prior
- Infer with approximate EM
- second level analysis:
- priors
- individual posterior parameters
- Model comparison
- Normal-inverse Gamma -> Gaussian mixture

RL models

- Are no panacea
- statistics about specific aspects of decision machinery
- only account for part of the variance
- Model needs to match experiment
- ensure subjects actually do the task the way you wrote it in the model
- model comparison
- Model = Quantitative hypothesis
- strong test
- includes all consequences of a hypothesis for choice

Fitting models: matching and noise

- probabilistic policy, e.g. softmax

$$
p(a \mid s)=\frac{e^{\beta \mathcal{Q}(s, a)}}{\sum_{a^{\prime}} e^{\beta \mathcal{Q}\left(s, a^{\prime}\right)}}
$$

- total likelihood

$$
\begin{gathered}
\mathcal{L}(\theta)=p\left(\left\{a_{t}\right\}_{t=1}^{T} \mid\left\{s_{t}\right\}_{t=1}^{T},\left\{r_{t}\right\}_{t=1}^{T}, \theta\right)=\prod_{t=1}^{T} p\left(a_{t} \mid s_{t}, r_{1 \cdots t-1}, \theta\right) \\
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}(\theta)
\end{gathered}
$$

Typical parameters

- r / β

$$
\begin{aligned}
\mathcal{Q}_{t+1}(s, a) & \propto \sum_{r}(1-\alpha)^{t-t^{\prime}} r_{t^{\prime}}=\eta \sum(1-\alpha)^{t-t^{\prime}} r_{t^{\prime}}^{\prime} \\
r^{\prime} & =\frac{r}{\eta}
\end{aligned}
$$

- similar if want to infer $r^{+}>0$ and $r^{-}<0$ and separately
- can only distinguish these with some neural signature
- learning rate α
- multiplies TD error
- also induces forgetting
- discounting γ
- only if there is actually a sequential aspect
- Instructions
- TD error:
- affected by both r and α

Overview

- Formulate probabilistic model for choices
- model fit: predictive probability
- ML / MAP
- parameter inference
- prior inferred from all joint data
- Empirical prior
- Infer with approximate EM
- second level analysis:
- priors
- individual posterior parameters
- Model comparison
- Normal-inverse Gamma -> Gaussian mixture

Softmax likelihood

$$
\mathcal{L}(\theta)=p\left(\left\{a_{t}\right\}_{t=1}^{T} \mid\left\{s_{t}\right\}_{t=1}^{T},\left\{r_{t}\right\}_{t=1}^{T}, \theta\right)=\prod_{t=1}^{T} p\left(a_{t} \mid s_{t}, r_{1 \cdots t-1}, \theta\right)
$$

- log is easier:

$$
\begin{aligned}
\log \mathcal{L}(\theta) & =\sum_{t=1}^{T} \log p\left(a_{t} \mid s_{t}, r_{1 \cdots t-1}, \theta\right) \\
& =\sum_{t=1}^{T}\left[\beta \mathcal{Q}_{t}\left(a_{t}, s_{t}\right)-\log \sum_{a^{\prime}} e^{\beta \mathcal{Q}_{t}\left(a^{\prime}, s_{t}\right)}\right]
\end{aligned}
$$

ML by gradient ascent

$$
\frac{\log \mathcal{L}(\theta)}{d \beta}=\sum_{t=1}^{T}\left[\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)-\frac{\sum_{a^{\prime}} e^{\beta \mathcal{Q}_{t}\left(a^{\prime}, s_{t}\right)}}{\sum_{a^{\prime \prime}} e^{\beta \mathcal{Q}_{t}\left(a^{\prime \prime}, s_{t}\right)}} \mathcal{Q}\left(a^{\prime}, s_{t}\right)\right]
$$

