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Abstract Fluid intelligence (fluid IQ), defined as the
capacity for rapid problem solving and behavioral adaptation,

is known to be modulated by learning and experience. Both

stressful life events (SLES) and neural correlates of learning
[specifically, a key mediator of adaptive learning in the brain,

namely the ventral striatal representation of prediction errors

(PE)] have been shown to be associated with individual dif-
ferences in fluid IQ. Here, we examine the interaction between

adaptive learning signals (using a well-characterized proba-

bilistic reversal learning task in combination with fMRI) and
SLES on fluid IQ measures. We find that the correlation

between ventral striatal BOLD PE and fluid IQ, which we

have previously reported, is quantitatively modulated by the

amount of reported SLES. Thus, after experiencing adversity,
basic neuronal learning signatures appear to align more clo-

sely with a general measure of flexible learning (fluid IQ), a

finding complementing studies on the effects of acute stress on
learning. The results suggest that an understanding of the

neurobiological correlates of trait variables like fluid IQ needs

to take socioemotional influences such as chronic stress into
account.

Keywords Reinforcement learning ! Prediction error

signal ! Ventral striatum ! Stress ! Intelligence

Introduction

Fluid intelligence (fluid IQ) [1, 2] describes the capacity

for rapid problem solving and flexible adjustment to an
ever-changing environment. Its expression is a general

factor comprising attributes such as attention, cognitive
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speed, working memory, reasoning, and episodic memory

that have manifold impacts on learning. One important
neurobiological correlate of learning is the phasic activa-

tion of dopamine neurons in the VTA [3–5] which is

reflected in BOLD fMRI studies in humans as a prediction
error (PE) in a number of regions including the ventral

striatum (VS) [6]. The prominent place of the VS PE in

neurobiological accounts of learning derives from the fact
that it is a particular type of teaching signal, which indi-

cates the need for a change in expectation, as well as the
direction and quantity of change necessary to acquire

habits [7–9]. Animal experiments have shown that PE

signaling is associated with phasic dopamine firing with the
size of PE reflecting the amount of dopamine release [4,

10]. In humans, PE signaling has also been shown to

phasically release striatal dopamine (indirectly measured
via displacement of dopamine D2 receptor ligands) [11]

and to be modulated by more tonic aspects of dopamine

synthesis capacity measured over 1 hour [12].
Recently, we reported that individual differences in fluid

IQ are associated with VS BOLD PE signals, with stronger

VS BOLD PE correlates in subjects with higher IQ [13]. At
the same time, there is recent evidence that acute stress

increases BOLD responses elicited by aversive PE signals in

the VS [14]. Furthermore, fluid IQ and stress are well known
to interact, with stress having a strong moderating influence

on cognitive abilities [15, 16], reward learning [17, 18], risk

taking [19], reward responsivity [20], and decision-making
speed [19]. Also, stress due to social exclusion situations

impairs cognitive speed and accuracy [21]. However,

despite strong evidence for an impact of stress on cognition
and decision-making processes, little is known about the

specific patterns and moderating trait components underly-

ing these changes on a behavioral and neuronal level.
Interestingly, it has recently been observed that (on a

behavioral level) acute stress does not impair so-called

model-free reward learning, while more cognitively
demanding model-based reward learning is more affected by

acute stress when working memory capacity is lower [16].

With respect to dopaminergic transmission, a series of
animal experiments indicates that acute as well as chronic

stress moderated dopamine release and may thus interact

with dopamine-dependent PE signaling in the striatum [22,
23]. For instance, changes in cortisol levels during an acute

stressor were correlated with increases in striatal responses

during a decision-making task [24]. Given these interac-
tions between stress, dopaminergic PE signals, and aspects

of fluid intelligence, we wanted to explore the effects of

chronic stress on PE signaling and fluid IQ. One possibility
is that stress increases dopamine release, which in turn

increases PE signaling, and in accordance with our previ-

ous observation [12], fluid IQ. However, this is unlikely
given the predominantly negative interactions between

stress exposure and fluid IQ (a measure closely related to

cognitive capacity and cognitive speed). We therefore
tested the hypothesis that stress exposure modulates PE

signaling above and beyond the previously observed cor-

relation between PE signaling and fluid IQ.
To assess PE-related VS activity, we regressed VS

BOLD signals onto PEs derived from a simple learning

algorithm in which PEs are accumulated over time to form
predictions. We note that this simple learning algorithm is

‘model-free,’ in that it only requires subjects to iteratively
track what outcomes are observed after their choices, but it

does not require subjects to have any explicit model or

understanding of the task. We then asked whether this
correlation, henceforth termed the VS BOLD PE signal, (1)

is associated with measures of chronic life stress and (2)

whether chronic life stress and VS BOLD PE signal alone
or in interaction contribute to individual differences in fluid

IQ.

Materials and methods

Subjects and screening instruments

A group of 16 right-handed healthy men with a mean age
of 38.4 years (SD = 11.9; range 22–61) underwent fMRI

and neuropsychological testing as a subgroup of a sample

previously reported [13]. Subjects with Axis I and II psy-
chiatric disorders according to DSM IV were excluded

through the Structured Clinical Interview, and drug abuse

was further excluded with urine tests.

Neuropsychological assessment, intelligence measures,

and stressful life events

A neuropsychological battery was administered within

2 months of fMRI measurements. Components of fluid and
crystallized IQ were measured with an adaptation of the

standard battery used in the Berlin Aging Study [25]. Fluid

IQ was measured with a battery of nine tests comprising
cognitive speed, attention and executive function, working

memory, episodic memory, and reasoning. Cognitive speed

was measured using the Digit Symbol Substitution test and
the Reitan Trailmaking test, part A. Attention and execu-

tive function was measured using the Reitan Trailmaking

test, part B [26], and Stroop [27] tests. Working memory
was measured using forward and backward digit span tests

[28]. Episodic memory was assessed using story recall with

the German version of the Rivermead Behavioral Memory
Test [29] and a German version of the auditory verbal

learning test. Reasoning was measured using a test of fig-

ural analogies [30]. Fluid IQ was derived from a factorial
analysis of the raw scores of each of these tests.
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Specifically, we used a Varimax rotation with an Eigen-

value cutoff set to 1.0; the final (single factor) solution
accounted for 74.3 % of the variance in cognitive speed,

attention, working memory, memory, and reasoning.

Crystallized IQ was estimated using a verbal knowledge
test, during which subjects are required to identify each

single meaningful word from a total of 42 lists of five

words.
Stressful life events (SLES) were assessed using the Life

Events Scale [31], in which subjects were asked to self-
report the presence of a stressful life event during the past

2 years from a list of 42 life events. We used the number of

SLES as the main outcome measure.

Reversal learning task

During fMRI acquisition, subjects performed a reversal

learning task (Fig. 1) known to evoke a BOLD PE signal in

the striatum [13, 32]. In each of 200 trials (100 per session),
subjects first saw two abstract targets on the screen and

were asked to choose one of them as quickly as possible by

pressing the left or right button with the left or right thumb
on a response box (maximum response time: 2 s). A blue

box surrounding their chosen target and feedback (either a

green smiley face for positive feedback or a red frowning
face for negative feedback) was simultaneously shown for

1 s. The trials were separated by a jittered interval of

1–6.5 s. Reward allocation was determined as follows:
There were three types of reward allocation (i.e., block

types): (1) 20 % for the left-hand response and 80 % for

the right-hand response leading to reward, (2) 80 % for the
left-hand response and 20 % for the right-hand response

leading to reward, and (3) 50 % reward for the left-hand

response and for the right-hand response. Block types
changed unpredictably for the subject when two criteria

were fulfilled: (1) minimum of 10 trials and (2) minimum

of 70 % correct responses in the entire block. If subjects
did not reach learning criteria after 16 trials, the task went

over to the next block automatically.