ML by gradient ascent

$$
\begin{aligned}
\frac{\log \mathcal{L}(\theta)}{d \beta} & =\sum_{t=1}^{T}\left[\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)-\frac{\sum_{a^{\prime}} e^{\beta \mathcal{Q}_{t}\left(a^{\prime}, s_{t}\right)}}{\sum_{a^{\prime \prime}} e^{\beta \mathcal{Q}_{t}\left(a^{\prime \prime}, s_{t}\right)}} \mathcal{Q}\left(a^{\prime}, s_{t}\right)\right] \\
& =\sum_{t=1}^{T}\left[\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)-\sum_{a^{\prime}} p_{t}\left(a^{\prime} \mid s_{t}\right) \mathcal{Q}_{t}\left(a^{\prime}, s_{t}\right)\right]
\end{aligned}
$$

ML by gradient ascent

$$
\begin{aligned}
\frac{\log \mathcal{L}(\theta)}{d \beta} & =\sum_{t=1}^{T}\left[\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)-\frac{\sum_{a^{\prime}} e^{\beta \mathcal{Q}_{t}\left(a^{\prime}, s_{t}\right)}}{\sum_{a^{\prime \prime}} e^{\mathcal{Q}_{t}\left(a^{\prime \prime}, s_{t}\right)}} \mathcal{Q}\left(a^{\prime}, s_{t}\right)\right] \\
& =\sum_{t=1}^{T}\left[\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)-\sum_{a^{\prime}} p_{t}\left(a^{\prime} \mid s_{t}\right) \mathcal{Q}_{t}\left(a^{\prime}, s_{t}\right)\right] \\
\frac{\log \mathcal{L}(\theta)}{d \alpha} & =\beta \sum_{t=1}^{T}\left[\frac{d \mathcal{Q}_{t}\left(a_{t}, s_{t}\right)}{d \alpha}-\sum_{a^{\prime}} p_{t}\left(a^{\prime} \mid s_{t}\right) \frac{d \mathcal{Q}\left(a^{\prime}, s_{t}\right)}{d \alpha}\right]
\end{aligned}
$$

ML by gradient ascent

$$
\begin{aligned}
\frac{\log \mathcal{L}(\theta)}{d \beta} & =\sum_{t=1}^{T}\left[\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)-\frac{\sum_{a^{\prime}} e^{\beta \mathcal{Q}_{t}\left(a^{\prime}, s_{t}\right)}}{\sum_{a^{\prime \prime}} e^{\beta \mathcal{Q}_{t}\left(a^{\prime \prime}, s_{t}\right)}} \mathcal{Q}\left(a^{\prime}, s_{t}\right)\right] \\
& =\sum_{t=1}^{T}\left[\mathcal{Q}_{t}\left(a_{t}, s_{t}\right)-\sum_{a^{\prime}} p_{t}\left(a^{\prime} \mid s_{t}\right) \mathcal{Q}_{t}\left(a^{\prime}, s_{t}\right)\right] \\
\frac{\log \mathcal{L}(\theta)}{d \alpha} & =\beta \sum_{t=1}^{T}\left[\frac{d \mathcal{Q}_{t}\left(a_{t}, s_{t}\right)}{d \alpha}-\sum_{a^{\prime}} p_{t}\left(a^{\prime} \mid s_{t}\right) \frac{d \mathcal{Q}\left(a^{\prime}, s_{t}\right)}{d \alpha}\right] \\
\frac{d \mathcal{Q}_{t}\left(a_{t}, s_{t}\right)}{d \alpha} & =(1-\alpha) \frac{d \mathcal{Q}_{t-1}\left(a_{t}, s_{t}\right)}{d \alpha}-\mathcal{Q}_{t-1}\left(a^{\prime}, s_{t}\right)+r_{t}
\end{aligned}
$$