Computational modeling of reinforcement learning

The trial-by-trial sequence of choices for each subject was
fit by a simple Rescorla-Wagner (RW) model in which

behavior is driven by the expectation of rewards and in

which trial-by-trial behavioral adaptation is proportional to
the difference between the expected and obtained rewards

[7]. More specifically, the model assumes that the likeli-

hood of choosing action a on trial t is proportional to the
reinforcement Qt(a) the subject expects to receive on that

trial. The proportionality between the expected value and

the choice probability is given by the softmax rule, which
defines the probability p(a) of a certain action a as a

function of the expected value, Qt, as follows:

p ajQtð Þ ¼ exp Qt að Þð Þ = Ra0 exp Qt a0ð Þð Þð Þ

Note that this simply turns expectations of rewards for

actions into action probabilities, ensuring that p(a) [ p(a0)

if and only if Q(a) [ Q(a0) and that 0 B p(a) B 1. The
expected value Qt(achosen) in turn is updated iteratively:

Qt achosenð Þ ¼ Qt%1 achosenð Þ þ e Rt%Qt%1 achosenð Þð Þ

where e is the learning rate and Rt the reward obtained. The

difference Rt–Qt-1(a) is the reward PE. Thus, if Rt [
Qt(achosen), then Qt(achosen) is increased, leading to a higher

probability of being chosen on the next trial. Note that,

here, the variable Rt represents the (effective) reinforce-
ment sensitivity as expressed by the effect of the rein-

forcement on the subject’s choice behavior. This variable

takes on value Rt = brew if a reward was obtained and
Rt = -bpun if a punishment was obtained. For each indi-

vidual, a learning rate e’ and the reinforcement sensitivity

for reward and punishment (brew
0 and bpun

0) were computed
as the maximum a posteriori estimates of these parameters

using a Gaussian prior.
Model fitting parameter estimation was performed in a

hierarchical model with empirical priors treating parame-

ters as a random effect. For an in-depth description, please
compare [33, 34]. Briefly, prior to fitting the models, the

learning rate was inverse sigmoid transformed and the

reward sensitivities were log-transformed. This enforced
the constraint that 0 B e B 1 and that bpun C 0 and brew C

0. Letting h = [e0, bpun
0, brew

0] denote the vector of trans-

formed parameters, we report the maximum a posteriori
estimates of these parameters using a Gaussian prior with

mean and variance parameters l and R:

hi
est ¼ arg max

h
log pðAijhÞpðhjl;RÞ

¼ arg max
h
½Rt log pðai

tjQt; hÞ(pðhjl;RÞ

where Ai represents all the actions by subject i and where
the dependence of each individual action probability on the

parameters h determining the Q value was emphasized.

Fig. 1 Probabilistic reversal task. Subjects first saw two abstract
stimuli for up to 2 s (or reaction time). After selecting one with a
button press, a blue frame surrounded the chosen target along with
either positive (reward) or negative (loss) feedback. Feedback was
displayed for 1 s, followed by a fixation cross for 1–6.5 s
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Importantly, we set the prior parameters empirically using

expectation maximization to find the maximum-likelihood

estimates of l and R given all the data by all the subjects.
Based on the parameters hi for each of the subjects, a

temporal sequence of PEs was computed for each subject

i as follows:

PEi
t ¼ Ri tð Þ%Qi

t%1 atð Þ:

Thus, rather than doing an individual maximum-likeli-

hood fit, we did a maximum-likelihood fit of the group

mean via expectation–maximization and then inferred the
posterior parameter estimates for each individual. This

reduces variability in the parameter estimates. One alter-

native in the literature is to assume that all subjects share
one and the same parameter. This reduces variability in the

regressors, and thus, the SPM beta estimates. The present

procedure is what we believe to be a reasonable tradeoff
between the two extremes.

fMRI protocol

fMRI acquisition. Functional imaging was conducted using a
3.0-Tesla GE Signa scanner with an eight channel phase array

head coil to acquire gradient echo T2*-weighted echo-planar

images as previously described [35, 36]. For each of the two
sessions, 310 EPI volumes (*12 min) containing 29 slices

were acquired [repetition time (TR) = 2,300 ms, echo time

(TE) = 27 ms, matrix size 128 9 128, and a field of view
(FOV) 256 9 256 mm2, thus yielding an in-plane voxel

resolution of 2.7 mm2, flip angle a = 90 degree). Slices were

acquired interleaved with a thickness of 4 mm and no gap.
The acquisition plane was tilted 30" from the anterior–pos-

terior commissure. A 3D anatomical image of the entire brain

was obtained by using a T1-weighted 3D spoiled-gradient
echo pulse sequence (TR = 7.8 ms, TE = 3.2 ms, matrix

size 256 9 256, FOV 256 x 256 mm2, 1 mm slice thickness,

flip angle a = 20", voxel size 1 mm 9 1 mm 9 1 mm).
fMRI data preprocessing. Functional imaging data were

analyzed using SPM8 (Wellcome Department of Imaging

Neuroscience, Institute of Neurology, London, UK; http://
www.fil.ion.ucl.ac.uk/spm/). After de-noising with ArtRe-

pair (http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.

htm), the following preprocessing steps were performed:
acquisition time and motion correction, coregistration of

the mean EPI to the anatomical T1 image, spatial nor-

malization and segmentation into tissue classes of the T1
image using the unified segmentation approach as imple-

mented in SPM8 [37] application of the normalization

parameters to all functional images, and spatial smoothing
with an isotropic Gaussian kernel of 8 mm full width at

half maximum (FWHM) kernel.

Small volume correction for multiple comparisons was
used within a ventral striatal volume of interest (VOI). We

created an fMRI literature-based probabilistic VOI for the

VS [13]. We selected 16 recent papers containing data
from 325 subjects [5, 6, 35, 38–50]. From each study, the

coordinates of PE-related activation for right and the left

VS were extracted.

Statistical analysis

The images were analyzed in an event-related manner using

the general linear model approach (GLM) as implemented in
SPM8; neuronal activity was modeled using a stick function

at the onsets of the feedback. We used a parametric design

[32, 51] in which the trial-by-trial PE values from the RW
model modulated the amplitude of the trial-related stick.

Regressors of interest for the BOLD responses corre-

sponding to the trial-wise PEs were generated by convolving
the modulated stimulus functions with the canonical

hemodynamic response function (HRF), provided by SPM8.

To account for signal fluctuations associated with the
movement by susceptibility interaction, the six movement

parameters from the realignment preprocessing step were

included in the model as additional regressors. The indi-
vidual contrast images for the contrast of the PE-modulated

feedback were then taken to a random-effects group-level

analysis using a one sample t test. To test for associations
with measures of IQ and SLES, these measures were entered

as covariates into additional random-effects analyses.

In addition, we performed stepwise multiple regression
analyses to test the predictive effect of SLES and PE sig-

naling on fluid IQ using SPSS. These were used to assess

(1) the effects of PE signaling and SLES on fluid IQ and (2)
tested for interaction effects (moderation) between SLES

and PE signaling on fluid IQ by computing an interaction

term (specifically, we assigned participants reporting below
median SLES a value of one and participants reporting

above median SLES a value of two and multiplied this

dichotomous variable with the peak VS BOLD PE signal)
and added this interaction term to the regression analysis

predicting fluid IQ.

To minimize false-positive results due to median split of
SLES (and thus reducing effective sample size), we per-

formed an additional stepwise multiple regression analyses

entering SLES as a continuous variable into the interaction
term after z-transformation (and multiplied this continuous

variable with the peak VS BOLD PE signal) and then

added this interaction term to the regression analysis.