Transforming variables

$$
\begin{aligned}
\beta & =e^{\beta^{\prime}} \\
& \Rightarrow \beta^{\prime}=\log (\beta) \\
\epsilon & =\log \left(\frac{\epsilon^{\prime}}{1-\epsilon^{\prime}}\right) \\
& \Rightarrow \epsilon=\frac{1}{1+e^{-\epsilon^{\prime}}}
\end{aligned}
$$

$$
\frac{d \log \mathcal{L}\left(\theta^{\prime}\right)}{d \theta^{\prime}}
$$

ML can be noisy

$$
\mathcal{L}(\beta=10) \approx \mathcal{L}(\beta=100)
$$

200 trials, I stimulus, 10 actions, learning rate $=.05$, beta $=2$

Maximum a posteriori estimate

$$
\begin{gathered}
\mathcal{P}(\theta)=p\left(\theta \mid a_{1 \ldots T}\right)=\frac{p\left(a_{1 \ldots T} \mid \theta\right) p(\theta)}{\int d \theta p\left(\theta \mid a_{1 \ldots T}\right) p(\theta)} \\
\log \mathcal{P}(\theta)=\sum_{t=1}^{T} \log p\left(a_{t} \mid \theta\right)+\log p(\theta)+\text { const } \\
\frac{\log \mathcal{P}(\theta)}{d \alpha}=\frac{\log \mathcal{L}(\theta)}{d \alpha}+\frac{d p(\theta)}{d \theta}
\end{gathered}
$$

Maximum a posteriori estimate

200 trials, I stimulus, I0 actions, learning rate $=.05$, beta $=2$ $m_{\text {beta }}=0, m_{\text {eps }}=-3, n=1$

Overview

- Formulate probabilistic model for choices
- model fit: predictive probability
- ML / MAP
- parameter inference
- prior inferred from all joint data
- Empirical prior
- Infer with approximate EM
- second level analysis:
- priors
- individual posterior parameters
- Model comparison
- Normal-inverse Gamma -> Gaussian mixture

Estimating the hyperparameters

- What should the hyperparameters be?

$$
\log \mathcal{P}(\theta)=\mathcal{L}(\theta)+\log \underbrace{p(\theta)}_{=p(\theta \mid \zeta)}+\text { const. }
$$

- Empirical Bayes: set them to ML estimate

$$
\hat{\zeta}=\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta)
$$

- where we use all the actions by all the k subjects

$$
\mathcal{A}=\left\{a_{1 \ldots T}^{k}\right\}_{k=1}^{K}
$$

Estimating the hyperparameters

- Need to integrate out individual parameters:

$$
\begin{aligned}
\hat{\zeta} & =\underset{\zeta}{\operatorname{argmax}} p(\mathcal{A} \mid \zeta) \\
& =\underset{\zeta}{\operatorname{argmax}} \int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta)
\end{aligned}
$$

- Standard problem, apply EM

EM with Laplace approximation

E step: $\quad q_{k}(\theta)=\mathcal{N}\left(\mathbf{m}_{k}, \mathbf{S}_{k}\right)$

$$
\begin{aligned}
\mathbf{m}_{k} & =\underset{\theta}{\operatorname{argmax}} p\left(\mathbf{a}^{k} \mid \theta\right) p\left(\theta \mid \zeta_{i}\right) \\
\mathbf{S}_{k}^{-1} & =\left.\frac{\partial^{2} p\left(\mathbf{a}^{k} \mid \theta\right) p\left(\theta \mid \zeta_{i}\right)}{\partial \theta^{2}}\right|_{\theta=\mathbf{m}_{k}}
\end{aligned}
$$

M step: $\quad \zeta_{i+1}^{\mu}=\frac{1}{K} \sum_{k} \mathbf{m}_{k}$

$$
\zeta_{i+1}^{\nu^{2}}=\operatorname{var}\left(\mathbf{m}_{k}\right)
$$

Priors and 2nd level analysis

- Priors over parameters
- can do this for subgroups

$$
p(\theta \mid \hat{\zeta})
$$

- Posterior parameter estimates
- do classical second level analyses
- can use Hessians as weights

$$
\begin{array}{r}
\text { point estimates } \\
\text { precisions }
\end{array} \quad \hat{\theta}^{k}=\mathbf{m}^{k}
$$