Results

On average, participants reported a mean of 16.31

(SD = 4.59) out of 42 SLES. Overall mean fluid IQ was
0.60 (SD = 0.64) after Varimax Rotation (z-transformed).
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Participants displayed a mean crystallized IQ of 32.31
(SD = 5.67), measured with verbal knowledge test. All

subjects made an average of 70.8 ± 6.1 % correct

responses and reached criterion (number of reversal stages)
on 5.2 ± 1.3 conditions with a learning speed of 0.6 trials.

For best-fitting parameter estimates, log likelihoods, and

learning rates see Table 1. There was no correlation
between fluid IQ and any of the performance parameters

(percent correct responses, number of achieved reversal

stages, learning speed: all p [ 0.05). Fluid IQ declined
with age (correlation between fluid IQ and age: Pearson’s

correlation = -0.61, p = 0.013). Fluid IQ was not sig-

nificantly associated with SLES (Pearson’s correlation =
0.24, p = 0.376), and the amount of SLES was not associated

with age (Pearson’s correlation = -0.11, p = 0.694).

Prediction error signaling in the ventral striatum

(VS Bold PE signal)

In the fMRI group of 16 healthy controls, we first observed

a significant correlation between the model-free PEs and

the BOLD response in the left VS (x/y/z = -18/3/-5,
T = 3.38, pFWE corrected for VS VOI = 0.026). There was

also a trendwise correlation in the right VS (x/y/z = 20/6/

-5, T = 2.47, pFWE corrected for VS VOI = 0.057, for whole
brain activation see Supplementary Figure 1). Thus, sub-

jects’ VS BOLD activity correlated with the PE learning

signal. We term this correlate the VS BOLD PE signal.
Below, we examine correlations between this VS BOLD

PE signal, SLES, and fluid IQ.

Correlations between fluid IQ, stressful life events,

and VS BOLD PE signal

Fluid IQ was significantly and positively correlated with

the VS BOLD PE signal both on the left (x/y/z = -11/8/

-8, T = 3.89, pFWE corrected for VS VOI = 0.012) and on the

right (x/y/z = 17/6/-8, T = 3.71, pFWE corrected for VS VOI =

0.013). Thus, VS functional activation was more
closely correlated with model-free habitual PEs in subjects

with higher IQ as reported previously [13]. Upon control-

ling for age by introducing age as an additional covariate
into the SPM analysis, VS PE BOLD signal remained

associated with fluid IQ (left VS: x/y/z = -16/3/-8,

pFWE corrected for VS VOI = 0.045, T = 3.11, right VS: x/y/
z = 20/3/-8, pFWE corrected for VS VOI = 0.006, T = 4.30),

suggesting that this association was not simply explained
by an age-related decline in fluid IQ.

In addition, SLES was significantly and positively cor-

related with the BOLD PE signal in the left VS (left VS: x/y/
z = -16/3/-8, T = 3.02, pFWE corrected for VS VOI = 0.047

(Fig. 2), though not in the right VS (p [ 0.2). This associ-

ation remained significant when entering age as an addi-
tional covariate into the SPM analyses (left VS: x/y/z =

-16/3/-8, pFWE corrected for VS VOI = 0.048, T = 3.10). As

stated above, fluid IQ was not significantly associated with
SLES (Pearson’s correlation = 0.24, p = 0.376).

Effects of stressful life events and VS BOLD PE signal
on fluid IQ

Stress has been shown to increase the habitual, or model-
free, component of behavior [52]. The PE regressor we

have used is one such model-free, habitual, learning signal

[8]. We were thus interested to know whether stress
increases the contribution of this basic learning signal to

the more general index of flexible learning measured by

fluid IQ. We therefore performed a stepwise regression
analysis, asking whether the product of SLES and left VS

BOLD PE signal explains additional variance in the fluid

IQ measure beyond the effects of SLES and VS BOLD PE
signal alone.