Overview

- Formulate probabilistic model for choices
- model fit: predictive probability
- ML / MAP
- parameter inference
- prior inferred from all joint data
- Empirical prior
- Infer with approximate EM
- second level analysis:
- priors
- individual posterior parameters
- Model comparison
- Normal-inverse Gamma -> Gaussian mixture

Model fit: predictive probabilities

- How well does the model do?
- choice probabilities: $\mathbb{E} p($ correct $)=e^{\mathcal{L}(\hat{\theta}) / K / T}$

$$
=e^{\log p(\mathcal{A} \mid \theta) / K / T}
$$

$$
=\left(\prod_{k, t=1}^{K, T} p\left(a_{k, t} \mid \theta\right)\right)^{\frac{1}{K T}}
$$

- typically around 0.65-0.75 for 2-way choice
- for IO-armed bandit example:

Model comparison

Model comparison

- Penalise for overly broad predictions

$$
\frac{p\left(\mathcal{M}_{1} \mid \mathcal{A}\right)}{p\left(\mathcal{M}_{2} \mid \mathcal{A}\right)}=\frac{p\left(\mathcal{A} \mid \mathcal{M}_{1}\right) p\left(\mathcal{M}_{1}\right)}{p\left(\mathcal{A} \mid \mathcal{M}_{2}\right) p\left(\mathcal{M}_{2}\right)}
$$

- where we can simplify a bit

$$
\begin{aligned}
p\left(\mathcal{A} \mid \mathcal{M}_{1}\right) & =\int d \zeta \int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \zeta) p(\zeta \mid \mathcal{M}) \\
& =\int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M})
\end{aligned}
$$

Model comparison

- Prior form

$$
p(\theta \mid \mathcal{M})=\int d \zeta p(\theta \mid \zeta \underbrace{p(\zeta \mid \mathcal{M})}_{p(\mu, \nu \mid \mathcal{M})}
$$

- straightforward option is conjugate prior, in this case Normal-inverse Gamma

$$
p\left(\mu, \nu^{2} \mid \mathcal{M}\right)=\frac{b^{a}}{\Gamma(a)}\left(\frac{1}{\nu^{2}}\right)^{a+1} \exp \left(-\frac{b}{\nu^{2}}\right) \frac{s}{\sqrt{2 \pi} \nu} \exp \left(-\frac{(\mu-m)^{2}}{2 \nu^{2} / s^{2}}\right)
$$

- which gives us a Gaussian scale mixture

$$
p(\beta \mid \mathcal{M})=\frac{\Gamma\left(a+\frac{1}{2}\right)}{\Gamma(a)} \frac{b^{a}}{\sqrt{2 \pi\left(1+1 / s^{2}\right)}}\left(\frac{(\beta-m)^{2}}{2\left(1+1 / s^{2}\right)}+b\right)^{-\left(a+\frac{1}{2}\right)}
$$

For a simple RW model

Prior on
 transformed variable

Prior on original variable

- Evaluate integral by sampling

$$
\begin{aligned}
p\left(\mathcal{A} \mid \mathcal{M}_{1}\right) & =\int d \theta p(\mathcal{A} \mid \theta) p(\theta \mid \mathcal{M}) \\
& \approx \frac{1}{N} \sum_{i} p\left(\mathcal{A} \mid \theta_{i}\right) ; \quad \theta_{i} \sim p(\theta \mid \mathcal{M})
\end{aligned}
$$

Overview

- Formulate probabilistic model for choices
- model fit: predictive probability
- ML / MAP
- parameter inference
- prior inferred from all joint data
- Empirical prior
- Infer with approximate EM
- second level analysis:
- priors
- individual posterior parameters
- Model comparison
- Normal-inverse Gamma -> Gaussian mixture