Table 1 Best-fitting parameter estimates are shown as median ?
quartiles across subjects

brew -bpun LL LR

25th percentile 1.96 0.61 53.15 0.40

Median 2.73 0.84 73.10 0.62

75th percentile 5.03 1.10 109.07 0.77

Also shown are medians and quartiles for the log-likelihood (LL) of
the data at the best-fitting parameters and the learning rate (LR). The
variables reward/punishment sensitivities (brew and -bpun) represent
the effective reinforcement sensitivity as expressed by the effect of
the reinforcement on the subject’s choice behavior. This variable took
on value brew if a reward was obtained and -bpun if a punishment was
obtained

brew reward-sensitivity, -bpun punishment-sensitivity, LL log-likeli-
hood, LR learning rate Fig. 2 Stressful life events were significantly and positively corre-

lated with the BOLD PE signal in the left VS (x/y/z = -16/3/-8,
T = 3.02; pFWE corrected for VS VOI = 0.047). Color Scale represents
T Values
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The VS BOLD PE signal again correlated significantly

with fluid IQ (b = 0.89, T = 3.61, p\ 0.005), while SLES
did not correlate with fluid IQ (p[ 0.20). Thus, in our

sample, fluid IQ and SLES were not directly correlated.

However, there was a significant effect of the interaction of
VS BOLD PE signal x SLES (b=1.19, T=2.53, p\0.05). This

interaction term increased the fraction of variance in fluid IQ

that was explained from 53 to 69 %—a significant change
(FChange = 6.39, p \0.05). In order to understand the

direction of this effect, we plotted fluid IQ as a function of VS

BOLD PE signals using a median split on SLES (above or
below 17 reported events). Figure 3 shows that the associa-

tion between VS PE BOLD signaling and fluid IQ was

increased in subjects reporting more SLES (R2 =0.76). This
interaction term remained significant when adding SLES as a

continuous variable (ß = 0.43, T = 2.53, p\0.05). We

performed an outlier analysis for each included data point
(n = 16) revealing no relevant leverage effects (z value\3,

Cook’s distance\1, max=0.218, SD=0.061).

Conclusion

We learn from making mistakes and need to adapt our

predictions in the face of changing circumstances; iterative

learning via PEs plays a major role in such learning

processes [7, 53]. The present results are the first reported

data showing that a basic neurobiological learning signal—
the ventral striatal PE signal—and SLES interact to predict

individual differences in fluid intelligence, even when

correcting for the decline of fluid IQ with age. Several
points merit comment.

First, it may seem surprising that the relationship of

SLES to the BOLD PE signal is in the same, positive,
direction as that of fluid IQ. However, stress is well known

to promote habitual, model-free responses in humans and
animals. The VS BOLD PE signal quantifies how closely

the BOLD signal in the VS correlated with a standard

model-free learning signal. This is a measure of the co-
alignment of the two time-varying signals, not of the

magnitude of either of them. As such, a stronger VS BOLD

PE signal is in keeping with more habitual, model-free
learning. On the other hand, fluid IQ among other cognitive

attributes captures planning ability and other goal-directed

and more challenging (model-based) cognitive functions
[54]. The fact that higher fluid IQ is positively associated

with a stronger alignment of VS activity with the model-

free (habitual) learning signal is thus, at first sight, a
counterintuitive finding. However, the model-free learning

signal may be correlated with more complex model-based

signals in this particular task, and there is evidence that a
VS PE signal may in fact comprise both model-free and

model-based components [55]. One possible explanation is

that this alignment is an expression of the engagement of
several different learning strategies in parallel (including

goal-directed—model-based and habitual—model-free),

which is in accordance with our previous interpretation of
study results. We had observed that fluid IQ is associated

with the VS BOLD PE signal, a putative signature of

habitual (model-free) learning even when controlling for
behavioral fit, which indicates how strongly the observed

behavior is accounted for by PE-driven learning [13]. This

issue needs re-visiting in the light of the current data, as
here, subjects who had not experienced much life stress

showed only a small correlation between IQ and VS BOLD

PE signal. Thus, our finding of a correlate between fluid IQ
and VS BOLD PE signal is driven by those subjects who

have experienced substantial life stress, which may have

gradually shifted their flexible cognitive capacities toward
more model-free strategies.

Our results complement previous studies on the effect of

(acute) stress on dopamine signaling and ventral striatal PE
encoding. Stress exposure facilitates ventral striatal dopa-

mine release [22, 23, 56], and Robinson et al. [14] recently

observed increased ventral striatal PE signaling (model-
free) of negative errors of reward prediction (i.e. when

received outcome is smaller than expected) during acute

stress. Additionally, Otto et al. [16] reported that acute
stress exposure reduces the amount of model-based

Fig. 3 Effects of stressful life events and VS BOLD PE signal on
fluid IQ. Subjects reporting stressful life events above the median are
depicted in red solid triangles (R2 = 0.759). Subjects reporting below
the median in blue transparent circles (R2 = 0.287). The interaction
term is significant (b = 1.19, T = 2.53, p \ 0.05), indicating that in
subjects reporting more stressful life events, the VS BOLD PE signal
correlates more strongly with fluid IQ. An outlier analysis was
performed for each included data point (n = 16) revealing no relevant
leverage effects (z value \ 3, Cook’s distance \ 1, max = 0.218,
SD = 0.061)
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learning in subjects with low working memory capacity (a

measure closely related to fluid intelligence and general
cognitive ability), while model-free learning was unaf-

fected and thus shifts the balance from goal-directed

(model-based) toward more habitual (model-free) learning
strategies during decision making. We now show that self-

reported SLES, which reflect chronic rather than acute

stressors, are positively associated with ventral striatal
BOLD PE signal and that SLES interact with the neuronal

learning signature to predict fluid IQ. Thus, it seems fea-
sible that chronic stressors have an effect on VS PE sig-

naling in that they induce a stronger encoding of the PE

signal during habitual learning, effects which interact to
predict individual differences in fluid IQ—above and

beyond the (negative) effect of age on fluid IQ.

Despite the link between stress and the development of
various psychopathologies [57, 58], few studies have

compared the neurophysiological effects of acute and

repeated stressors. There is ample evidence to indicate both
types of stress influence the dopaminergic system, pointing

in the direction of differential effects of acute and chronic

stress [14, 16]. These modulations of dopaminergic firing
have been seen in the ventral tegmental area and the VS

[22, 23, 56] core areas for the neuronal representation of

reward PEs, reward anticipation, learning from reinforce-
ment [59, 60], and flexible behavioral adaptation (fluid IQ).

Furthermore, studies suggest that genetic variation in the

dopamine system moderates the effects of acute and
chronic stress [58, 61] and are associated with individual

differences in working memory capacity and other aspects

of fluid intelligence [62–65].
Our data indicate that the above reported VS BOLD PE

signal works as an indirect neuronal signature of stress

experience that is in part driven by a dopaminergic mod-
ulation which might shift learning strategies in highly

flexible subjects (with high levels of fluid IQ) towards

more habitual rather than goal-directed learning strategies.
These data might allow for the speculation that it may be

ecologically salient to encode errors of reward prediction

more strongly when life experiences are mainly adverse
and thus reduce cognitive demands in complex and

threatening situations.

An important limitation to our findings is that the results
are based on a small sample and therefore will require

replication. Nevertheless, the direction of the stress effects

is consistent with a recent report of the impact of acute
stress on PE signals in a reversal learning task [14]. Also,

recent evidence [24] points toward the direction of gender

differences in reward-related decision processing under
stress. Therefore, our study will have to be repeated in an

independent female sample. The findings are correlational,

and hence, no statements about causality can be made. The
various directional interpretations are, however, worth

disentangling. It appears that stress alters how IQ relates to

the VS PEs. The importance of the findings derive from the
fact that this is the first study showing that an association

between reward PE signaling and intelligence is moderated

by life stress experience and this suggests stressful life
experiences may sensitize the dopaminergic system toward

more habitual decision making.
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